Jörg Gayler, Lubov Vassilevskaya

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Jörg Gayler, Lubov Vassilevskaya"

Transcript

1 Differentialrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya

2 ii Inhaltsverzeichnis. Erste Ableitung der elementaren Funktionen Ableitungsregeln Einige Regeln Rechenregeln mit Potenzen Rechenregeln mit Wurzeln Rechenregeln mit Logarithmen Trigonometrische Formeln Aufgaben zur Bestimmung von Ableitungen Summenregel Produktregel Quotientenregel Kettenregel Ableitungen von Logarithmusfunktionen Logarithmische Differentiation Ableitungsregeln: Lösungen Summenregel Produktregel Quotientenregel Kettenregel Ableitungen von Logarithmus- und Eponentialfunktionen Logarithmische Differentiation

3 Ableitungsregeln. Erste Ableitung der elementaren Funktionen C = 0 C = const, n = n n n R log a = ln a a > 0, ln = > 0 e = e, a = ln a a sin = cos, cos = sin tan = cos, cot = sin arcsin =, arccos = arctan = +, arccot = + sinh = cosh, cosh = sinh tanh = cosh, coth = sinh arsinh = +, arcosh = artanh =, arcoth =. Ableitungsregeln Faktorregel: y = C f C = const, y = C f Summenregel: y = f + f f n, y = f + f f n Produktregel: y = u v, y = u v + u v Quotientenregel: y = u v, y = u v u v v Kettenregel: y = F u, y = dy d = dy du du d

4 Einige Regeln 3. Einige Regeln 3.. Rechenregeln mit Potenzen a n a m = a n + m, a n b n = a b n, a n a m = an m, a n b n = a b n a 0 =, a n = a n, an = a n a n m = a n m 3.. Rechenregeln mit Wurzeln Wurzeln als Potenzen mit gebrochenen Eponenten a m n = n a m, n a n b = n a b, n n n a b = a b m n n a = m a = m n a 3.3. Rechenregeln mit Logarithmen log a y = log a + log a y log a = log y a log a y log a r = r log a log a = log a

5 Einige Regeln 3.4. Trigonometrische Formeln sin α + cos α = sin α = sin α, cos α = cos α π sin α = cos α, π cos α = sin α sin α = sin π α, cos α = cos π α sin α = sin α cos α, cos α = cos α sin α sin α ± β = sin α cos β ± cos α sin β, cos α ± β = cos α cos β sin α sin β α + β α β α + β α β sin α + sin β = sin cos, sin α sin β = cos sin α + β α β α + β α β cos α + cos β = cos cos, cos α cos β = sin sin sin α sin β = sin α cos β = [ cos α β cos α + β ], cos α cos β = [ sin α β + sin α + β ] [ cos α β + cos α + β ] sin α = cos α, cos α = + cos α sin 3 α = 4 3 sin α sin 3α, cos3 α = cos3α + 3 cos α 4

6 Aufgaben zur Bestimmung von Ableitungen 4. Aufgaben zur Bestimmung von Ableitungen 4.. Summenregel Bestimmen Sie die erste Ableitung folgender Funktionen a, b, c, m, n R: A Beispiel: f = 3 3 = 3 3, f = = = a f = , g = b f = , g = c f = m 5 n, g = a m + n b cm n A Beispiel : Beispiel : f = = = f = = = 5 5 f = 4 3 = /4 /3 = 4 3 = f = = = a f = +, g = , h = b f = + +, g = c f = 3, g = 3 4, h = 3 3 6

7 Aufgaben zur Bestimmung von Ableitungen A3 Beispiel: f = = 3 3 /3 = 3 3 4/3 = 3 4/9 = 3 9 = 7 f = 7 7 = = = a f = b f =, g =, g = 3, h = , h = 3 4 A4 a f = sin + tan + ln, g = 3 sin 7 cos b f = tan cot, g = sinh + 3 cosh A5 Bestimmen Sie die drei ersten Ableitungen folgender Funktionen: a f = e b f = sin + cos c f = ln + e d f = sinh + cosh e f = n A6 4.. Produktregel Folgende Funktionen sind unter Verwendung der Produktregel zu differenzieren: a f = +, g = + b f = + + 3, g = + + c f = +, g = +

8 Aufgaben zur Bestimmung von Ableitungen A7 a f = ln, g = + ln b f = cos, g = cot, h = tan c f = e sin 4.3. Quotientenregel Folgende Funktionen sind unter Verwendung der Quotientenregel zu differenzieren: A8 a f =, g = +, h = 3 5 b f = +, g = +, h = + c f = + +, g =, h = d f =, g = +, h = 3 4 e f =, g = +, h = A9 a f =, g = 3, h = 3 4 b f = c f = + + +, g = 3 + +, h = , g = d f = , g = e f = , g = f f = + +, g =, h =, h = g f = + + +, g = +, h = +

9 Aufgaben zur Bestimmung von Ableitungen 4.4. Kettenregel Folgende Funktionen sind unter Verwendung der Kettenregel zu differenzieren: A0 a f = 6, g = + 5, h = b f = 4 5, g = , h = c f = 4 4, g = 3 3 7, h = A a f = 6, g = , h = ln 4 b f = + 6, g = 3 + 4, h = c f = 3 3, g = , h = 5 3 A f = 4, g = , h = A3 f = +, g = 5 +, h = + 4 A4 f = +, g = 3 7, h = + 4 A5 a f = sin 3, g = sin 4 +, h = sin 4 b f = cos, g = cos3 +, h = cos 3 4 c f = sin, g = sin 3, h = sin d f = cos, g = cos 5, h = cos 5 3 +

10 Aufgaben zur Bestimmung von Ableitungen A6 a f = sin, g = sin 5, h = 5 sin, p = 5 sin 3 b f = cos, g = cos, h = 4 cos, p = 4 cos + 6 c f = d f = sin 5, g =, h = sin 5 cos, g = cos 3, h = sin sin 5 +, p = sin cos sin, p = sin 3 + cos A7 a f = sin 3, g = sin 3, h = sin 3 b f = cos 4, g = cos 4, h = cos 4 c f = sin +, g = sin +, h = d f = cos 3, g = cos 3 7, h = sin 3 + cos 4 + A8 a f = sin sin + π, g = sin sin + π b f = cos cos + π, g = cos cos + π A9 a f = sin cos, g = sin 3 cos + π b f = sin cos, g = sin +, h = sin + c f = sin cos 3, g = sin cos A0 f = e, g = e 3, h = e, p = e + 4 A a f = 3 e, g = e, h = e 3, e p = b f = e, g = + 3 e, h = e, p = 3 e

