Λύσεις Σειράς Ασκήσεων 3Β

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις Σειράς Ασκήσεων 3Β"

Transcript

1 ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3Β i. Ανά πάσα στιγμή ο εκτυπωτής χρησιμοποιείται από το πολύ ένα χρήστη. G ( Αλίκη.χρήση Βαγγέλης.χρήση) ii. iii. iv. Κάθε χρήστης μπορεί να χρησιμοποιεί τον εκτυπωτή για πεπερασμένο χρόνο. G [(Αλίκη.χρήση F Αλίκη.αποδεύσμευση) (Βαγγ.χρήση F Βαγγ.αποδεύσμευση)] Η Αλίκη θα χρησιμοποιήσει τον εκτυπωτή ξανά και ξανά. GF Αλίκη.χρήση Αν κάποιος χρήστης κάνει αίτηση για χρήση του εκτυπωτή τελικά θα τον χρησιμοποιήσει. G [(Αλίκη.αίτηση F Αλίκη.χρήση) (Βαγγ.αίτηση F Βαγγ.χρήση)] v. Ανά πάσα στιγμή, κάθε χρήστης μπορεί να αιτηθεί τη χρήση του εκτυπωτή. G (Αλίκη.αίτηση Βαγγέλης.αίτηση) vi. Η χρήση του εκτυπωτή εναλλάσσεται αυστηρά ανάμεσα στους δύο χρήστες (κανένας χρήστης δεν θα τυπώσει δύο φορές συνεχόμενα). G ((F Αλίκη.χρήση) (F Βαγγέλης.χρήση) ((Αλίκη.χρήση) (Αλίκη.χρήση U [ (Αλίκη.χρήση) ( (Αλίκη.χρήση) U (Βαγγέλης.χρήση) ( Αλίκη.χρήση)] ((Βαγγ.χρήση) (Βαγγ.χρήση U [ (Βαγγ.χρήση) ( (Βαγγ.χρήση) U (Αλίκη.χρήση) ( Βαγγ.χρήση)]) vii. Η Αλίκη δεν θα αποδεσμεύσει τον εκτυπωτή πριν να τον χρησιμοποιήσει. ( (Αλίκη.αποδέσμευση)) G [( (Αλίκη.αποδέσμευση) F (Αλίκη.αποδέσμευση) ( (Αλίκη.αποδέσμευση) U (Αλίκη.χρήση))] viii. Κάθε φορά που ο Βαγγέλης στέλνει κάποιο αίτημα στον εκτυπωτή τότε θα τον χρησιμοποιήσει μέσα σε δύο μονάδες χρόνου (βήματα). G Βαγγέλης.αίτηση (Χ Βαγγέλης.χρήση XΧ Βαγγέλης.χρήση) Άσκηση 2 i. H ιδιότητα δεν ικανοποιείται. Αντιπαράδειγμα αποτελεί το μονοπάτι s 2 s 4 s 3 s 4 s 3 s 4 ii. Η ιδιότητα ικανοποιείται, διότι από όλες τις καταστάσεις της δομής και για όλα τα μονοπάτια, υπάρχει κατάσταση στο μέλλον η οποία ικανοποιεί το c. iii. Η ιδιότητα ικανοποιείται, σε όλα τα μονοπάτια που ξεκινούν από μια αρχική κατάσταση η τρίτη κατάσταση του μονοπατιού ικανοποιεί το c.

