Λύσεις Σειράς Ασκήσεων 4

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις Σειράς Ασκήσεων 4"

Transcript

1 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται από ένα πρωτόκολλο. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν τη λειτουργία του πρωτοκόλλου. (i) Το πρωτόκολλο τερματίζει όλες τις επικοινωνίες από τη στιγμή που επιστρέψει κάποιο αποτέλεσμα. (ii) Το πρωτόκολλο αποστέλλει μη πεπερασμένο αριθμό μηνυμάτων. (iii) Το πρωτόκολλο επιστρέφει ακριβώς ένα αποτέλεσμα. (iv) Το πρωτόκολλο ανταποκρίνεται με αποστολή κάποιου μηνύματος σε κάθε μήνυμα που παραλαμβάνει. (v) Το πρωτόκολλο δεν εκτελεί καμιά ενέργεια επικοινωνίας μέχρι να παραλάβει κάποιο μήνυμα Να παρουσιάσετε μια δομή Krike η οποία να ικανοποιεί όλες τις πιο πάνω απαιτήσεις και μια δομή Krike που δεν ικανοποιεί καμιά από τις απαιτήσεις ή να αιτιολογήσετε ότι δεν υπάρχουν τέτοιες δομές. Λύση (i) (ii) (iii) G [ε XG (α π ε)] GF α F ε G (ε XG ε) (iv) G (π F α) (v) G [(α ε ) U π] Δεν υπάρχει δομή που να ικανοποιεί όλες τις ιδιότητες αφού είναι αδύνατο να ικανοποιήσουμε ταυτόχρονα π.χ. τις ιδιότητες G [ε XG (α π ε)], GF α και F ε. Η πιο κάτω δομή δεν ικανοποιεί καμιά από τις ιδιότητες. {ε} {π} Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 1

2 Άσκηση 2 Θεωρήστε την ακόλουθη δομή Krike Για κάθε μια από τις πιο κάτω ιδιότητες να αποφασίσετε (1) κατά πόσο υπάρχει μονοπάτι που να ικανοποιεί την ιδιότητα και, αν ναι, να επιδείξετε ένα τέτοιο μονοπάτι, και (2) κατά πόσο η δομή ικανοποιεί την ιδιότητα. (i) F G 1. Μονοπάτι που ικανοποιεί την ιδιότητα: που ξεκινά από την αρχική κατάσταση, π.χ (ii) (iii) (iv) G X 1. Μονοπάτι που ικανοποιεί την ιδιότητα: Το μονοπάτι αυτό δεν ικανοποιεί καμία από τις G και X και επομένως, ικανοποιεί την G X. που ξεκινά από την αρχική κατάσταση, π.χ X G F 1. Μονοπάτι που ικανοποιεί την ιδιότητα: Ικανοποιεί το Χ. που ξεκινά από την αρχική κατάσταση, π.χ ( X ) U X 1. Η ιδιότητα δεν ικανοποιείται σε κανένα μονοπάτι: Ξεκινώντας από την αρχική κατάσταση παρατηρούμε ότι δεν ικανοποιείται η Χ. Επομένως πρέπει να ικανοποιείται η X. Εντούτοις, στο μόνο μονοπάτι στο οποίο ικανοποιείται η X (το ), το δεν γίνεται ποτέ αληθές. 2. Η δομή δεν ικανοποιεί την ιδιότητα αφού αυτή δεν ικανοποιείται σε κανένα μονοπάτι που ξεκινά από την αρχική κατάσταση. (v) U [ X X F ] 1. Μονοπάτι που ικανοποιεί την ιδιότητα: Η δομή ικανοποιεί την ιδιότητα αφού από την αρχική κατάσταση ικανοποιεί το σκέλος Χ. (vi) F ( U ) F ( ) 1. Μονοπάτι που ικανοποιεί την ιδιότητα: Στο μονοπάτι αυτό και τα δύο σκέλη της συνεπαγωγής είναι False. που ξεκινά από την αρχική κατάσταση, π.χ. το Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 2