11 Aufgaben zur Bestimmung von Ableitungen A a f = cos e, g = cos 3 e, h = sin e b f = sin + cos e, g = e sin, h = e sin Ableitungen von Logarithmusfunktionen A3 Regeln: ln u = u u, eu = e u u, a u = a u ln a u Beispiel : f = ln 4 + 3, f = ln ln u = 4 + 3, ln = ln u = u u f 4 = ln = = Beispiel : f = ln + 3 = 3 ln +, f = 3 + a f = ln, g = ln, h = + ln b f = ln 5, g = ln 3, h = ln 3 + c f = + ln +, g = ln, h = ln d f = ln 4 + 4, g = ln, h = ln 3 8 e f = ln + 4, g = ln 5, h = ln A4 Beispiel : Beispiel : f = ln 5 = ln 5 = 5 ln, f = 5 f = ln + = ln + = ln +, f = + a f = ln, g = ln 3, h = ln n b f = ln +, g = ln +, h = ln + + c f = ln + +, g = ln

12 Aufgaben zur Bestimmung von Ableitungen A5 Beispiel : f = ln = ln + 3 f = 3 = + 3 Beispiel : f = ln 3 = 3 ln = 9 3 ln 9 = 3 = ln [3 3 + ] = ln ln + 3 = 3 f = 3 [ln 3 + ln 3 + ] [ 3 + ] = a f = ln, g = ln + + +, h = ln + 4 b f = ln, g = ln , h = ln c f = ln, g = ln, h = ln A6 a f = ln cos, g = ln sin, h = ln tan b f = ln cos 3, g = ln sin 5, h = ln tan c f = ln cos, g = ln sin 3, h = ln tan + 4 d f = ln cos 3, g = ln sin 3, h = ln tan + 4 A7 a f = ln cos, g = ln + sin, h = ln tan b f = ln 3 cos, g = ln 4 + sin, h = ln 3 tan A8 a f = ln, g = 3 ln, h = + ln A9 f = + ln ln, g = ln, h = lnsin

13 Logarithmische Differentiation 5. Logarithmische Differentiation Bei manchen Differentiationsaufgaben ist es sinnvoll, die Funktionsgleichung y = f vor dem Differenzieren zu logarithmieren. Das bietet sich immer dann an, wenn sich die Funktionsgleichung durch Anwendung der Logarithmengesetze wesentlich vereinfachen lässt. A30 Benutzen Sie die Methode der logarithmischen Differentiation, um die Produktregel für die Funktion f = u v und die Quotientenregel für die Funktion f = u /v zu beweisen. A3 A3 A33 A34 Bestimmen Sie die Ableitungen folgender Funktionen durch Logarithmische Differentiation Beispiel : a y = 5, y = 3 4, y = 7 3 b y = e, y = e e c y = e, y = e a y = e, y = 4 3 e b y = +, y = + 7 c y = e a y = + 4, b y =, c y = y = +, ln y = ln ln + = + = y y = + = y = y = + = = + =

14 Logarithmische Differentiation Beispiel : + y = = + + ln y = + 3 ln = ln ln ln + = + = 3 ln + + ln ln + ln y = y y = y = y = + = Aufgabe: a y = +, b y = +, c y = , d y = + A35 a y = sin 3, b y = 3 cos, c y = tan e

15 Ableitungsregeln: Lösungen 6. Ableitungsregeln: Lösungen 6.. Summenregel L a f = , f = 3 6 g = , g = b f = , f = g = = + 3, g = c f = m 5 n, f = m m 5 n n g = a m + n b cm n, g = a m m + n b n + c n m m n L a f = +, f = + g = = 3/ + 4/3 + 8/3, g = 3 / / /3 = h = = /3 + /5, h = 3 / /5 = b f = / + / + 3/, f = 3 g = = /3 + 3/5 + 5/6, g = 3 4/ /5 5 6 /6 = c f = g = h = 3 = /6, f = 6 7/6 = 3 4 = /, g = / 3 3 =, h 6 = 6 6

16 Ableitungsregeln: Lösungen L3 a f = g = = 3/4, f = 3 4 /4 = = /3, g = 3 /3 = 3 3 h = 3 4 = /3, h = 3 /3 = b f = g = h = 3 3 = 7/8, f = 7 8 /8 = = 5/8, g = 5 8 7/8 = = 7/8, h = 7 8 /8 = L4 a f = sin + tan + ln, f = cos + + tan + g = 3 sin 7 cos, g = 3 cos + 7 sin b f = tan cot, f = sin cos g = sinh + 3 cosh, g = cosh + 3 sinh L5 a f = 4 + 3/ + e, f = e f = e, f = 4 b f = sin + cos, f = cos sin f = sin cos, f = cos + sin 3 + e 8 3/ c f = ln + e, f = + e f = + e, f = 3 + e d f = sinh + cosh, f = f = f = sinh + cosh e f = n , f = n n n n

17 Ableitungsregeln: Lösungen 6.. Produktregel L6 a f = +, f = g = + =, g = b f = + + 3, f = g = + + = + = 4, g = 4 3 c f = + =, f = g = +, g = + L7 a f = ln, f = ln + g = + ln, g = ln + + b f = cos, f = cos sin g = cot, g = cot + cot = cot cot h = tan, h = tan + + tan, c f = e sin, f = e sin e cos

18 Ableitungsregeln: Lösungen L Quotientenregel a f =, g = +, h = 3 5, f = g = h = b f = +, f = g = +, h = +, g = h = c f = +, f = g = +, h = + 3 4, d f = g = h = g = h = , f = + +, g = + 3 4, h = e f = = + = + g = + = + = +,, f = g = 4 h = = = h = 7,

19 Ableitungsregeln: Lösungen L9 a f =, f = 3 = 3 g = 3, g = 3 4 = 3 4 h = 3 4, h = 3 4 = 3 4 = g Die Ableitungen f, g und h kann man auch mit Hilfe der Summenregel bestimmen, indem man die Funktionen f, g und h entsprechend darstellt: f =, g = 3, h = 3 = g b f = g = +, f = , g = h = , h = c f = + + g = = = h = = +, + + = +, = = + 3 3, f = g = 4 h = 3 d f = = 3 9 = = 3 + 3, f = g = g = + = + + = + + = + e f = = + 3 = +, g = = 3 =, f = g = +

20 Ableitungsregeln: Lösungen f f = +, f = + + g =, g = h =, h = / + = 3/ g f = + + +, f = g = +, g = + h =, h 3 = + + 3/ 6.4. Kettenregel L0 a f = 6, f = 6 5 g = + 5, g = h = 4 3 4, h = b f = 4 5, f = g = , g = h = 4 3 3, h = = c f = g = h = h = 3 4 4, f = = , g = = 4 3 3, =