2 ΕΠΛ 412 Λογική στην Πληροφορική Χειμερινό Εξάμηνο 2012 iv. Η ιδιότητα δεν ικανοποιείται. Αντιπαράδειγμα αποτελεί το μονοπάτι s 1 s 4, το οποίο δεν ικανοποιεί την ιδιότητα v. Η ιδιότητα ικανοποιείται, διότι όλα τα μονοπάτια που ξεκινούν από το s 1 ικανοποιούν πρώτα το a και στη συνέχεια το δεξί μέλος της ιδιότητας until, ενώ όλα τα μονοπάτια που ξεκινούν από το s 2 ικανοποιούν απευθείας το δεξί μέλος της ιδιότητας until. vi. Η ιδιότητα δεν ικανοποιείται. Η κατάσταση s 1 δεν ικανοποιεί ούτε το b ούτε το c. Όμως υπάρχει το μονοπάτι s 1 s 4 s 2, από το οποίο η s 1 δεν ικανοποιεί ούτε το αριστερό μέλος της ιδιότητας until.

3 ΕΠΛ 412 Λογική στην Πληροφορική Κατασκευή Προτασιακών Μορφών: 1. {{Κ(Α)}, {Κ(Β)}, {Κ(Γ)}} 4. {{ Ν(Γ, Β)}} 2. {{ Ν(Α, Β)}} 5. {{ Κ(x), Χ(x, Γαλ.),, Χ(x, Πρ.), Χ(x, Πορτ.)}} 3. {{ Ν(Β, Γ) }, {Ν(Β, Γ)}} 6. {{ K(x), K(y), N(x,y), X(x, z) ), X(y, z)}} Εφαρμογή της Μεθόδου Επίλυσης μέσω Ενοποίησης Φθινόπωρο {{ Χ(A, Πορτ.)}, {Χ(Γ, Πρ.)}, { Χ(Β, Γαλ.)}} 7. Χ(A, Πορτ.) K(x), K(y), N(x, y), X(x, z), X(y, z) 5. Κ(x), Χ(x, Γαλ.), Χ(x, Πρ.), Χ(x, Πορτ.) 7. Χ(Β, Γαλ.) 1. Κ(Α) Ν(Α, Β) Κ(Β) 7. Χ(Γ, Πρ.) 1. Κ(Γ) Ν(Γ, Β) K(A), K(y), N(A, y), X(y, Πορτ.) K(Γ), K(y), N(Γ, y), X(y, Πρ.) Κ(B), Χ(Β, Πρ.), Χ(Β, Πορτ.) K(y), N(A, y), X(y, Πορτ.) K(y), N(Γ, y), X(y, Πρ.) Χ(Β, Πορτ.), Χ(Β, Πρ.) K(B), X(B, Πορτ.) K(B), X(Β, Πρ.) X(B, Πορτ.) Χ(Β, Πρ.) ) Χ(Β, Πορτ.)