3 Άσκηση 3 H LTL όπως έχει οριστεί στις διαφάνειες περιέχει χρονικούς τελεστές που επιτρέπουν τη διατύπωση ιδιοτήτων που αφορούν το μέλλον. Υποθέστε την ύπαρξη ενός καινούριου τελεστή P φ (P = Past) όπου η πρόταση Ρ φ ικανοποιείται σε μία κατάσταση αν η φ υπήρξε αληθής κάποια στιγμή στο παρελθόν. (i) Να δώσετε τη σημασιολογία του τελεστή Ρ, εξηγώντας με σαφήνεια πότε μια κατάσταση w i ενός μονοπατιού w ικανοποιεί την ιδιότητα Ρ φ. (ii) Θεωρήστε την ιδιότητα G(φ Ρ ψ). Εξηγήστε με λόγια τι εκφράζει η πρόταση. Παρουσιάστε μια δομή που να ικανοποιεί την ιδιότητα. Υπάρχει τρόπος να διατυπώσουμε την ιδιότητα χωρίς να καταφύγουμε στον τελεστή Ρ; Αποδείξτε το. (i) Για να μπορέσουμε να ορίσουμε τη σημασιολογία του τελεστή χρειάζεται να έχουμε στην διάθεσή μας τόσο το μονοπάτι όσο και την κατάσταση που μας ενδιαφέρει. Έτσι ορίζουμε τους κανόνες της σημασιολογίας με βάση τον συμβολισμό w, i φ, όπου γράφουμε w, i φ και μόνο αν w i φ, για i 0 και w φ αν w, 0 φ. Επομένως, χρησιμοποιώντας τον πιο πάνω συμβολισμό, ορίζουμε τη σημασιολογία του τελεστή Ρ φ με βάση τον πιο κάτω κανόνα: w, i P φ αν και μόνο αν j, 0 j i, τέτοιο ώστε w, j φ σύμφωνα με το οποίο η ιδιότητα Ρ φ ικανοποιείται από την κατάσταση i του μονοπατιού w αν υπάρχει κάποια προηγούμενη κατάσταση του μονοπατιού, έστω j, όπου j < i, τέτοια ώστε το μονοπάτι w j να ικανοποιεί την φ. (ii) Η πρόταση G(φ Ρ ψ) εννοεί ότι πάντα εάν μια κατάσταση ικανοποιεί το φ, τότε κάποια προηγούμενή της ικανοποιεί το ψ. {ψ} {φ} Η συγκεκριμένη πρόταση μπορεί να εκφραστεί ως F φ (φ U ψ). Το αποδεικνύουμε χρησιμοποιώντας τους κανόνες της σημασιολογίας: w F φ (φ U ψ) αν και μόνο αν w,0 F φ (φ U ψ) αν και μόνο αν w,0 F φ ή w,0 (φ U ψ) αν και μόνο αν για κάθε i 0 w,i φ ή j 0 τέτοιο ώστε w,j ψ και για κάθε k, 0 k j w,k φ αν και μόνο αν w,i φ για κάθε i 0 ή w,i φ για κάποιο i και w,j ψ και w,k φ για κάποιο j 0, και κάθε 0 k j αν και μόνο αν w,i φ για κάθε i 0 ή w,i φ για κάποιο i και w,j P ψ και w,k φ για κάποιο j 0, και κάθε 0 k j αν και μόνο αν [ w,i φ ή Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 3

