Λύσεις Σειράς Ασκήσεων 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Λύσεις Σειράς Ασκήσεων 2"

Transcript

1 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 2 Ακολουθεί η διατύπωση των προτάσεων στον Κατηγορηματικό Λογισμό. (α) Δεν υπάρχουν δύο διαφορετικές πτήσεις με τον ίδιο αριθμό. x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2, s 2, t 2 [Flight(x 1, d 1, a 1, s 1, t 1 ) Flight(x 2, d 2, a 2, s 2, t 2 ) (x 1 = x 2 )] (d 1 = d 2 ) (a 1 = a 2 ) (s 1 = s 2 ) (t 1 = t 2 ) Επεξήγηση: Κάθε δύο πτήσεις που έχουν τον ίδιο αριθμό είναι ταυτόσημες. (β) Οποιεσδήποτε δύο διαδοχικές πτήσεις του αεροπλάνου με αναγνωριστικό Α είναι τέτοιες ώστε το σημείο προορισμού της πρώτης πτήσης είναι το ίδιο με το σημείο εκκίνησης της δεύτερης πτήσης. m, x 1, d 1, a 1, s 1, t 1, x 2, d 2, a 2, s 2, t 2 [Plane(m, A, x 1 ) Plane(m, A, x 2 ) Flight(x 1, d 1, a 1, s 1, t 1 ) Flight(x 2, d 2, a 2, s 2, t 2 ) ( x 3,d 3, a 3, s 3, t 3 Plane(m, A, x 3 ) Flight(x 3, d 3, a 3, s 3, t 3 ) a 1 < d 3 < d 2 )] (t 1 = s 2 ) Επεξήγηση: Αν οι Flight(x 1, d 1, a 1, s 1, t 1 ) και Flight(x 2, d 2, a 2, s 2, t 2 ) είναι δύο πτήσεις του ίδιου αεροπλάνου και δεν υπάρχει τρίτη πτήση του ίδιου αεροπλάνου που να μεσολαβεί των δύο πτήσεων, τότε το σημείο προορισμού της πρώτης πτήσης (t 1 ) είναι το ίδιο με το σημείο εκκίνησης της δεύτερης πτήσης (s 2 ) (γ) Οποιαδήποτε δύο αεροδρόμια συνδέονται με τουλάχιστον μία πτήση που προσφέρει θέσεις πρώτης κατηγορίας. (Να υποθέσετε ότι ένα αεροπλάνο προσφέρει θέσεις πρώτης κατηγορίας αν το μοντέλο του ξεκινά με τη συμβολοσειρά 747.) s 1 s 2 [(Airport(s 1 ) Airport(s 2 )) m, id, x, d, a Plane(m, id, x) Flight(x, d, a, s 1, s 2 ) (m = 747 s)] Επεξήγηση: Χρησιμοποιήσαμε το καινούριο κατηγόρημα Airport(x) που παίρνει την τιμή true αν το x είναι αεροδρόμιο. Βάσει αυτού η πρόταση εκφράζει ότι, αν τα s 1 και s 2 είναι αεροδρόμια, τότε υπάρχει πτήση που τα συνδέει η οποία σχετίζεται με αεροπλάνο του οποίου το μοντέλο ξεκινά με τη ζητούμενη συμβολοσειρά. (δ) Υπάρχει διαδρομή που αποτελείται από το πολύ 3 πτήσεις η οποία ξεκινά από τη Λάρνακα και καταλήγει στο Σίδνεϊ και ο χρόνος αναμονής σε κάθε ένα από τους ενδιάμεσους σταθμούς είναι τουλάχιστον 90 λεπτά. x 1, t, d 1, a 1, x 2, d 2, a 2 [Flight(x 1, d 1, a 1, Λάρνακα, t) Flight(x 2, d 2, a 2, t, Σίδνεϊ) d 2 a 1 > 90] x 1, t 1, d 1, a 1, x 2, t 2, a 2, t 2, x 3, d 3, a 3 x, d, a [Flight(x 1, d 1, a 1, Λάρνακα, t 1 ) Flight(x 2, d 2, a 2, t 1, t 2 ) Flight(x 3, a 3, d 3, t 2, Σίδνεϊ) s 2 t 1 > 90 s 3 t 2 > 90] Flight(x, d, a, Λάρνακα, Σίδνεϊ) Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 1