4 ΕΠΛ 412 Λογική στην Πληροφορική Φθινόπωρο 2012 Άσκηση 2 (α) f (g(x), z) f (y, h(x)) 1. Τ 1 = f (g(x), z), Τ 2 = f (y, h(x)), σ 0 = {}, i=0 2. σ 1 = σ 0 {g(x))/y}, Τ 1 = f (g(x), z), Τ 2 = f (g(x), h(x)), i=1 3. σ 2 = σ 1 {h(x))/z}, Τ 1 = f (g(x), h(x)), Τ 2 = f (g(x), h(x)), i=2 4. Οι προτάσεις είναι ενοποιήσιμες και η γενικότερη ενοποιήτρια τους είναι η σ 2 = {g(x))/y, h(x))/z}. (β) j(x, y, z) f (f(y,y), f(z, z), f(a,a)) Το j δεν ενοποιείται με το f (γ) j(x, z, x) j(y, f(y), z) 1. Τ 1 = j(x, z, x), Τ 2 = j(y, f(y), z), σ 0 = {}, i=0 2. σ 1 = σ 0 {x/y}, Τ 1 = j(y, z, y), Τ 2 = j(y, f(y), z), i=1 3. σ 2 = σ 1 {f(y))/z}, Τ 1 = j(y, f(y), y), Τ 2 = j(y, f(y), f(y)), i=2 4. Οι προτάσεις δεν είναι ενοποιήσιμες γιατί το y δεν είναι ενοποιήσιμο με το f(y). (δ) j(f(x), y, a) j(y, z, z) 1. Τ 1 = j(f(x), y, a), Τ 2 = j(y, z, z), σ 0 = {}, i=0 2. σ 1 = σ 0 {f(x)/y}, Τ 1 = j(f(x), f(x), a), Τ 2 = j(f(x), z, z), i=1 3. σ 2 = σ 1 {f(x))/z}, Τ 1 = j(f(x), f(x), a), Τ 2 = j(f(x), f(x), f(x)), i=2 4. Οι προτάσεις δεν είναι ενοποιήσιμες. (ε) j(g(x), a, x) j(g(z), y, f(z, z)) 1. Τ 1 = j(g(x), a, x), Τ 2 = j(g(z), y, f(z, z)), σ 0 = {}, i=0 2. σ 1 = σ 0 {z/x}, Τ 1 = j(g(z), a, z), Τ 2 = j(g(z), y, f(z, z)), i=1 3. σ 2 = σ 1 {a/y}, Τ 1 = j(g(z), a, z), Τ 2 = j(g(z), a, f(z, z)), i=2 4. Οι προτάσεις δεν είναι ενοποιήσιμες. Άσκηση 3 Αριθμούμε τις γραμμές: 1. member(x, x:xs) 2. member(x, y:ys) member(x,ys) 3. nonmember(x, []) 4. nonmember(x, y:ys) nonmember(x,ys) 5. intersection ([], ys, []) 6. intersection(x:xs,ys,x:zs) member(x,ys), intersection(xs,ys,zs) 7. intersection(x:xs,ys,zs) nonmember(x,ys), intersection(xs,ys,zs) 8. intersection([a,b,c],[d,c],z)

5 ΕΠΛ 412 Λογική στην Πληροφορική Φθινόπωρο nonmember(a,[d,c]), intersection([b,c],[d,c],z) από (7) και (8) x 1 a, xs 1 [b,c], ys 1 [d,c],zs 1 Z 10. nonmember(a,[c]), intersection([b,c],[d,c],z) από (4) και (9) x 2 a, y 2 d, ys 2 [c] 11. nonmember(a,[]), intersection([b,c],[d,c],z) από (4) και (10) x 3 a, y 3 c, ys 2 [] 12. intersection([b,c],[d,c],z) από (3) και (11) 13. nonmember(b, [d,c]), intersection([c],[d,c],z) από (7) και (12) x 4 b, xs 4 [c], ys 4 [d,c],zs 4 Z 14. nonmember(b, [c]), intersection([c],[d,c],z) από (4) και (13) x 5 b, y 5 d, ys 5 [] 15. nonmember(b, []), intersection([c],[d,c],z) από (4) και (14) 16. intersection([c],[d,c],z) από (3) και (15) 17. member(c,[d,c]), intersection([],[d,c],zs 6 ) Z c:z, από (6) και (16) x 6 c, xs 6 [], ys 6 [d,c],z c: zs member(c,[c]), intersection([],[d,c],zs 6 ) από (2) και (17) x 7 c, y 7 d, ys 7 [c] 19. intersection([],[d,c],zs 6 ) από (1) και (18) 20. zs 6 [], από (6) και (16) Αντικατάσταση ορθής απάντησης: Z c:z 6 c:[] = [c]

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να υπολογίσετε την προτασιακή μορφή των πιο κάτω προτάσεων. (α) xyz [(P(x,y) Q(y,z)) Q(x,y)] x P(x,f(x)) Βήμα 1: Μετατροπή σε Κανονική Μορφή Prenex: xyz [(P(x,y) Q(y,z))

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4-23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ664: Ανάλυση και Επαλθευση Συστημάτων Τμμα Πληροφορικς Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC0, PC1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC i, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. Process P i :