4 w,i φ και w,j ψ για κάποιο j i ] για κάθε i 0 αν και μόνο αν [ w,i φ ή w,i Ρ ψ ] για κάθε i 0 αν και μόνο αν w,i φ Ρ ψ για κάθε i 0 αν και μόνο αν w,i φ Ρ ψ για κάθε i 0 αν και μόνο αν w G(φ Ρ ψ) Άσκηση 4 Δύο ιδιότητες φ και ψ είναι ισοδύναμες μεταξύ τους, φ ψ, αν, για κάθε δομή Krike M, M φ αν και μόνο αν M ψ. Να αποφασίσετε ποια από τα πιο κάτω ζεύγη προτάσεων περιέχουν ισοδύναμες προτάσεις. Αν δύο προτάσεις είναι ισοδύναμες να δώσετε απόδειξη χρησιμοποιώντας τη σημασιολογία, διαφορετικά να παρουσιάσετε δομή Krike στην οποία να ικανοποιείται η μία ιδιότητα αλλά όχι η άλλη. i. G ( X ) G ( X ) Η ισοδυναμία δεν είναι ορθή. Αντιπαράδειγμα: Στην πιο πάνω δομή ικανοποιείται το αριστερό μέλος της ισοδυναμίας ενώ το δεξί μέλος δεν ικανοποιείται. ii. G ( X ) G ( X ) Οι δύο προτάσεις είναι ισοδύναμες. Ακολουθεί η απόδειξη: Έστω μονοπάτι s. Τότε w G ( X ) ανν για κάθε i 0 αν w i X ανν για κάθε i 0 είτε δεν ισχύει ότι w i είτε δεν ισχύει ότι w i+1 w G ( X ) ανν για κάθε i 0 δεν ισχύει ότι w i X ανν για κάθε i 0 δεν ισχύει ότι w i και w i+1 ανν για κάθε i 0 ισχύει ότι w i ή w i+1 ανν για κάθε i 0 είτε δεν ισχύει ότι w i είτε δεν ισχύει ότι w i+1 Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 4

5 iii. AG ( ( EX )) EF ( AX ) Οι δύο προτάσεις είναι ισοδύναμες. Ακολουθεί η απόδειξη: Έστω δομή Μ με αρχική κατάσταση s, τότε Αν Μ, s AG ( ( EX )) αν και μόνο αν μονοπάτι w που ξεκινά από το s, M, w G ( (EX )) αν και μόνο αν μονοπάτι w που ξεκινά από το s και κάθε i 0, M,w[i] ( EX ) αν και μόνο αν μονοπάτι w που ξεκινά από το s και κάθε i 0, M,w[i] ή M,w[i] EX αν και μόνο αν για κάθε μονοπάτι w που ξεκινά από το s και κάθε j 0, Μ,w[j] ή Μ,w[j] ή Μ,w[j] AX αν και μόνο αν για κάθε μονοπάτι w που ξεκινά από το s και κάθε j 0, όχι Μ,w[j] ( AX ) αν και μόνο αν όχι μονοπάτι w που ξεκινά από το s και j 0 τέτοια ώστε M,w[j] AX αν και μόνο αν όχι μονοπάτι w που ξεκινά από το s τέτοιο ώστε M, w F ( AX ) αν και μόνο αν όχι Μ,s EF ( AX ) αν και μόνο αν Μ,s EF ( AX ) iv. AG ( ( AX )) AG AG ( ) Οι προτάσεις δεν είναι ισοδύναμες αφού η πιο κάτω δομή ικανοποιεί την πρώτη πρόταση αλλά όχι τη δεύτερη. Άσκηση 5 Θεωρήστε την ακόλουθη δομή Krike και αποφασίστε σε ποιες από τις καταστάσεις της δομής ικανοποιείται κάθε μια από τις CTL ιδιότητες που ακολουθούν. Να εξηγήσετε τις απαντήσεις σας χρησιμοποιώντας τον αλγόριθμο μοντελοελέγχου της CTL Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 5