21 Ableitungsregeln: Lösungen L a f = 6, f = 6 5 g = , g = 3 / /3 + 3 h = ln 4, h = 4 + /3 + ln 3 = /3 b f = + 6, f = + 6 g = 3 + 4, g = h = 3 3 3, h = 3 3 /3 c f = 3 3, f = 3 3 g = , g = 3 h = 5 3, h = / /3 L f = g = h = 4, f 3 = , g = , h = L3 f = +, f = + g = 5 +, g = 5 + 4/5 + h = + 4 =, h = 3/

22 Ableitungsregeln: Lösungen L4 f = +, f = = g = h = + 3 7, g = 4, h = = /3 + 4 L5 a f = sin 3, f = 3 cos 3 g = sin 4 +, g = 4 cos 4 + h = sin 4, h = cos 4 b f = cos = cos, f = sin g = cos3 +, g = 3 sin 3 + h = cos 3 4, h = 4 3 sin 3 4 c f = sin, f = cos g = sin 3, g = 3 cos 3 3 h = sin 3 + 4, h = 3 cos d f = cos, f = sin g = cos 5, g = 5 sin 5 5 h = cos 5 3 +, h = 3 5 sin

23 Ableitungsregeln: Lösungen L6 a f = sin, f = cos sin g = sin 5, g = 5 cos 5 sin 5 h = 5 sin, h = 5 p = 5 sin 3, p = 5 cos sin 4/5 = 5 b f = cos, f = sin cos g = cos, g = h = 4 cos, h = 4 p = 4 cos + 6, p = c f = g = h = p = d f = g = h = p = sin 5, cos 5 sin 4 cos 3 sin 3 4/5 = 5 sin cos sin cos 3/4 = 4 f = 5 cos5 sin 5 sin 5, g = 5 sin sin 5 +, h = sin 4 cos 3 sin + 6 cos + 6 3/4 = cos 5 sin 5 3/ = 5 cos sin 5 + sin, p = cos sin cos, f = cos 3, g = 3 cos sin 3 +, h = sin cos sin 3 cos 3 3/ = 3 sin sin 3 + cos 3 5 sin 4 3 cos 5 sin sin cos 5 + sin 5 + sin 3 cos 3 3 sin cos cos cos 3 + sin 3 + sin cos, p = cos cos + sin sin cos

24 Ableitungsregeln: Lösungen L7 a f = sin 3, f = 3 cos 3 g = sin 3, g = 3 cos sin h = sin 3, h = 6 cos sin b f = cos 4, f = 4 3 sin 4 g = cos 4, g = 4 sin cos 3 h = cos 4, h = 8 sin cos 3 c f = sin +, f = sin + cos + + g = sin +, g = cos sin + h = sin 3 +, h = 3 sin cos sin 3 + d f = cos 3, f = 3 sin 3 cos 3 3 g = cos 3 7, g = 3 sin 3 cos 3 7 h = cos 4 +, h = cos3 sin cos 4 + L8 a f = sin sin + π = sin, f = 4 sin cos = sin4 g = sin sin + π = sin sin, g = cos sin sin cos b f = cos cos + π = cos sin = sin, f = cos = sin cos g = cos cos + π = cos sin, g = sin sin cos cos

25 Ableitungsregeln: Lösungen L9 a f = sin cos, f = sin cos sin 3 = sin cos sin g = sin 3 cos + π = sin 3 cos, g = 6 sin3 cos cos3 + sin 3 sin = sin3 sin sin3 6 cos cos3 b f = sin cos, f = cos g = sin +, g = + cos + h = sin +, h = cos + c f = sin cos 3, f = cos cos 3 3 sin sin 3 g = sin cos, g = cos sin = cos L0 f = e, g = e 3, h = e, f = e g = e 3 h = e = e p = e + 4, p = + 3 e + 4 L a f = 3 e, f = e 3 + g = e, g = e + h = e 3, p = e, h = e 3 3 e 4 p = e b f = e, f = e g = + 3 e, = e 3 4 e = e g = e h = e, h = e + p = 3 e, p = 3 e

26 Ableitungsregeln: Lösungen L a f = cos e, f = e cos sin g = cos 3 e, g = e cos 3 3 sin 3 h = sin e, h = e cos + sin b f = sin + cos e, f = e 3 cos sin g = e sin, g = cos e sin h = e sin, h = cos e sin Ableitungen von Logarithmus- und Eponentialfunktionen L3 a f = ln, f = + ln g = ln, g = + ln = + ln h = + ln, h = ln b f = ln 5, f = g = ln 3, g = ln 3 + h = ln 3 +, h = ln c f = + ln +, f = + ln + = [ + ln + ] g = ln, g = ln + + h = ln, h = ln + = [ln + ] d f = ln 4 + 4, f = = g = ln, g = 4 ln + 4 h = ln 3 8, h = ln = ln e f = ln + 4, f = + 4 g = ln 5, g = 5 h = ln + 3 3, h = + 3

27 Ableitungsregeln: Lösungen L4 a f = ln = ln, f = g = ln 3 = 3 ln, h = ln n = n ln, g = 3 h = n b f = ln +, f = + g = ln +, g = + h = ln + +, h = c f = ln + +, f = = g = ln, g = +

28 Ableitungsregeln: Lösungen L5 a f = ln, f = g = ln, g = h = ln = ln = ln 4 + h = = ln ln = ln b f = ln = + ln = ln ln + + f = = + + g = ln 3 + +, g = h = ln 5 4, h = 5 c f = ln, f = + g =, g = h =, h = =

29 Ableitungsregeln: Lösungen L6 a f = ln cos, f = sin cos, g = ln sin, h = ln tan, g = cos sin, h = + tan tan b f = ln cos 3, f 3 sin 3 = cos 3, g = ln sin 5, g = h = ln tan, = sin cos cos 5 sin 5, h = + tan tan = sin cos c f = ln cos, f = sin cos, g = ln sin 3, g = cos 3 3 sin 3, h = ln tan + 4, h = + 4 cos + 4 sin + 4 sin 3 d f = ln cos 3, f = 3 cos 3, g = ln h = ln sin 3, g = tan + 4, h = 3 cos 3 3 sin 3, + 4 cos + 4 sin + 4.