2 (ε) Υπάρχει ακριβώς μια διαδρομή που αποτελείται από 2 πτήσεις η οποία ξεκινά από τη Λάρνακα και καταλήγει στο Σίδνεϊ. x 1, d 1, a 1, t, x 2, d 2, a 2 [Flight(x 1, d 1, a 1, Λάρνακα, t) Flight(x 2, d 2, a 2, t, Σίδνεϊ, s 2 ) x 3, d 3, a 3, t, x 4, d 4, a 4 (Flight(x 3, d 3, a 3, Λάρνακα, t 3 ) Flight(x 4, d 4, a 4, t 3, Σίδνεϊ) (x 3 = x 1 x 4 = x 2 ))] (στ) Όλες οι πτήσεις με αναγνωριστικό < 50 εξυπηρετούν πτήσεις χρονικής διάρκειας μικρότερης των 3 ωρών. m, id, x, d, a, s, t Άσκηση 2 [(Plane(m, id, x) Flight(x, d, a, s, t) (id < 50)) (a d < 180)] (α) x (P(x) y Q(y)) ( x)ρ(x) ( y) Q(y) 1. x (P(x) y Q(y)) προϋπόθεση 2. ( x)ρ(x) πρ. υπόθεση 3. x 0 4. P(x 0 ) πρ. υπόθεση 5. P(x 0 ) y Q(y)) x e 1 [x 0 /x] 6. y Q(y) MP 5, 4 7. y Q(y) y ( x)ρ(x) ( y) Q(y) i 2-7 Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 2

3 (β) x [P(x) ( y)(q(y) R(x,y))], x [P(x) ( y)(s(y) R(x,y))] x(q(x) S(x)) 1. x [P(x) ( y)(q(y) R(x,y))] προϋπόθεση 2. x [P(x) ( y)(s(y) R(x,y))] προϋπόθεση 3. x 0 4. Q(x 0 ) προσ. υπόθεση 5. x 1 P(x 1 ) ( y)(q(y) R(x 1,y)) προσ. υπόθεση 6. P(x 1 ) e ( y)(q(y) R(x 1,y)) e Q(x 0 ) R(x 1,x 0 ) y e 7 9. R(x 1,x 0 ) MP 8, P(x 1 ) ( y)(s(y) R(x 1,y)) y e ( y)(s(y) R(x 1,y)) MP 10, S(x 0 ) R(x 1,x 0 ) y e S(x 0 ) MT 12, S(x 0 ) x e 1, Q(x 0 ) S(x 0 ) i x(q(x) S(x)) x i 3-15 (γ) x [P(x) Q(x)] x [( y)(p(y) R(x,y)) ( z)(q(z) R(x,z))] 1. x [P(x) Q(x)] προϋπόθεση 2. x 0 3. ( y)(p(y) R(x 0,y)) προσωρινή υπόθεση 4. y 0 P(y 0 ) R(x 0,y 0 ) προσωρινή υπόθεση 5. P(y 0 ) Q(y 0 ) x e 1 6. P(y 0 ) e Q(y 0 ) MP 5, 6 8. R(x 0,y 0 ) e Q(y 0 ) R(x 0,y 0 ) i 7,8 10. ( z)(q(z) R(x 0,z)) z i ( z)(q(z) R(x 0,z)) y e 3, ( y)(p(y) R(x 0,y)) ( z)(q(z) R(x 0,z)) i x [( y)(p(y) R(x,y)) ( z)(q(z) R(x,z))] x i 2-12 Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 3