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της

Διαβάστε περισσότερα

1, 2,, Ε = = 2 ~ (0,1) = ( ) = Ε ( ) = 2 = ( ) ( ) ( ) ( ) Ω = { 1, 2, 3}, ( 1 ) =, ( 2 ) =, ( 3 ) = Ω = { 1, 2,, }, = 0 1 = 1 (0,1) 1 0 ~ (, ) = + + + (, ). = 1 (, ) Χ~Β(20, ¼) (, ) (, (1 )). [ 1/2,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 1, PC 2, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. bool y 1

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 i. FG φ GF ψ G (φ U (ψ φ)) Έστω δομή Μ και w κάποιο μονοπάτι της δομής. Θα δείξουμε ότι w FG φ GF ψ αν και μόνο αν w G (φ U (ψ φ)) Ξεκινώντας με το αριστερό σκέλος έχουμε:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Θεωρήστε την ακόλουθη δομή Kripke. {entry} 0 1 {active} 2 {active, request} 3 {active, response} Να διατυπώσετε τις πιο κάτω προτάσεις στην LTL (αν αυτό είναι εφικτό)

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έκτου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 208-9. Λύσεις έκτου φυλλαδίου ασκήσεων.. Παρατηρήστε ότι ο πρώτος κανόνας αλλαγής μεταβλητής εφαρμόζεται μόνο στα εφτά πρώτα όρια ενώ ο δεύτερος κανόνας εφαρμόζεται

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 0 (25 μονάδες) Λύσεις Σειράς Ασκήσεων 4 (α) Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού και χρησιμοποιήστε τη μέθοδο της SLD επίλυσης για να φθάσετε σε διάψευση του στόχου. concat([],

Διαβάστε περισσότερα

Σχήματα McCarthy I. Το σχήμα McCarthy είναι ένα γενικότερο προγραμματιστικό σχήμα:

Σχήματα McCarthy I. Το σχήμα McCarthy είναι ένα γενικότερο προγραμματιστικό σχήμα: Σχήματα McCarthy I Το σχήμα McCarthy είναι ένα γενικότερο προγραμματιστικό σχήμα: f(x, y) = if g(...) = 0 then h(...) else k(...) όπου g(...), h(...) και k(...) είναι όροι-συναρτήσεις που κατασκευάζονται

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 1 Λύσεις (α) Χρησιμοποιούμε τις επιπλέον μεταβλητές PC 0, PC 1, (program counters) οι οποίες παίρνουν ως τιμές ονόματα των γραμμών του κώδικα όπως φαίνεται πιο κάτω. P[0] P[1]

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις Ασκήσεων

Φροντιστήριο 7 Λύσεις Ασκήσεων Φροντιστήριο 7 Λύσεις Ασκήσεων Άσκηση 1 (α) Αριθμούμε τις γραμμές του προγράμματος. 1. French(Jean) 2. French(Jacques) 3. British(Peter) 4. likewine(x, Y ) French(X), wine(y ) 5. likewine(x, Bordeaux)

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 14/4/2016 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C Dπου ορίζονται στο παρακάτω Υπολογίστε

Διαβάστε περισσότερα

Φυλλάδια 2&3: Κατηγορηµατική Λογική

Φυλλάδια 2&3: Κατηγορηµατική Λογική ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Φυλλάδια 2&3: Κατηγορηµατική Λογική ΕΚΕΜΒΡΙΟΣ 2007 ΣΗΜΕΙΩΣΗ: ΟΙ ΛΥΣΕΙΣ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ ΕΧΟΥΝ ΟΘΕΙ ΑΠΟ ΣΥΝΑ ΕΛΦΟΥΣ ΣΑΣ ΤΩΝ ΟΠΟΙΩΝ ΤΑ ΟΝΟΜΑΤΑ ΑΝΑΓΡΑΦΟΝΤΑΙ. A.