6 (i) A [ U [ EX (AX EF ΑF( )) ] ] (Ε[φ 2 U(EX φ 2 )] EG φ 2 ) (Ε[φ 2 U(EX φ 2 )] ΑF φ 2 ) (Ε[φ 2 U(EX φ 2 )] ΑF φ 2 ) όπου φ 2 AX EF ΑF( ) AX EF ΑF( ) EX EF ΑF( ) Κατ αρχή, τρέχουμε τον αλγόριθμο στη φ 2 και παίρνουμε ότι η πρόταση ικανοποιείται σε όλες τις καταστάσεις της δομής: EX AF {1,2,3,5} EF Στη συνέχεια τρέχουμε τον αλγόριθμο στην υπό μελέτη πρόταση και παρατηρούμε ότι η πρόταση ικανοποιείται από τη δομή αφού ικανοποιείται στην αρχική κατάσταση. EU AF φ 2 {2} φ 2 {1,3,4,5} EX {3,4,5} φ 2 Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 6

7 (ii) EX ( ) EF [ A ( U ) EG ] EX ( ) EF [ A ( U ) EG ] EX ( ) E [ True U (A ( U ) EG ) ] EX ( ) E [ True U ( (Ε[U( )] EG ) EG ) ] EX ( ) E [ True U ( (Ε[U( )] AF ) AF ) ] EX ( ) E [ True U ( (Ε[U( )] AF ) AF ) ] EU {1,2,3,4,5 EX true {1,2,3,5} {1,2,4} AF {3,4,5} {1,4} EU {1,2,4 {3,4,5} {1,2,4} {4} AF {3,4,5} {1,2,4} Λύσεις Σειράς Προβλημάτων 4 Χειμερινό Εξάμηνο 2015 Σελίδα 7

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Θεωρήστε την ακόλουθη δομή Kripke. {entry} 0 1 {active} 2 {active, request} 3 {active, response} Να διατυπώσετε τις πιο κάτω προτάσεις στην LTL (αν αυτό είναι εφικτό)

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 i. FG φ GF ψ G (φ U (ψ φ)) Έστω δομή Μ και w κάποιο μονοπάτι της δομής. Θα δείξουμε ότι w FG φ GF ψ αν και μόνο αν w G (φ U (ψ φ)) Ξεκινώντας με το αριστερό σκέλος έχουμε:

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 0 (25 μονάδες) Λύσεις Σειράς Ασκήσεων 4 (α) Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού και χρησιμοποιήστε τη μέθοδο της SLD επίλυσης για να φθάσετε σε διάψευση του στόχου. concat([],

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ664: Ανάλυση και Επαλθευση Συστημάτων Τμμα Πληροφορικς Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC0, PC1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC i, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. Process P i :

Διαβάστε περισσότερα

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4)

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16

Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16 ΜΕΡΟΣ Α Άσκηση 1 Σειρά Προβλημάτων 3 Ημερομηνία Παράδοσης: 04/04/16 Δύο ιδιότητες φ και ψ είναι ισοδύναμες μεταξύ τους, φ ψ, αν, για κάθε δομή Kripke M, M φ αν και μόνο αν M ψ. Να αποφασίσετε ποια από

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ CTL/LTL ΑΣΚΗΣΗ 1 Θεωρήστε το μοντέλο Μ ενός συστήματος που δίνεται από το αυτόματο του σχήματος p, q s 0 s 1 s 2 q, και το (άπειρο) δέντρο του σχήματος s0 p, q s1 q, s0 p, q

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Κανένα πιρούνι δεν χρησιμοποιείται ποτέ από περισσότερους από ένα φιλόσοφους. ΑG [ (l 0 r 2) (l 1 r 0) (l 2 r 1) (β) Ο φιλόσοφος i θα φάει τουλάχιστον μια φορά.

Διαβάστε περισσότερα

CTL - Λογική Δένδρου Υπολογισμού

CTL - Λογική Δένδρου Υπολογισμού CTL - Λογική Δένδρου Υπολογισμού Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL και CTL Δικαιοσύνη

Διαβάστε περισσότερα

Γραμμική και διακλαδωμένη χρονική λογική

Γραμμική και διακλαδωμένη χρονική λογική CTL - Λογική Δένδρου Υπολογισμού Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL και CTL Δικαιοσύνη