4 (δ) x [ (P(x) Q(x)) R(x)], x R(x) x P(x) 1. x [ (P(x) Q(x)) R(x)] προϋπόθεση 2. x R(x) προϋπόθεση 3. x 0 4. P(x 0 ) προσωρινή υπόθεση 5. P(x 0 ) Q(x 0 ) i 4 6. (P(x 0 ) Q(x 0 )) R(x 0 ) x e 1 7. R(x 0 ) MP 6, 5 8. R(x 0 ) x e 2 9. e 7, P(x 0 ) i x P(x) x i 3-10 (ε) x [K(x,a) L(x,b)], x [K(x,a) ( F(x) L(x,b))] K(b,a) F(b) 1. x [K(x,a) L(x,b)] προϋπόθεση 2. x [K(x,a) ( F(x) L(x,b))] προϋπόθεση 3. K(b,a) προσωρινή υπόθεση 4. K(b,a) ( F(b) L(b,b)) x e 2 5. F(b) L(b,b) ΜΡ 3, 4 6. F(b) προσωρινή υπόθεση 7. L(b,b) MP 5, 6 8. K(b,a) L(b,b) i 3, 7 9. x [K(x,a) L(x,b)] x i e 1, F(b) RAA K(b,a) F(b) i 3-11 Άσκηση 3 (α) x y ((A(x) B(x,y)) A(y)) Η πρόταση αυτή είναι ικανοποιήσιμη αλλά όχι έγκυρη. Ας θεωρήσουμε το μοντέλο: Σύμπαν = το σύνολο των ακεραίων Α(x) = το x είναι άρτιος Β(x,y) = το x είναι διαιρέτης του y Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 4

5 Τότε η πρόταση είναι αληθής αφού αν o x είναι άρτιος και διαιρέτης του y τότε και ο y είναι άρτιος. Εντούτοις, αν θέσουμε Σύμπαν = το σύνολο των ακεραίων Α(x) = το x είναι περιττός Β(x,y) = το x είναι διαιρέτης του y τότε η πρόταση είναι ψευδής αφού υπάρχουν άρτιοι αριθμοί που έχουν περιττούς διαιρέτες. (β) x y ((A(x) B(x,b) A(y))) Β(a,b) Η πρόταση είναι έγκυρη. Υποθέτουμε, για να φτάσουμε σε αντίφαση, ότι η πρόταση δεν είναι έγκυρη. Τότε, για κάποιο μοντέλο Μ Μ x y ((A(x) B(x,b) A(y))) (1) και Μ Β(a,b) (2) Από το (1) συμπεραίνουμε ότι για x = a Μ y ((A(a) B(a,b) A(y))) (3) και από το (3) ότι για y = b Μ A(a) B(a,b) A(b) (4) Επομένως, Μ Β(a,b) (5) Από τα (2) και (5) οδηγούμαστε σε αντίφαση. Συνεπώς η αρχική πρόταση είναι έγκυρη. (γ) [ x ( (P(x) Q(x)) R(x)) x R(x)] x P(x) Η πρόταση είναι ικανοποιήσιμη. Σύμπαν: Α = {1,2,3} Ρ = {1,2,3} Q = {2} R = {1} Από τον ορισμό του P, ισχύει ότι x P(x), και επομένως ολόκληρη η πρόταση, η οποία έχει τη μορφή φ x P(x), είναι αληθής ανεξάρτητα από το αν η φ είναι ή όχι αληθής. Η πρόταση δεν είναι έγκυρη αφού δεν ικανοποιείται στο πιο κάτω μοντέλο. Σύμπαν: Α = {1,2,3} Ρ = Q = R = {} Άσκηση 4 Επιστρέφετε στο σπίτι ένα βράδυ και βρίσκετε το συγκάτοικό σας σε κατάσταση ευφορίας γιατί κατάφερε να αποδείξει ότι υπάρχει κάποιος πρώτος αριθμός ο οποίος είναι μεγαλύτερος από το 2 και είναι άρτιος. Συγκεκριμένα, έχει κατασκευάσει απόδειξη της πρότασης φ = x ((Π(x) (x > 2)) A(x)), για το πεδίο των φυσικών αριθμών και όπου Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 5