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις Σειρά Προβλημάτων 2 Λύσεις Άσκηση 1 Χρησιμοποιώντας τα πιο κάτω κατηγορήματα και σταθερές και υποθέτωντας ως σύμπαν το σύνολο όλων των ανθρώπων, να διατυπώσετε τις προτάσεις που ακολουθούν στον Κατηγορηματικό

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Ενοποίηση όρων μίας πρότασης μέσω αντικατάστασης Η έννοια της επιλύουσας προτάσεων Διαδικασία απόδειξης και εξαγωγής συμπερασμάτων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε

Διαβάστε περισσότερα

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f

ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

2742/ 207/ /07.10.1999 «&»

2742/ 207/ /07.10.1999 «&» 2742/ 207/ /07.10.1999 «&» 1,,,. 2 1. :.,,,..,..,,. 2., :.,....,, ,,..,,..,,,,,..,,,,,..,,,,,,..,,......,,. 3., 1. ' 3 1.., : 1. T,, 2., 3. 2 4. 5. 6. 7. 8. 9..,,,,,,,,, 1 14. 2190/1994 ( 28 ),,..,, 4.,,,,

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Αλγεβρικές Δομές Ι. 1 Ομάδα I Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση

Διαβάστε περισσότερα

B = {x A : f(x) = 1}.

B = {x A : f(x) = 1}. Θεωρία Συνόλων Χειμερινό Εξάμηνο 016 017 Λύσεις 1. Χρησιμοποιώντας την Αρχή του Περιστερώνα για τους φυσικούς αριθμούς, δείξτε ότι για κάθε πεπερασμένο σύνολο A και για κάθε f : A A, αν η f είναι 1-1 τότε

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

( ( )) ( 3 1) 2( 3 1)

( ( )) ( 3 1) 2( 3 1) Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 7/4/2017 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις f : A B, g : B διάγραμμα. C και h : C D που ορίζονται στο παρακάτω Υπολογίστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π Δ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) 3Νο ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1 Να μελετήσετε

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Τρίτη 4 εκεµβρίου m + 4Z

Τρίτη 4 εκεµβρίου m + 4Z ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 6 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 4 εκεµβρίου 202 Ασκηση. Βρείτε

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B.

sup(a + B) = sup A + sup B inf(a + B) = inf A + inf B. Ασκήσεις, Φυλλάδιο. Βρειτε το συνολο Φ A ολων των ανω ϕραγματων του A, και το συνολο φ A ολων των κατω ϕραγματων του A, οταν: a) A = m :, m N}, b) A = + m 2. Βρειτε το if και sup οποτε υπαρχουν) των συνολων

Διαβάστε περισσότερα

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3.

Συναρτησιακή Ανάλυση, εαρινό εξάμηνο Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. Συναρτησιακή Ανάλυση, εαρινό εξάμηνο 2016-17. Έκτο φυλλάδιο ασκήσεων. Παραδώστε τις ασκήσεις 1, 3, 4, 8 και 10 μέχρι το μάθημα της Παρασκευής 24/3. 1. Αν ο X είναι χώρος Bnch, αποδείξτε ότι ο X είναι αυτοπαθής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

Το Θεώρημα Stone - Weierstrass

Το Θεώρημα Stone - Weierstrass Το Θεώρημα Stone - Weierstrass Θεώρημα 1 Έστω ¹ X συμπαγής χώρος Hausdorff και έστω C R (X η πραγματική άλγεβρα όλων των συνεχών συναρτήσεων f : X R. Έστω ότι ένα υποσύνολο A C R (X (1 το A είναι υπάλγεβρα

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4 23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2)

Β Λυκείου - Ασκήσεις Συναρτήσεις. x1+ 5 x2 + 5 (x1+ 5)(x2 2) (x2 + 5)(x1 2) = = = x 2 x 2 (x 2)(x 2) = = (x 2)(x 2) (x 2)(x 2) Να μελετηθεί η συνάρτηση Β Λυκείου - Ασκήσεις Συναρτήσεις x+ 5 f(x = ως προς τη μονοτονία. x Το πεδίο ορισμού της f(x είναι το {}. Διακρίνουμε δύο περιπτώσεις: Έστω x1 < x