30 Logarithmische Differentiation L7 a f = ln cos = ln cos, f = sin cos, g = ln + sin = ln + sin, g = + cos + sin h = ln tan = ln tan, h = sin cos b f = ln 3 cos = 3 ln cos, f = sin 3 cos, g = ln 4 + sin = 4 ln + sin, g = + cos 4 + sin tan tan = 3 h = ln 3 tan = 3 ln tan, h = 3 = cos 3 sin cos = 3 sin cos = 3 sin. tan cos = L8 a f = ln, f = ln ln g = 3, g = 3 ln ln + h =, h = ln 3 ln + ln + ln L9 f = ln + ln, f + + ln = g = ln, g = + ln h = lnsin, h = cos sin = cot L30 7. Logarithmische Differentiation f f = u v, ln f = ln u + ln v, f u f = f u + v u = u v v u + v = u v + v u v = u u + v v f = u v, ln f = ln u ln v, f f u f = f u v = u u v v u v = u v v uv v = u u v v = u v v u v

31 Logarithmische Differentiation L3 a y = 5, y = 5 ln 5, y = 3 4, y = ln 3 y = 7 3, y = ln 7 b y = e, ln y = e ln, y = e e + ln y = e e, ln y = ln + e, y = e e + e c y = e, ln y = ln e = ln y y =, y = e y = e, y = e = e L3 a y = e, ln y = ln, y = e y = 4 3 e, ln y = ln ln, y = 4 3 e 3 b y = +, ln y = ln + = ln + y = + ln y = + 7, ln y = ln + 7 = ln + 7 y = + 7 ln c y = e 3 4, ln y = ln e 3 4 = + 3 ln + ln 4 ln y y = , y = e

32 Logarithmische Differentiation L33 a y = + 4 y, ln y = ln + 4 ln +, y = y = = b y =, ln y = ln, y = ln y y = ln c y =, ln y = ln = ln = ln y y = ln +, y = ln + = ln + L34 a y = +, ln y = ln ln +, y y = + y = + = + + b y = +, ln y = ln + ln, y y = + y = = c y =, ln y = ln + ln ln + 3 ln y y = , y = d y =, ln y = ln + ln, y y = + y = + + = +

33 Logarithmische Differentiation L35 a y = sin 3, ln y = 3 ln sin y y = 3 ln sin + 3 cos sin, y = sin 3 3 ln sin + 3 cos sin b y = 3 cos, ln y = ln 3 + ln + ln cos y = 3 cos + ln cos tan = 3 cos + ln cos tan c y = tan e, ln y = ln tan y y = cos tan, y = tan e cos tan = e cos tan

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

cos(2α) τ xy sin(2α) (7) cos(2(α π/2)) τ xy sin(2(α π/2)) cos(2α) + τ xy sin(2α) (8) (1 + ν) cos(2α) + τ xy (1 + ν) sin(2α) (9)

cos(2α) τ xy sin(2α) (7) cos(2(α π/2)) τ xy sin(2(α π/2)) cos(2α) + τ xy sin(2α) (8) (1 + ν) cos(2α) + τ xy (1 + ν) sin(2α) (9) Festigkeitslehre Lösung zu Aufgabe 11b Grundsätzliches und Vorüberlegungen: Hookesches Gesetz für den zweidimensionalen Spannungszustand: ε = 1 ( ν (1 ε = 1 ( ν ( Die beiden Messwerte ε = ε 1 und ε = ε

Διαβάστε περισσότερα

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x) Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b

Διαβάστε περισσότερα

Formulario di Trigonometria

Formulario di Trigonometria Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari

Διαβάστε περισσότερα

MATERIALIEN ZUR VORBEREITUNG AUF DIE KLAUSUR INFORMATIK II FÜR VERKEHRSINGENIEURWESEN ANTEIL VON PROF. VOGLER IM WINTERSEMESTER 2011/12

MATERIALIEN ZUR VORBEREITUNG AUF DIE KLAUSUR INFORMATIK II FÜR VERKEHRSINGENIEURWESEN ANTEIL VON PROF. VOGLER IM WINTERSEMESTER 2011/12 Fakultät Informatik Institut für Angewandte Informatik, Professur Technische Informationssysteme MATERIALIEN ZUR VORBEREITUNG AUF DIE KLAUSUR INFORMATIK II FÜR VERKEHRSINGENIEURWESEN ANTEIL VON PROF. VOGLER

Διαβάστε περισσότερα

Wenn ihr nicht werdet wie die Kinder...

Wenn ihr nicht werdet wie die Kinder... Wenn ihr nicht werdet wie die Kinder... . Der Memoriam-Garten Schön, dass ich mir keine Sorgen machen muss! Mit dem Memoriam-Garten bieten Ihnen Friedhofsgärtner, Steinmetze

Διαβάστε περισσότερα

Geometrische Methoden zur Analyse dynamischer Systeme

Geometrische Methoden zur Analyse dynamischer Systeme Geometrische Methoden zur Analyse dynamischer Systeme Markus Schöberl markus.schoeberl@jku.at Institut für Regelungstechnik und Prozessautomatisierung Johannes Kepler Universität Linz KV Ausgewählte Kapitel

Διαβάστε περισσότερα

ἀξιόω! στερέω! ψεύδομαι! συγγιγνώσκω!

ἀξιόω! στερέω! ψεύδομαι! συγγιγνώσκω! Assimilation νλ λλ νμ μμ νβ/νπ/νφ μβ/μπ/μφ νγ/νκ/νχ γγ/γκ/γχ attisches Futur bei Verben auf -ίζω: -ιῶ, -ιεῖς, -ιεῖ usw. Dehnungsaugment: ὠ- ὀ- ἠ- ἀ-/ἐ- Zur Vorbereitung die Stammveränderungs- und Grundformkarten

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

Hauptseminar Mathematische Logik Pcf Theorie (S2A2) Das Galvin-Hajnal Theorem

Hauptseminar Mathematische Logik Pcf Theorie (S2A2) Das Galvin-Hajnal Theorem Hauptseminar Mathematische Logik Pcf Theorie (S2A2) Das Galvin-Hajnal Theorem Jonas Fiege 21 Juli 2009 1 Theorem 1 (Galvin-Hajnal [1975]) Sei ℵ α eine singuläre, starke Limes-Kardinalzahl mit überabzählbarer

Διαβάστε περισσότερα

Formelsammlung zur sphärischen Trigonometrie

Formelsammlung zur sphärischen Trigonometrie Formelsammlung zur sphärischen Trigonometrie A. Goniometrie A.1. Additionstheoreme für α β für α = β (α ± β) =α cos β ± cos α β ( α) =α cos α cos (α ± β) =cosα cos β β = cos α tan α ± tan β tan (α ± β)

Διαβάστε περισσότερα

Griechisches Staatszertifikat - Deutsch

Griechisches Staatszertifikat - Deutsch ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung und Religion Griechisches Staatszertifikat - Deutsch Niveau A1 & A2 Entspricht dem Gemeinsamen

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

Niveau A1 & A2 PHASE 3 ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Niveau A1 & A2 PHASE 3 ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung, Lebenslanges Lernen und Religionsangelegenheiten Griechisches Staatszertifikat

Διαβάστε περισσότερα

Griechisches Staatszertifikat - Deutsch

Griechisches Staatszertifikat - Deutsch ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung und Religion Griechisches Staatszertifikat - Deutsch Niveau A1 & A2 Entspricht dem Gemeinsamen