6 Π(x) το κατηγόρημα ο αριθμός x είναι πρώτος και Α(x) το κατηγόρημα ο αριθμός x είναι άρτιος. Καθώς αυτός γιορτάζει τη μεγάλη του αυτή μαθηματική ανακάλυψη εσείς σκέφτεστε... (α)... και ανακαλύπτετε ότι η πρόταση φ είναι πράγματι αληθής για τη συγκεκριμένη ερμηνεία. Εξηγήστε το λόγο για τον οποίο είναι αληθής χρησιμοποιώντας τη σημασιολογία του Κατηγορηματικού Λογισμού (Αλήθεια του Tarski). Η πρόταση είναι πράγματι αληθής αφού σύμφωνα με την αλήθεια του Tarski υπάρχει ακέραιος που ικανοποιεί την πρόταση ((Π(x) (x > 2)) A(x)). Για παράδειγμα, για x = 4 έχουμε ((Π(4) (x > 4)) A(4)) = (F F T) = (F T) = T. (β) Είναι αληθής η πρόταση αν το σύμπαν περιέχει μόνο τους φυσικού αριθμούς που είναι μικρότεροι ή ίσοι με το 2; Εξηγήστε γιατί/γιατί όχι. Ναι, η πρόταση είναι και πάλι αληθής αφού για οποιοδήποτε στοιχείου του σύμπαντος έχουμε (Π(x) (F)) A(x) = (F A(x)) = True (γ) Είναι αληθής η πρόταση αν θεωρήσουμε ότι το σύμπαν είναι το κενό σύνολο. Εξηγήστε γιατί/γιατί όχι. H πρόταση παύει να είναι αληθής αφού δεν είναι δυνατό να εντοπίσουμε x που να ικανοποιεί την ιδιότητα. (δ) Χρησιμοποιώντας τα συμπεράσματά σας από το σκέλος (α), εξηγήστε γιατί ο συγκάτοικός σας δεν έχει αποδείξει ότι υπάρχει κάποιος άρτιος, πρώτος αριθμός μεγαλύτερος από το 2. Προσδιορίστε σωστά την πρόταση του Κατηγορηματικού Λογισμού που συλλαμβάνει ότι υπάρχει κάποιος πρώτος αριθμός ο οποίος είναι μεγαλύτερος από το 2 και είναι άρτιος. Η πρόταση που πρότεινε ο συγκάτοικός σας εκφράζει ότι υπάρχει ένας αριθμός ο οποίος ΑΝ είναι πρώτος και μεγαλύτερος του 2 τότε είναι άρτιος. Στη συνεπαγωγή αυτή, ψ ψ, αν η ψ είναι ψευδής τότε η πρόταση είναι ακριβής. Με άλλα λόγια, όπως δείξαμε στο μέρος (α), οποιοσδήποτε αριθμός δεν είναι πρώτος ή δεν είναι μεγαλύτερος του 2 ικανοποιεί την πρόταση. Άρα η πρόταση φ δεν συλλαμβάνει ορθά τη ζητούμενη έννοια. Η σωστή διατύπωση της έννοιας αυτής δίνεται από την πρόταση που ακολουθεί: φ' = x ((Π(x) (x > 2)) A(x)), Λύσεις Σειράς Προβλημάτων 2 Χειμερινό Εξάμηνο 2013 Σελίδα 6

Κατ οίκον Εργασία 2 Λύσεις

Κατ οίκον Εργασία 2 Λύσεις Κατ οίκον Εργασία 2 Λύσεις Άσκηση 1 Ακολουθεί η διατύπωση των προτάσεων στον προτασιακό λογισμό. (α) Κάθε ενεργός χρήστης είναι είτε διαχειριστής είτε κανονικός χρήστης του συστήματος. x [Ενεργός (x) Διαχειριστής(x)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Πέμπτη, 30 Οκτωβρίου 2014 Διάρκεια : 10:30 12.00 Διδάσκουσα : Άννα Φιλίππου ΠΡΟΤΥΠΕΣ ΛΥΣΕΙΣ Οδηγίες:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Λύσεις Άσκηση 1 [30 μονάδες] Να αποδείξετε τα πιο κάτω λογικά επακόλουθα χρησιμοποιώντας τα συστήματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Τετάρτη 24 Οκτωβρίου, 2018 Διάρκεια : 12:00 13:30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: ΠΡΟΧΕΙΡΕΣ