Διαβάστε περισσότερα

(x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) =0 x y z. div A =0

(x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) =0 x y z. div A =0 1 Pìblhma 1 α) gad = (x 2 + y 2 + z 2 ) 1/2 = (x(x 2 + y 2 + z 2 ) 1/2,y(x 2 + y 2 + z 2 ) 1/2,z(x 2 + y 2 + z 2 ) 1/2) β) = div = x x + y y + z z =3 cul = x y z γ) Εχουμε A = ω x ω y ω z x y z =(ω yz

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις

Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης

Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης 1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ MyΤeachers.gr ΟΝΟΜΑ : ΗΜΕΡΟΜΗΝΙΑ:./../.. ΒΑΘΜΟΣ : /100 ΔΙΑΡΚΕΙΑ : 180 ΛΕΠΤΑ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Έστω μια συνάρτηση η οποία είναι συνεχής σε ένα διάστημα. Αν σε κάθε εσωτερικό σημείο του, τότε να δείξετε

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 14-15, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: Πρόβλημα 1. Για κάθε μια από τις

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ευτέρα, 0 Μα ου 0 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΕΓΓΡΑΦΗΣ ΜΑΘΗΜΑΤΩΝ (Α-Ι) (Πρόγραμμα στις Διεθνείς, Ευρωπαϊκές και Οικονομικές Σπουδές και Πρόγραμμα στα Οικονομικά)

ΕΝΤΥΠΟ ΕΓΓΡΑΦΗΣ ΜΑΘΗΜΑΤΩΝ (Α-Ι) (Πρόγραμμα στις Διεθνείς, Ευρωπαϊκές και Οικονομικές Σπουδές και Πρόγραμμα στα Οικονομικά) ΕΝΤΥΠΟ ΕΓΓΡΑΦΗΣ ΜΑΘΗΜΑΤΩΝ (Α-Ι) (Πρόγραμμα στις Διεθνείς, Ευρωπαϊκές και Οικονομικές Σπουδές και Πρόγραμμα στα Οικονομικά) ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 217/18 132 ΟΙΚ 111.1 Αρχές Μικροοικονομικής Θεωρίας 7 1159 ΟΙΚ

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

Φροντιστήριο #6 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 4/4/2019

Φροντιστήριο #6 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 4/4/2019 ΜΕΡΟΣ Α: ΣΥΝΑΡΤΗΣΕΙΣ Φροντιστήριο #6 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 4/4/019 Άσκηση Φ6.Α.1: (α) Έστω οι συναρτήσεις f : A B, διάγραμμα. g : B C και h : C D που ορίζονται στο παρακάτω Υπολογίστε

Διαβάστε περισσότερα

2. Β Εξισώσεις Με Απόλυτες Τιμές

2. Β Εξισώσεις Με Απόλυτες Τιμές 2. Β Εξισώσεις Με Απόλυτες Τιμές I. Εξισώσεις που έχουν (ή μπορούν να πάρουν) μία από τις παρακάτω μορφές: β, β A(x) = B(x), x Όπου β σταθερός αριθμός και Α(x), B(x) παραστάσεις του x B(x), x i. 2x 1 =

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

35 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΤΟΠΟΛΟΓΙΑΣ Του προπτυχιακού φοιτητή Ευάγγελου Γκούμα

35 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΤΟΠΟΛΟΓΙΑΣ Του προπτυχιακού φοιτητή Ευάγγελου Γκούμα 35 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗΣ ΤΟΠΟΛΟΓΙΑΣ Του προπτυχιακού φοιτητή Ευάγγελου Γκούμα Ασκήσεις στους τοπολογικούς χώρους 1.Δίνεται το σύνολο Χ={a, b, c, d, e}. Να εξετάσετε αν τα σύνολα και τ 1= {, Χ, {a},