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε

Διαβάστε περισσότερα

Άλγεβρες ιεργασιών και Τροπικές Λογικές

Άλγεβρες ιεργασιών και Τροπικές Λογικές Άλγεβρες ιεργασιών και Τροπικές Λογικές Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Οι λογικές HML και WHML Ο λογικός χαρακτηρισµός των ~ και Η λογική CTL- ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστηµάτων

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1)

CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1) CTL Έλεγχος Μοντέλου (ΗR Κεφάλαιο 3.5 και 3.6.1) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος μοντέλου για τη CTL CTL* ΕΠΛ 412 Λογική στην Πληροφορική 8-1 Αλγόριθμος Μοντελο-ελέγχου Πως μπορούμε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 1, PC 2, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. bool y 1

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 664: Ανάλυση και Επαλήθευση Συστημάτων ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ ΗΜΕΡΟΜΗΝΙΑ : Πέμπτη, 21 Μαρτίου 2013 ΔΙΑΡΚΕΙΑ : 14:00 16:00 ΔΙΔΑΣΚΟΥΣΑ : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση Θεωρήστε τις πιο κάτω διεργασίες: A....A B....B.... P ( A B \{ P ( A A \{,,, },,, } (α Να κτίσετε τα συστήματα μεταβάσεων που αντιστοιχούν στις διεργασίες P, Ρ. Ακολουθούν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 0, PC 1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. P[0] P[1]

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση Λύσεις Σειράς Ασκήσεων 5 Έστω P και Q συνθήκες και S ένα πρόγραμμα. Να εξηγήσετε με λόγια τις πιο κάτω προδιαγραφές (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της ολικής ορθότητας.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2,

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ. 29 Ιουνίου 2007 ΔΙΑΦΑΝΕΙΑ 1

ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΙ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΤΜ. ΠΛΗΡΟΦΟΡΙΚΗΣ Α.Π.Θ. ΔΙΔΑΣΚΩΝ: Π. ΚΑΤΣΑΡΟΣ. 29 Ιουνίου 2007 ΔΙΑΦΑΝΕΙΑ 1 ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΗλογικήCTL* (Computation Tree Logic) χρησιμοποιείται από εργαλεία ελέγχου μοντέλων για την τυπική περιγραφή ιδιοτήτων καταστάσεων που αναφέρονται στις εκτελέσεις ενός συστήματος. Χρησιμοποιεί

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι

ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι ΠΡΟΔΙΑΓΡΑΦΗ ΙΔΙΟΤΗΤΩΝ ΜΕ ΧΡΟΝΙΚΗ ΛΟΓΙΚΗ Ι Ιδιότητες προσεγγισιμότητας (reachability properties): αναφέρονται στο ενδεχόμενο προσέγγισης μιας συγκεκριμένης κατάστασης. Ιδιότητες ασφαλείας (safety properties):

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 5 Να υπολογίσετε τις ασθενέστερες προσυνθήκες έτσι ώστε οι πιο κάτω προδιαγραφές να είναι ορθές σύμφωνα (i) με την έννοια της μερικής ορθότητας και (ii) με την έννοια της

Διαβάστε περισσότερα

Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα:

Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Χρονικά αυτόματα Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Συστήματα πραγματικού Χρόνου Διακριτός και συνεχής χρόνος Χρονικά αυτόματα Χρονική CTL ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 7-1 Συστήματα

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 (α) {x = 12 y = 7} skip {y = 7} Λύσεις Σειράς Ασκήσεων 5 Η προδιαγραφή αυτή είναι ορθή τόσο με την έννοια της μερικής ορθότητας όσο και με την έννοια της ολικής ορθότητας. Αυτό οφείλεται στο γεγονός

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Αυτοματοποιημένη Επαλήθευση

Αυτοματοποιημένη Επαλήθευση Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {w 1w 2 w 1 {0,1} * και w 2 = 0 k 1 m όπου k και m

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Λύσεις 2 ης Σειράς Ασκήσεων

Λύσεις 2 ης Σειράς Ασκήσεων Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων

Λύσεις 1 ης Σειράς Ασκήσεων Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t)