Διαβάστε περισσότερα

Λύσεις 2 ης Σειράς Ασκήσεων

Λύσεις 2 ης Σειράς Ασκήσεων Λύσεις 2 ης Σειράς Ασκήσεων Άσκηση 1 Στην άσκηση αυτή σας ζητείται να διατυπώσετε στον Κατηγορηματικό Λογισμό ένα σύνολο από απαιτήσεις/προτάσεις που σχετίζονται με ένα κοινωνικό δίκτυο χρησιμοποιώντας

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Σειρά Προβλημάτων 2 Λύσεις

Σειρά Προβλημάτων 2 Λύσεις Σειρά Προβλημάτων 2 Λύσεις Άσκηση 1 Χρησιμοποιώντας τα πιο κάτω κατηγορήματα και σταθερές και υποθέτωντας ως σύμπαν το σύνολο όλων των ανθρώπων, να διατυπώσετε τις προτάσεις που ακολουθούν στον Κατηγορηματικό

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 2

Λύσεις Σειράς Ασκήσεων 2 Λύσεις Σειράς Ασκήσεων 2 Άσκηση 1 N φιλόσοφοι κάθονται γύρω από ένα τραπέζι με N καρέκλες, N πιάτα και N πιρούνια. Όταν κάποιος φιλόσοφος πεινάσει παίρνει τα δύο πιρούνια που βρίσκονται δίπλα από το πιάτο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Σκελετοί Λύσεων Ημερομηνία : Σάββατο, 27 Οκτωβρίου 2012 Διάρκεια : 11:00 13:00 Διδάσκουσα : Άννα Φιλίππου Άσκηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 412: Λογική στην Πληροφορική Ενδιάμεση Εξέταση Ημερομηνία : Δευτέρα 2 Νοεμβρίου 2015 Διάρκεια : 10:30 12:00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο: Αριθμός

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 16/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Feb-18

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 Έστω οι προτάσεις / προϋπόθεσεις: Π1. Σε όσους αρέσει η τέχνη αρέσουν και τα λουλούδια. Π2. Σε όσους αρέσει το τρέξιμο αρέσει και η μουσική. Π3. Σε όσους δεν αρέσει η

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης Λύσεις

Ασκήσεις Επανάληψης Λύσεις Άσκηση 1 Ασκήσεις Επανάληψης Λύσεις (α) Το επακόλουθο (A (B C)) ((A C) (A B)) είναι ψευδές. Αυτό φαίνεται στην ανάθεση τιμών [Α] = Τ, [Β] = F, [C] = T. (β) Ακολουθεί η απόδειξη του επακόλουθου. 1. x(p(x)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 O πιο κάτω συλλογισμός (αποτελεί μικρή παραλλαγή συλλογισμού που) αποδίδεται στον Samuel Clarke και προέρχεται από την εργασία του Demonstration of the Being and Attributes

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Να διατυπώσετε τον πιο κάτω συλλογισμό στον Προτασιακό Λογισμό και να τον αποδείξετε χρησιμοποιώντας τη Μέθοδο της Επίλυσης. Δηλαδή, να δείξετε ότι αν ισχύουν οι πέντε

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε

Διαβάστε περισσότερα

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Ικανοποιητική βαθμολογική εικόνα

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 27/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 27-Feb-18

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13

Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων

Λύσεις 1 ης Σειράς Ασκήσεων Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 Έστω οι ατομικές προτάσεις A 1 = H Αντιγόνη κέρδισε τον αγώνα, A 3 = H Αντιγόνη πήρε την τρίτη θέση, Β 2 = Ο Βίκτορας πήρε την δεύτερη θέση, Γ 3 = Ο Γιάννης πήρε την

Διαβάστε περισσότερα

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική)

ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) ΠΛΗ 20, 3 η ΟΣΣ (Κατηγορηματική Λογική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 2 η Εργασία: Γενική Εικόνα Αρκετά καλή βαθμολογική εικόνα (

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 1

Λύσεις Σειράς Ασκήσεων 1 Λύσεις Σειράς Ασκήσεων 1 Άσκηση 1 p q r p (q r) (p q) p q r ( r p q) T T T T F T T T T F F F F T T F T T T T T T F F T T T T F T T T F T T F T F T F T T F F T T F T F F F F T F T T Ο πιο πάνω πίνακας παρουσιάζει

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Θεωρήστε το σύνολο των ατομικών προτάσεων ΑΡ = {α, π, ε} που αντιστοιχούν στις ενέργειες αποστολής μηνύματος, παραλαβής μηνύματος και επιστροφής αποτελέσματος που εκτελούνται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ME ΠΟΛΛΕΣ ΚΑΙ ΕΓΚΑΡΔΙΕΣ ΕΥΧΕΣ ΓΙΑ ΚΑΛΕΣ ΓΙΟΡΤΕΣ, ΥΓΕΙΑ ΚΑΙ ΠΡΟΟΔΟ ΣΕ ΕΣΑΣ ΚΑΙ ΤΙΣ ΟΙΚΟΓΕΝΕΙΕΣ ΣΑΣ Φυλλάδιο 2: Σχεσιακή Λογική ΔΕΚΕΜΒΡΙΟΣ 2006 ΠΑΡΑΔΟΣΗ: 12/11/2006

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 3 Να εφαρμόσετε τον αλγόριθμο ενοποίησης (Διαφάνεια 4-23) για κάθε ένα από τα πιο κάτω ζεύγη όρων. Να δείξετε όλα τα ενδιάμεσα στάδια της εκτέλεσης του αλγόριθμου και καταλήγοντας

Διαβάστε περισσότερα

Στοιχεία Κατηγορηματικής Λογικής

Στοιχεία Κατηγορηματικής Λογικής Στοιχεία Κατηγορηματικής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηματική Λογική

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017 HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Κατηγορηµατική Λογική

Κατηγορηµατική Λογική Προβλήµατα της Προτασιακής Λογικής Γιατί δεν µας αρκεί η Προτασιακή Λογική; Εστω ότι ισχύουν τα P και Q: P : «Ο Σωκράτης είναι άνθρωπος» Q : «Κάθε άνθρωπος είναι ϑνητός» R : «Ο Σωκράτης είναι ϑνητός» Μπορούµε

Διαβάστε περισσότερα

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε

Κατηγορηµατική Λογική Προτασιακή Λογική: πλαίσιο διατύπωσης και µελέτης επιχειρηµάτων για πεπερασµένο πλήθος «λογικών αντικειµένων». «Λογικό αντικείµε Στοιχεία Κατηγορηµατικής Λογικής ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κατηγορηµατική

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις Να αποφασίσετε κατά πόσο οι πιο κάτω προδιαγραφές είναι ορθές σύμφωνα με την έννοια της μερικής ορθότητας και την έννοια της ολικής ορθότητας. Να αιτιολογήσετε σύντομα

Διαβάστε περισσότερα

\5. Κατηγορηματικός Λογισμός (Predicate Calculus)

\5. Κατηγορηματικός Λογισμός (Predicate Calculus) \5 Κατηγορηματικός Λογισμός (Predicate Calculus) 51 Αντικείμενα Ιδιότητες και Σχέσεις Θεωρείστε την παρακάτω εξαγωγή συμπεράσματος: Κανένας ακέραιος δεν είναι μεγαλύτερος από το τετράγωνό του Το 1 2 είναι

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Σκοπεύετε να διοργανώσετε ένα πάρτι για τους συμφοιτητές σας κάτω από τους πιο κάτω περιορισμούς. Π1. Η Μαίρη δεν μπορεί να έρθει. Π2. Ο Ηλίας και η Αντιγόνη είτε θα

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 15/02/2018 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 15-Feb-18