Διαβάστε περισσότερα

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. 1. Ποιά από τα παρακάτω σύνολα είναι συμπαγή; Μία κλειστή μπάλα, μία ανοικτή μπάλα, ένα ανοικτό ορθ. παραλληλεπίπεδο, ένα ευθ. τμήμα (στον R n ), μία

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός

ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ. Καηηγορημαηικός Λογιζμός ΔΙΑΚΡΙΣΑ ΜΑΘΗΜΑΣΙΚΑ Καηηγορημαηικός Λογιζμός Μοπθέρ Θεωπημάηων Υπάξρεη έλα αληηθείκελν ώζηε λα ηζρύεη θάηη. Υπαξμηαθόο πνζνδείθηεο Γηα θάζε αληηθείκελν ηζρύεη όηη θάηη. Καζνιηθόο πνζνδείθηεο 2 Καηηγοπήμαηα

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

Μη πεπερασµένα όρια και όριο στο άπειρο

Μη πεπερασµένα όρια και όριο στο άπειρο Μη πεπερασµένα όρια και όριο στο άπειρο Λυγάτσικας Ζήνων Πρότυπο Πειρµαµατικό Γενικό Λύκειο Βαρβακείου Σχολής 9 εκεµβρίου 203 Μη Πεπερασµένο Οριο Συναρτησεων στο x 0. Το Μη-πεπερασµένο Το Απειρο Ορισµός.

Διαβάστε περισσότερα

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4)

CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) CTL - Λογική Δένδρου Υπολογισμού (ΗR Κεφάλαιο 3.4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Διακλαδωμένες Χρονικές λογικές CTL σύνταξη και ερμηνεία Έλεγχος μοντέλου για τη CTL Σύγκριση των PLTL

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκη Δικαιοσύνης Αλγόριθμος 2 επεξεργαστών (Cut & Choose) Αλγόριθμος 3 επεξεργαστών

Διαβάστε περισσότερα

Ακέραιος Γραμμικός Προγραμματισμός

Ακέραιος Γραμμικός Προγραμματισμός Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος

Διαβάστε περισσότερα

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερη Σειρά Ασκήσεων - Λύσεις. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. Από το ύψος και τη γωνία που µας δίνεται, έχουµε

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της

Διαβάστε περισσότερα

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)

f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z) Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f

Διαβάστε περισσότερα

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 6 KΕΦΑΛΑΙΟ 3 ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ Η θεωρία μεγίστων και ελαχίστων μιας πραγματικής συνάρτησης με μια μεταβλητή είναι γνωστή Στο κεφάλαιο αυτό θα δούμε τη θεωρία μεγίστων και ελαχίστων

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε

Διαβάστε περισσότερα

f (x) 2e 5(x 1) 0, άρα η f

f (x) 2e 5(x 1) 0, άρα η f ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 8 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α 1 Βλέπε σχολικό βιβλίο σελίδα 14-143

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ 3.1. Να αποδείξετε ότι η συνάρτηση: f x = { x e 1/ x,αν x 0 x ημx,αν x 0} είναι παραγωγίσιμη στο 0. 3.2. Δίνεται η συνάρτηση f x = { x 2 αx 1,αν x 1 2x 2, αν x 1 } η οποία

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1

T Ш. κεφαλαιο1. οριο - συνεχεια συναρτησης. τ κεφαλαιο 1. κεφαλαιο 1. γ λυκειου. κεφαλαιο 1. κεφαλαιο 1. κεφαλαιο 1 γ λυκειου ` κεφαλαιο1 οριο - συνεχεια συναρτησης επιμελεια : τακης τσακαλακος T Ш τ 1 017 ... πραγματικοι αριθμοι... συναρτησεις... μονοτονες συναρτησεις - αντιστροφη συναρτηση... οριο συναρτησης στο χ

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Μη Σειριακή Εκτέλεση Εντολών Συνθήκες και Τελεστές στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28 Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης. Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο

Διαβάστε περισσότερα