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

Technisches Handbuch. Pergola Top Star 120X70. metaform Bescha ungssysteme

Technisches Handbuch. Pergola Top Star 120X70. metaform Bescha ungssysteme 02 Technisches Handbuch Pergola Top Star 120X70 Exklusiv von Metaform ΑVΕΕ entworfen, ist es die Innova on bei der professionellen Bescha ung, denn das wegweisende Hebesystem erlaubt es Ihnen, sie an jeder

Διαβάστε περισσότερα

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx. ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Ρ Η Μ Α Τ Ι Κ Η Δ Ι Α Κ Ο Ι Ν Ω Σ Η

Ρ Η Μ Α Τ Ι Κ Η Δ Ι Α Κ Ο Ι Ν Ω Σ Η Αρ. Φακέλου.: Ku 622.00/3 (Παρακαλούμε να αναφέρεται στην απάντηση) Αριθμός Ρημ. Διακ: 22/14 2 αντίγραφα Συνημμένα: -2- ΑΝΤΙΓΡΑΦΟ Ρ Η Μ Α Τ Ι Κ Η Δ Ι Α Κ Ο Ι Ν Ω Σ Η Η Πρεσβεία της Ομοσπονδιακής Δημοκρατίας

Διαβάστε περισσότερα

Übungen zu Teilchenphysik 2 SS 2008. Fierz Identität. Handout. Datum: 27. 5. 2008. von Christoph Saulder

Übungen zu Teilchenphysik 2 SS 2008. Fierz Identität. Handout. Datum: 27. 5. 2008. von Christoph Saulder Übungen zu Teilchenphysik 2 SS 2008 Fierz Identität Handout Datum: 27. 5. 2008 von Christoph Saulder 2 Inhaltsverzeichnis Einleitung 5 2 Herleitung der Matrixelemente 7 2. Ansatz...............................

Διαβάστε περισσότερα

DEUTSCHE SCHULE ATHEN ΓΕΡΜΑΝΙΚΗ ΣΧΟΛΗ ΑΘΗΝΩΝ

DEUTSCHE SCHULE ATHEN ΓΕΡΜΑΝΙΚΗ ΣΧΟΛΗ ΑΘΗΝΩΝ Herzlich Willkommen zu unserem Elternabend Übergang aus dem Elternhaus in den Kindergarten Καλωσορίσατε στη συνάντηση γονέων με θέμα τη μετάβαση από το οικογενειακό περιβάλλον στο προνηπιακό τμήμα 1 Überblick

Διαβάστε περισσότερα

4.4 Kreiszylinderschale und Kugelschale

4.4 Kreiszylinderschale und Kugelschale Flächentrgwerke - WS 05/06 4.4 Kreiszylinderschle und Kugelschle 4.4. Kreiszylinderschle 4.4.. Biegetheorie 4.4.. embrntheorie 4.4..3 Behältertheorie und Rndstörprobleme 4.4. Kugelschle 4.4.. Biegetheorie

Διαβάστε περισσότερα

Το σύστημα των αξιών της ελληνικής κοινωνίας μέσα στα σχολικά εγχειρίδια της Λογοτεχνίας του Δημοτικού Σχολείου

Το σύστημα των αξιών της ελληνικής κοινωνίας μέσα στα σχολικά εγχειρίδια της Λογοτεχνίας του Δημοτικού Σχολείου ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠ/ΣΗΣ ΔΙΔΑΣΚΑΛΕΙΟ «ΘΕΟΔΩΡΟΣ ΚΑΣΤΑΝΟΣ» Το σύστημα των αξιών της ελληνικής κοινωνίας μέσα στα σχολικά εγχειρίδια της Λογοτεχνίας του Δημοτικού

Διαβάστε περισσότερα

ΟΔΟΘ ΔΘΖΗΣΘΟΣ Θ,28-32

ΟΔΟΘ ΔΘΖΗΣΘΟΣ Θ,28-32 ΟΔΟΘ ΔΘΖΗΣΘΟΣ Θ,28-32 Πξώηε Αλάγλωζε Δξκελεία [... ] ρ ξ ε ω 1 δ ε ζ ε π α λ η α π π ζ ε ζ ζ α η 2 1 ΘΔΚΗΠ, ΓΗΘΖ, ΑΛΑΓΘΖ, ΚΝΗΟΑ / ΣΟΖ, ΣΟΔΩΛ: νλνκαηα ηνπ ΡΝ ΑΡΝΛ! Ρν Απξνζσπν Martin Heidegger, Απν Ρν Σι

Διαβάστε περισσότερα

ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ HÖRVERSTEHEN. Mai 2012

ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ HÖRVERSTEHEN. Mai 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung, Lebenslanges Lernen und Religionsangelegenheiten Griechisches Staatszertifikat

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Aufgabe 1 Dreierkette Legt mit den Bild- und Wortkarten eine Dreierkette. Τρεις στη σειρά. Σχηματίστε τριάδες με εικόνες και λέξεις που ταιριάζουν.

Aufgabe 1 Dreierkette Legt mit den Bild- und Wortkarten eine Dreierkette. Τρεις στη σειρά. Σχηματίστε τριάδες με εικόνες και λέξεις που ταιριάζουν. Station Luft Aufgabe 1 Dreierkette Legt mit den Bild- und Wortkarten eine Dreierkette. Τρεις στ σειρά. Σχματίστε τριάδες με εικόνες και λέξεις που ταιριάζουν. der Sturm die Windkraftanlage θύελλα οι ανεμογε

Διαβάστε περισσότερα

Griechisches Staatszertifikat - Deutsch

Griechisches Staatszertifikat - Deutsch ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung und Religion Griechisches Staatszertifikat - Deutsch Niveau A1 & A2 Entspricht dem Gemeinsamen

Διαβάστε περισσότερα

A1 A2 B2 C1. www.dielupe.gr. Ολοκληρωμένες προτάσεις για αποτελεσματική διδασκαλία για όλες τις ηλικίες και όλα τα επίπεδα

A1 A2 B2 C1. www.dielupe.gr. Ολοκληρωμένες προτάσεις για αποτελεσματική διδασκαλία για όλες τις ηλικίες και όλα τα επίπεδα A1 A2 www.dielupe.gr Εκδόσεις για τη Γερμανική Γλώσσα B2 C1 Ολοκληρωμένες προτάσεις για αποτελεσματική διδασκαλία για όλες τις ηλικίες και όλα τα επίπεδα Αναλυτική παρουσίαση των βιβλίων στην ιστοσελίδα

Διαβάστε περισσότερα

Griechische und römische Rechtsgeschichte

Griechische und römische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und römische Rechtsgeschichte Ενότητα 5: die Spartanische Verfassung Παπακωνσταντίνου Καλλιόπη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή Sehr geehrter Herr Präsident, Sehr geehrter Herr Präsident, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Sehr geehrter

Διαβάστε περισσότερα

z k z + n N f(z n ) + K z n = z n 1 2N

z k z + n N f(z n ) + K z n = z n 1 2N Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 4: Συναρτήσεις Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

Auswandern Dokumente. Dokumente - Allgemeines. Fragen wo man ein Formular findet. Fragen wann ein Dokument ausgestellt wurde

Auswandern Dokumente. Dokumente - Allgemeines. Fragen wo man ein Formular findet. Fragen wann ein Dokument ausgestellt wurde - Allgemeines Πού μπορώ να βρω τη φόρμα για ; Fragen wo man ein Formular findet Πότε εκδόθηκε το [έγγραφο] σας; Fragen wann ein Dokument ausgestellt wurde Πού εκδόθηκε το [έγγραφο] σας; Fragen wo ein Dokument

Διαβάστε περισσότερα

FLASHBACK: Der Mechanismus ist nicht komplett, verstehst du? Es fehlt ein Teil. Seit neunzehnhunderteinundsechzig.