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 0 (25 μονάδες) Λύσεις Σειράς Ασκήσεων 4 (α) Θεωρήστε το πιο κάτω πρόγραμμα λογικού προγραμματισμού και χρησιμοποιήστε τη μέθοδο της SLD επίλυσης για να φθάσετε σε διάψευση του στόχου. concat([],

Διαβάστε περισσότερα

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60

Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60 Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013

ΗΥ118 - Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2013 ΗΥ118 - Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2013 2 η Σειρά Ασκήσεων Λύσεις Άσκηση 2.1 [2 μονάδες] Έστω μεταβλητές και σταθερές στο σύνολο των ανθρώπων και η προτασιακή μορφή Ρ(x, y) με το νόημα "o x αγαπά

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2017 Τελική Εξέταση Ιουνίου - Τετάρτη, 14/06/2017 ΛΥΣΕΙΣ ΗΥ8: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 07 Τελική Εξέταση Ιουνίου - Τετάρτη, 4/06/07 ΛΥΣΕΙΣ Σημείωση: Οι παρακάτω λύσεις είναι ενδεικτικές. Ενδεχομένως, υπάρχουν και άλλοι σωστοί τρόποι επίλυσης. Θέμα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων

Λύσεις 1 ης Σειράς Ασκήσεων Λύσεις 1 ης Σειράς Ασκήσεων Άσκηση 1 α) p q r (p s) ((s t) t) 1. p q r προϋπόθεση 2. p s προσωρινή υπόθεση 3. s t προσωρινή υπόθεση 4. p e 1 5. s ΜP 2,4 6. t ΜP 3,5 7. (s t) t i 3, 6 8. (p s) ((s t) t)

Διαβάστε περισσότερα

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I

LÔseic Ask sewn sta Jemèlia twn Majhmatik n I LÔseic Ask sewn sta Jemèlia twn Majhmatik n I Rwmanìc-Diogènhc Maliki shc Tetˆrth, 6 OktwbrÐou 2010 Άσκηση 1. Για τυχόντα σύνολα A, B, C, D, να δειχθεί ότι (α ) A (B \ C) = ((A B) \ C) (A C). (β ) (A \

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 20/02/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 20-Feb-18

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 (15 μονάδες) Σειρά Προβλημάτων 5 Λύσεις Να δώσετε προδιαγραφές (τριάδες Hoare) για τα πιο κάτω προγράμματα: (α) Ένα πρόγραμμα το οποίο παίρνει ως δεδομένο εισόδου δύο πίνακες Α και Β και ελέγχει

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 4

Λύσεις Σειράς Ασκήσεων 4 Άσκηση 1 Λύσεις Σειράς Ασκήσεων 4 Έστω το σύνολο ατομικών προτάσεων ΑΡ = {red, yellow, green}. Με βάση τις ατομικές προτάσεις ΑΡ διατυπώστε τις πιο κάτω προτάσεις που αφορούν την κατάσταση των φώτων της

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5

HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 HY 180 Λογική Διδάσκων: Δ. Πλεξουσάκης Φροντιστήριο 5 Α) ΘΕΩΡΙΑ Η Μορφολογική Παραγωγή ανήκει στα συστήματα παραγωγής, δηλαδή σε αυτά που παράγουν το συμπέρασμα με χρήση συντακτικών κανόνων λογισμού. Η

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Θεωρήστε την ακόλουθη δομή Kripke. {entry} 0 1 {active} 2 {active, request} 3 {active, response} Να διατυπώσετε τις πιο κάτω προτάσεις στην LTL (αν αυτό είναι εφικτό)

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1 ης Τάξης (First Order Predicate Calculus) Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Τελική εξέταση Ιούλιος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Εξέταση Σεπτέμβριος 2014 α Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 01/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων Λύσεις ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 3 η Σειρά Ασκήσεων Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω p(x) και q(x) κατηγορήματα με πεδίο ορισμού Ω με σύνολα αλήθειας Α και Β αντίστοιχα (Σύνολα αλήθειας:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να υπολογίσετε την προτασιακή μορφή των πιο κάτω προτάσεων. (α) xyz [(P(x,y) Q(y,z)) Q(x,y)] x P(x,f(x)) Βήμα 1: Μετατροπή σε Κανονική Μορφή Prenex: xyz [(P(x,y) Q(y,z))