Διαβάστε περισσότερα

Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας

Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας Άλγεβρες Διεργασιών και Σχέσεις Ισοδυναμίας Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Σχέσεις ισοδυναμίας trce equivlence filure equivlence strong isimultion wek isimultion ΕΠΛ 664 Ανάλυση και Επαλήθευση

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Χρονικά αυτόµατα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Συστήµατα πραγµατικού Χρόνου ιακριτός και συνεχής χρόνος Χρονικά αυτόµατα Χρονική CTL ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστηµάτων 12-1 Συστήµατα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes

Διαβάστε περισσότερα

Φροντιστήριο 2 Λύσεις

Φροντιστήριο 2 Λύσεις Φροντιστήριο 2 Λύσεις Άσκηση 1 1. p ( p r) προϋπόθεση 2. r προϋπόθεση 3. q προσωρινή υπόθεση 4. p προσωρινή υπόθεση 5. p r ΜP 6. p προσωρινή υπόθεση r προσωρινή υπόθεση 7. i 4, 6 8. r e 9. r e 5, 8, 6

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

1 (6) 9 (6) 2 (3) 10 (9) 3 (6) 11 (6) 4 (8) 12 (6) 5 (6) 13 (8) 6 (5) 14 (6) 7 (6) 15 (11) 8 (8)

1 (6) 9 (6) 2 (3) 10 (9) 3 (6) 11 (6) 4 (8) 12 (6) 5 (6) 13 (8) 6 (5) 14 (6) 7 (6) 15 (11) 8 (8) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 311: Διακριτη Αναλυση και Δομες Χειμερινό Εξάμηνο 2015-2016 Καθηγητής: Χριστόφορος Χατζηκωστής Τελική Εξέταση Τρίτη, 22 Δεκεμβρίου,

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες Απόδειξης Μερικής

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 28/02/2019 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1 ης Τάξης (First Order Predicate Calculus) Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Κεφάλαιο 2 : Δομή Επιλογής Εντολές επιλογής Εντολή ΑΝ. Εντολές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει

Διαβάστε περισσότερα

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων. Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων

Ανάλυση της Ορθότητας Προγραμμάτων Ανάλυση της Ορθότητας Προγραμμάτων Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων ΚανόνεςΑπόδειξηςΜερικήςΟρθότητας

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 15/03/2017 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

Σελίδα 1 από 7 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ:

Σελίδα 1 από 7 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 08-09-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι

ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι ΕΠΑΛΗΘΕΥΣΗ ΠΡΟΓΡΑΜΜΑΤΩΝ Ι Η τυπική επαλήθευση βάση μοντέλου είναι κατάλληλη για συστήματα επικοινωνούντων διεργασιών (π.χ. κατανεμημένα συστήματα) όπου το βασικό πρόβλημα είναι ο έλεγχος αλλά γενικά δεν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις Σειρά Προβλημάτων 2 Λύσεις Άσκηση 1 Χρησιμοποιώντας τα πιο κάτω κατηγορήματα και σταθερές και υποθέτωντας ως σύμπαν το σύνολο όλων των ανθρώπων, να διατυπώσετε τις προτάσεις που ακολουθούν στον Κατηγορηματικό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα). Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 5

Λύσεις Σειράς Ασκήσεων 5 Λύσεις Σειράς Ασκήσεων 5 Άσκηση 1 (α) Ακολουθεί η απόδειξη της προδιαγραφής (0) { A[X] = x A[Y] = y X Y (1) { A[Y] = y A[X] + Α[Υ] A[Y] = x X Y (2) A[X] := A[X] + A[Y]; (3) { A[Y] = y A[X] A[Y] = x X Y

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I APEIROSTIKOS LOGISOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου. Άσκηση : Αποδείξτε με τον ορισμό ότι:. lim ( ) = +,. lim =,. lim ln( + ) = ln, + 4. lim + =. Λύση:. Θεωρούμε αυθαίρετο