FLASHBACK: Der Mechanismus ist nicht komplett, verstehst du? Es fehlt ein Teil. Seit neunzehnhunderteinundsechzig. 12 Εκκλησιαστική µουσική Στην Άννα µένουν ακόµα 65 λεπτά. Στην εκκλησία ανακαλύπτει ότι το µουσικό κουτί είναι κοµµάτι που λείπει από το αρµόνιο. Η γυναίκα στα κόκκινα εµφανίζεται και ζητά από την Άννα

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based exclusively on safe, managed code. PDFsharp offers two powerful

Διαβάστε περισσότερα

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based exclusively on safe, managed code. PDFsharp offers two powerful

Διαβάστε περισσότερα

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ

Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ Ι ΤΕΛΕΣΤΕΣ, ΤΑΥΤΟΤΗΤΕΣ, ΠΑΡΑΓΩΓΟΙ, ΣΕΙΡΕΣ, ΙΑΦΟΡΟΙ ΤΥΠΟΙ TΑ TΡΙΑ ΣΥΝΗΘΗ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ O P(,, ) O φ φ φ P(, φ, ) P(,, φ) O φ (α) (β) (γ) (α) Κατεσιαό σύστηµα συτεταγµέω,,. (σχήµα (α)) (β) Σύστηµα

Διαβάστε περισσότερα

B.A.-Eingangstest Neugriechisch (Niveau TELC B1) MUSTERTEST Seite 1 von 6

B.A.-Eingangstest Neugriechisch (Niveau TELC B1) MUSTERTEST Seite 1 von 6 B.A.-Eingangstest Neugriechisch (Niveau TELC B1) MUSTERTEST Seite 1 von 6 Name, Vorname:... Teil 1: Hörverstehen * Hören Sie den Text und beantworten Sie kurz (mit 1-2 Wörtern) die Fragen in der folgenden

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 17 Οδοφράγµατα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 17 Οδοφράγµατα 17 Οδοφράγµατα 50 λεπτά ακόµα: Ο παίκτης αποφασίζει να τα παίξει όλα για όλα και να εµπιστευθεί την ταµία. Το ράδιο µεταδίδει ότι οι Ανατολικογερµανοί στρατιώτες στήνουν οδοφράγµατα. Αυτό είναι το γεγονός

Διαβάστε περισσότερα

Griechisches Staatszertifikat - Deutsch

Griechisches Staatszertifikat - Deutsch ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung, Lebenslanges Lernen und Religionsangelegenheiten Griechisches Staatszertifikat

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 24 Το ρολόι χτυπάει

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 24 Το ρολόι χτυπάει 24 Το ρολόι χτυπάει Η Άννα βρίσκει πάλι τη µεταλλική θήκη που είχε κρύψει το 1961, αλλά δεν µπορεί να την ανοίξει, επειδή έχει σκουριάσει. Όταν τελικά τα καταφέρνει, βρίσκει µέσα ένα παλιό κλειδί. Το κλειδί

Διαβάστε περισσότερα

Griechische und roemische Rechtsgeschichte

Griechische und roemische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und roemische Rechtsgeschichte Ενότητα 4: Griechische Rechtsgeschichte Παπακωνσταντίνου Καλλιόπη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Auswandern Wohnen. Wohnen - Mieten. Θα ήθελα να ενοικιάσω ένα. Äußern dass man etwas mieten möchte. δωμάτιο Art der Unterbringung

Auswandern Wohnen. Wohnen - Mieten. Θα ήθελα να ενοικιάσω ένα. Äußern dass man etwas mieten möchte. δωμάτιο Art der Unterbringung - Mieten Griechisch Θα ήθελα να ενοικιάσω ένα. Äußern dass man etwas mieten möchte Koreanisch δωμάτιο διαμέρισμα γκαρσονιέρα / στούντιο διαμέρισμα μονοκατοικία ημι-ανεξάρτητο σπίτι σπίτι σε σειρά κατοικιών

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

EL Ενωµένη στην πολυµορφία EL A7-0109/298. Τροπολογία. Renate Sommer εξ ονόµατος της Οµάδας PPE

EL Ενωµένη στην πολυµορφία EL A7-0109/298. Τροπολογία. Renate Sommer εξ ονόµατος της Οµάδας PPE 9.6.2010 A7-0109/298 298 Άρθρο 33 παράγραφος 1 (1) Εκτός από τις µορφές έκφρασης που αναφέρονται στο άρθρο 31 παράγραφοι 2 και 3, η διατροφική δήλωση µπορεί να παρέχεται και µε άλλες µορφές έκφρασης, εφόσον

Διαβάστε περισσότερα

Das Präpositionalobjekt Εμπρόθετο αντικείμενο

Das Präpositionalobjekt Εμπρόθετο αντικείμενο Πολλά ριματα ςυντάςςονται με εμπρόκετο αντικείμενο. Η πρόκεςθ κακορίηει τθν πτώςθ του ουςιαςτικοφ. Das Präpositionalobjekt Εμπρόθετο αντικείμενο Το εμπρόθετο αντικείμενο αφορά πρόςωπο warten auf + Akk.