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Μαθηματική Λογική Εξέταση Σεπτεμβρίου 2016 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

Επανάληψη. ΗΥ-180 Spring 2019

Επανάληψη. ΗΥ-180 Spring 2019 Επανάληψη Έχουμε δει μέχρι τώρα 3 μεθόδους αποδείξεων του Προτασιακού Λογισμού: Μέσω πίνακα αληθείας για τις υποθέσεις και το συμπέρασμα, όπου ελέγχουμε αν υπάρχουν ερμηνείες που ικανοποιούν τις υποθέσεις

Διαβάστε περισσότερα

Mαθηματική Λογική και Λογικός Προγραμματισμός

Mαθηματική Λογική και Λογικός Προγραμματισμός ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΤΗΜΑΤΩΝ ΦΕΒΡΟΥΑΡΙΟΥ 2004 Θέμα 1 ο : Αποδείξτε με τον κανόνα της επίλυσης τα ακόλουθα Α. Η πρόταση (Α (Β C)) & (A B) & (A C) είναι μη επαληθεύσιμη Β. Η Β είναι αποδείξιμη από το Δ={ (Β

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ20, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 203, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα

Διαβάστε περισσότερα

2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.

2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi. .1 Πολυώνυμα 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; i. 1 x + x ii. x + 7 x iii. 5 x + 7x x iv. 1 x + x v. 1 4 4 x + x + 4x vi. 1 x + 5x. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2. ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4.. Η ταυτότητα της διαίρεσης A. Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης. Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ(x) και δ(x), με δ(x) 0

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 8 ης διάλεξης

Ασκήσεις μελέτης της 8 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2017 18 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 8 ης διάλεξης 8.1. (i) Έστω ότι α και β είναι δύο τύποι της προτασιακής

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!).

> ln 1 + ln ln n = ln(1 2 3 n) = ln(n!). η Διάλεξη: Άρρητοι αριθμοί Το σύνολο Q των ρητών αριθμών είναι το Q = { m n : m Z, n N}. αριθμός που δεν είναι ρητός λέγεται άρρητος. Ενας πραγματικός Ασκηση: Αποδείξτε ότι το άθροισμα και το γινόμενο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης. 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 5ο μέρος σημειώσεων: Κατηγορηματικός Λογισμός (Predicate Calculus) Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1 Ασκήσεις στο μάθημα της Λογικής 15 Οκτωβρίου 2015 Άσκηση 1. Να δειχτεί ότι δεν υπάρχουν τύποι μήκους 2,3,6 αλλά κάθε άλλο (θετικό ακέραιο) μήκος είναι δυνατό (άσκηση 2, σελίδα 39) Απόδειξη. Δείχνουμε πρώτα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017 HY118- ιακριτά Μαθηµατικά Παρασκευή, 24/02/2017 Κατηγορηµατικός Λογισµός Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων.

Δώστε έναν επαγωγικό ορισμό για το παραπάνω σύνολο παραστάσεων. Εισαγωγή στη Λογική Α Τάξης Σ. Κοσμαδάκης Συντακτικό τύπων Α τάξης Α Θεωρούμε δεδομένο ένα λεξιλόγιο Λ, αποτελούμενο από (1) ένα σύνολο συμβόλων για σχέσεις, { R, S,... } (2) ένα σύνολο συμβόλων για συναρτήσεις,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 014, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

Λύσεις Σειράς Ασκήσεων 3

Λύσεις Σειράς Ασκήσεων 3 Λύσεις Σειράς Ασκήσεων 3 Άσκηση 1 Να εφαρμόσετε τη διαδικασία της επίλυσης στα πιο κάτω προτασιακά σύνολα. (α) { P(a,f(f(x))) }, { P(y,z), P(y, f(f(z))) }, {P(x,b), Q(x)}, {P(x,b),Q(x)} Η Μέθοδος της Επίλυσης

Διαβάστε περισσότερα