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό

Διαβάστε περισσότερα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα

Μορφολογική Παραγωγή. 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Μορφολογική Παραγωγή 3 ο φροντιστήριο ΗΥ180 Διδάσκων: Δ. Πλεξουσάκης Τετάρτη 08/03/2018 Ζωγραφιστού Δήμητρα Συστήματα Αποδείξεων στον ΠΛ(1/2) Συχνά μας ενδιαφέρει να μπορούμε να διαπιστώσουμε αν μία εξαγωγή

Διαβάστε περισσότερα

x (a 1 + a 2 ) mod 9, y (a 1 a 2 ) mod 9.

x (a 1 + a 2 ) mod 9, y (a 1 a 2 ) mod 9. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 311: Διακριτη Αναλυση και Δομες Χειμερινό Εξάμηνο 2017-2018 Καθηγητής: Χριστόφορος Χατζηκωστής Τελική Εξέταση Πέμπτη, 14 Δεκεμβρίου,

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).

Διαβάστε περισσότερα

(ii) X P(X). (iii) X X. (iii) = (i):

(ii) X P(X). (iii) X X. (iii) = (i): Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Δείξτε ότι ισχύουν τα ακόλουθα: (i) ω / ω (με άλλα λόγια, το ω δεν είναι φυσικός αριθμός). (ii) Για κάθε n ω, ισχύει ω / n. (iii) Για κάθε n ω, το n

Διαβάστε περισσότερα

x < y ή x = y ή y < x.

x < y ή x = y ή y < x. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με

Διαβάστε περισσότερα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

α) Πώς παίρνουμε αποφάσεις στην καθημερινή μας ζωή; Συμπληρώσετε τον παρακάτω πίνακα: τότε

α) Πώς παίρνουμε αποφάσεις στην καθημερινή μας ζωή; Συμπληρώσετε τον παρακάτω πίνακα: τότε 1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Η δομή επιλογής εάν» Δραστηριότητα 1 α) Πώς παίρνουμε αποφάσεις στην καθημερινή μας ζωή;

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W

[(W V c ) (W c V c )] c \ W = [(W V c ) (W c V c )] c \ W = [(W V c ) c (W c V c ) c ] \ W = [(W c W ) V ] \ W ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ιανουάριος 2012 Τμήμα Μαθηματικών Διδάσκων: Χρήστος Κουρουνιώτης Μ1124 ΘΕΜΕΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρατηρήσεις 1. Διαβάστε προσεκτικά τα θέματα πριν αρχίσετε να απαντάτε. Οι απαντήσεις

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1.

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1. Ονοματεπώνυμο: Μάθημα: Υλη: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, 2.4.1-2.4.4, 6.3, 7.1-7.10, 8.1, 8.1.1 Επιμέλεια διαγωνίσματος: Ρομπογιαννάκη Ι.Αικατερίνη

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης). Κανόνας Ανάλυσης 1 Μυθικός Αθάνατος 3 Μυθικός Θηλαστικό ------------------------------ 7 Αθάνατος Θηλαστικό 4 Αθάνατος έχεικέρας -------------------------------- 8 Θηλαστικό έχεικέρας 5 Θηλαστικό έχεικέρας

Διαβάστε περισσότερα

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Φροντιστήριο 8 Λύσεις

Φροντιστήριο 8 Λύσεις Άσκηση 1 Φροντιστήριο 8 Λύσεις Θεωρήστε την πιο κάτω Μηχανή Turing όπου όλες οι μεταβάσεις που απουσιάζουν οδηγούν στην κατάσταση απόρριψης (q απόρριψης). Σε κάθε σκέλος, να προσδιορίσετε την ακολουθία

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3Β

Λύσεις Σειράς Ασκήσεων 3Β ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3Β i. Ανά πάσα στιγμή ο εκτυπωτής χρησιμοποιείται από το πολύ ένα χρήστη. G ( Αλίκη.χρήση Βαγγέλης.χρήση) ii. iii.

Διαβάστε περισσότερα