Διαβάστε περισσότερα

Η προβληματική της Protention στη φαινομενολογία του χρόνου του Husserl

Η προβληματική της Protention στη φαινομενολογία του χρόνου του Husserl Πανεπιστήμιο Πατρών Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Τμήμα Φιλοσοφίας Πρόγραμμα Μεταπτυχιακών Σπουδών Η προβληματική της Protention στη φαινομενολογία του χρόνου του Husserl Διπλωματική Εργασία

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.08: Υπερβολικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.08: Υπερβολικές

Διαβάστε περισσότερα

ΕΡΓΑΖΟΜΕΝΩΝ Bildung älterer Arbeitnehmer

ΕΡΓΑΖΟΜΕΝΩΝ Bildung älterer Arbeitnehmer ΚΑΤΑΡΤΙΣΗ ΩΡΙΜΩΝ ΕΡΓΑΖΟΜΕΝΩΝ Bildung älterer Arbeitnehmer Kassandra Teliopoulos IEKEP 06/03/06 ΜΕΡΙΚΑ ΣΗΜΕΙΑ ΚΛΕΙΔΙΑ Einige Gedankenansätze!Στις περισσότερες χώρες μέλη της Ε.Ε. μεγάλης ηλικίας εργαζόμενοι

Διαβάστε περισσότερα

1. Βρες το σωστό αντικείμενο και συμπλήρωσε το σε αιτιατική. 2. Μπορείς να το πεις κι αλλιώς. Χρησιμοποίησε τα ρήματα schmecken και gefallen

1. Βρες το σωστό αντικείμενο και συμπλήρωσε το σε αιτιατική. 2. Μπορείς να το πεις κι αλλιώς. Χρησιμοποίησε τα ρήματα schmecken και gefallen Name: Datum: Klasse: Note: 1. Βρες το σωστό αντικείμενο και συμπλήρωσε το σε αιτιατική eine Torte, eine Limonade, die Blumen, der Arzt, die Tür, der Schulbus a) Peter ist krank. Seine Mutter ruft an. b)

Διαβάστε περισσότερα

Griechische und römische Rechtsgeschichte

Griechische und römische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und römische Rechtsgeschichte Ενότητα 6: Athen Παπακωνσταντίνου Καλλιόπη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

PASSANT A: Ja, guten Tag. Ich suche den Alexanderplatz. Können Sie mir helfen?

PASSANT A: Ja, guten Tag. Ich suche den Alexanderplatz. Können Sie mir helfen? 03 Για την οδό Kantstraße Η Άννα ξεκινά για την Kantstraße, αλλά καθυστερεί, επειδή πρέπει να ρωτήσει πώς πάνε µέχρι εκεί. Χάνει κι άλλο χρόνο, όταν εµφανίζονται πάλι οι µοτοσικλετιστές µε τα µαύρα κράνη

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία - Εισαγωγή ελληνικά Αξιότιμε κύριε Πρόεδρε, γερμανικά Sehr geehrter Herr Präsident, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του

Διαβάστε περισσότερα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα

Κεφάλαιο 8 Το αόριστο ολοκλήρωµα Κεφάλαιο 8 Το αόριστο ολοκλήρωµα 8 Θεµελίωση έννοιας αορίστου ολοκληρώµατος Στο 7 0 Κεφάλαιο ορίσαµε την έννοια της αντιπαραγώγου µιας συνάρτησης f σ ένα κλειστό και φραγµένο διάστηµα Γενικότερα Ορισµός

Διαβάστε περισσότερα

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε

G L (x) =Ax + B, G R (x) =A x + B οπότε από τις συνοριακές συνθήκες έχουμε 1 ÈÖ Ð Ñ Για να είναι εφαρμόσιμη η μέθοδος της συνάρτησης Green, θαπρέπειηομογενής εξίσωση Ly =+ Ο.Σ.Σ. να έχει ως μοναδική λύση τη μηδενική. α) Η ομογενής εξίσωση y =έχει λύση y = A + B, από τις δεδομένες

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ο ΜΥΘΟΣ ΤΗΣ ΛΟΡΕΛΑΪ DIE LORELEY FABEL

Ο ΜΥΘΟΣ ΤΗΣ ΛΟΡΕΛΑΪ DIE LORELEY FABEL Ο ΜΥΘΟΣ ΤΗΣ ΛΟΡΕΛΑΪ DIE LORELEY FABEL Η Λορελάϊ, είναι η Γοργόνα του Μεγαλέξανδρου στη γερμανική της έκδοση Ή μια Σειρήνα απ την Οδύσσεια που απομακρύνθηκε απ τις συντρόφισσές της και βρέθηκε στον Ρήνο.

Διαβάστε περισσότερα

Griechische und römische Rechtsgeschichte

Griechische und römische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und römische Rechtsgeschichte Ενότητα 10: Beispiele von Institutionen des Römischen privatrechts Παπακωνσταντίνου Καλλιόπη

Διαβάστε περισσότερα

Lebenslauf, Dr. Lambis Tassakos

Lebenslauf, Dr. Lambis Tassakos Lebenslauf, Dr. Lambis Tassakos 1959 Geboren in Athen 1963 1965 Deutschland-Aufenthalt (Bielefeld) Deutscher Kindergarten, erste private Griechische Grundschule in Deutschland 1966 1976 Griechenlandaufenthalt

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως

Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Παράγωγος. x ορίζεται ως Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 5 Παράγωγος Παράγωγος Η παράγωγος της συνάρτησης f f () στο σηµείο f ( ) lim 0 ορίζεται ως f ( + ) f ( ) () Παράγωγοι ανώτερης

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 13 Βοήθεια εκ Θεού

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 13 Βοήθεια εκ Θεού 13 Βοήθεια εκ Θεού Η εκκλησία φαίνεται πως είναι το σωστό µέρος για να πάρει κανείς πληροφορίες. Ο πάστορας εξηγεί στην Άννα τη µελωδία και της λέει ότι είναι το κλειδί για µια µηχανή του χρόνου. Αλλά

Διαβάστε περισσότερα

Weihnachtsbrief aus Kindergarten und Vorschule Χριστουγεννιάτικο γράμμα από το προνηπιακό/νηπιακό τμήμα

Weihnachtsbrief aus Kindergarten und Vorschule Χριστουγεννιάτικο γράμμα από το προνηπιακό/νηπιακό τμήμα Weihnachtsbrief aus Kindergarten und Vorschule Χριστουγεννιάτικο γράμμα από το προνηπιακό/νηπιακό τμήμα 13.12.2016 Liebe Eltern des Kindergartens und der Vorschule, Die Weihnachtszeit ist eingeläutet.

Διαβάστε περισσότερα

FLOTT 3 - LEKTION 1. 1 η. S. 8, Teil A München. dran (S. 10) Hausaufgaben: LB S. 12-13, München ist auch für Kinder schön! S.

FLOTT 3 - LEKTION 1. 1 η. S. 8, Teil A München. dran (S. 10) Hausaufgaben: LB S. 12-13, München ist auch für Kinder schön! S. FLOTT 3 Πλάνο διδασκαλίας* ιδασκαλία σε φροντιστήριο ή ιδιαίτερο µάθηµα : 4 ώρες την οµάδα Σύνολο ωρών ετησίως κατά προσέγγιση: 120-130 (34 οµάδες) Κάθε κεφάλαιο θα πρέπει να διδάσκεται σε συνολικά 10-12

Διαβάστε περισσότερα

Ασκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν

Διαβάστε περισσότερα

Kapitel 6 Schweißverbindungen

Kapitel 6 Schweißverbindungen Kapitel 6 Schweißverbindungen Alle Angaben beziehen sich auf die 19. Auflage Roloff/Matek Maschinenelemente mit Tabellenbuch und die 15. Auflage Roloff/Matek Aufgabensammlung. Das Aufgabenbuch kann man

Διαβάστε περισσότερα

Übung 7 - Verfahren zur Lösung linearer Systeme, Gittereigenschaften

Übung 7 - Verfahren zur Lösung linearer Systeme, Gittereigenschaften Übung 7 - Verfahren zur Lösung linearer Systeme, Gittereigenschaften Musterlösung C. Baur, M. Schäfer Fachgebiet für Numerische Berechnungsverfahren im Maschinenbau 22.01.2009 TU Darmstadt FNB 22.01.2009

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 14 Στο παρελθόν για το µέλλον

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 14 Στο παρελθόν για το µέλλον 14 Στο παρελθόν για το µέλλον Η Άννα ανακαλύπτει τη µηχανή του χρόνου και µαθαίνει ότι οι τροµοκράτες θέλουν να εξαλείψουν ένα ιστορικό γεγονός. Αλλά ποιο; Ο παίκτης τη στέλνει στη χρονιά 1961. Της µένουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΚΟΙΝΟΤΗΤΑ ΒΕΡΝΗΣ. 3000 Bern www.grgb.ch

ΕΛΛΗΝΙΚΗ ΚΟΙΝΟΤΗΤΑ ΒΕΡΝΗΣ. 3000 Bern www.grgb.ch ΕΛΛΗΝΙΚΗ ΚΟΙΝΟΤΗΤΑ ΒΕΡΝΗΣ COMMUNAUTÈ HELLÈNIQUE DE BERNE 3000 Bern www.grgb.ch Δευτέρα 9 Δεκεμβρίου 2013 Αγαπητά μέλη και φίλοι της Κοινότητας γεια σας Το 2013 φτάνει στο τέλος τους και ήρθε η ώρα να σας

Διαβάστε περισσότερα

Tafeln für Erddruck- und Erdwiderstandsbeiwerte für ebene Gleitflächen

Tafeln für Erddruck- und Erdwiderstandsbeiwerte für ebene Gleitflächen Bergische Universität Wuppertal Lehr- und Forschungsgebiet Geotechnik Bodenmechanik Tafeln für Erddruck- und Erdwiderstandsbeiwerte für ebene Gleitflächen Bergische Universität Wuppertal Lehr- und Forschungsgebiet

Διαβάστε περισσότερα

4K HDMI Splitter 1x4. User s Guide / Bedienungsanleitung / Εγχειρίδιο Χρήστη

4K HDMI Splitter 1x4. User s Guide / Bedienungsanleitung / Εγχειρίδιο Χρήστη 4K HDMI Splitter 1x4 User s Guide / Bedienungsanleitung / Εγχειρίδιο Χρήστη INTRODUCTION The EDISION 4K HDMI Splitter 1x4 uses a single HDMI input source, to distribute it to 4 HDMI outputs. The splitter

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 09 Στοιχεία που λείπουν

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 09 Στοιχεία που λείπουν 09 Στοιχεία που λείπουν Η Άννα φεύγει από το θέατρο, αλλά η γυναίκα µε τα κόκκινα την κυνηγά µέχρι το µαγαζί του Paul. Η Άννα τη γλιτώνει πάλι µε τη βοήθεια της Heidrun. Τώρα έχει ένα κοµµάτι του παζλ,

Διαβάστε περισσότερα

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ

ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Έστω μια συνάρτηση f ορισμένη σε ένα σύνολο Α. Ένα από τα βασικότερα προβλήματα της Μαθηματικής Ανάλυσης είναι ο προσδιορισμός μιας συνάρτησης F/ A με F = f για κάθε

Διαβάστε περισσότερα

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3

No 5 Άσκηση παραγώγισης γινοµένου. ( 4 x 2 3 ) 3 x 4 ) 2 x 3 ) 6 ( 4 x 2 3 ) x 2. = 8 x ( 1. = 24 x 20 x 4 + 9 x 2. 3 x 4 ) 12 ( 2 x 2 1 ) x 3 Μαθηµατική Υποστήριξη Φοιτητών : Ιδιαίτερα Μαθήµατα, Λυµένες Ασκήσεις, Βοήθεια στη λύση Εργασιών. Θ. Χριστόπουλος, www.maths.gr, Tηλ.: 69 79 0 5 Ασκήσεις παραγώγισης γινοµένου No Άσκηση παραγώγισης γινοµένου

Διαβάστε περισσότερα

Simon Schiffel Implizite Ausfallwahrscheinlichkeiten von Unternehmensanleihen

Simon Schiffel Implizite Ausfallwahrscheinlichkeiten von Unternehmensanleihen Simon Schiffel Implizite Ausfallwahrscheinlichkeiten von Unternehmensanleihen GABLER RESEARCH Simon Schiffel Implizite Ausfallwahrscheinlichkeiten von Unternehmensanleihen Eine empirische Analyse in unterschiedlichen

Διαβάστε περισσότερα

22 είκοσι δύο. Κύπρος. Ελλάδα. Ελβετία. Αυστρία. Γερμανία. Από πού είσαι; Είμαι από τη Γερμανία. Εσύ; Από την Κύπρο. Από πού είσαι; Είμαι από

22 είκοσι δύο. Κύπρος. Ελλάδα. Ελβετία. Αυστρία. Γερμανία. Από πού είσαι; Είμαι από τη Γερμανία. Εσύ; Από την Κύπρο. Από πού είσαι; Είμαι από 3 τρί 1. μάθμα Wie heißen die Länder auf Griechisch? Bitte verbinden Sie die Namen mit den richtigen Zeichnungen. Hören Sie dann die Ländernamen und sprechen Sie sie nach. 1.18 Ελλάδα Αυστρία Κύπρος Ελβετία

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 20 Από καιρό σε καιρό

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 20 Από καιρό σε καιρό 20 Από καιρό σε καιρό Η Άννα δεν έχει πλησιάσει ακόµα στη λύση του αινίγµατος. Ποιο γεγονός θέλει να εµποδίσει η RATAVA; Μετά την επιστροφή της στο 2006 πρέπει να ταξιδέψει πίσω στο 1989. Αλλά πόσο επικίνδυνα

Διαβάστε περισσότερα

Griechische und roemische Rechtsgeschichte

Griechische und roemische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und roemische Rechtsgeschichte Ενότητα 2: Griechisce Rechtsgeschichte Παπακωνσταντίνου Καλλιόπη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εκπαιδευτικοί προσχολικής ηλικίας στη Γερμανία. Ευκαιρία και πρόκληση

Εκπαιδευτικοί προσχολικής ηλικίας στη Γερμανία. Ευκαιρία και πρόκληση Εκπαιδευτικοί προσχολικής ηλικίας στη Γερμανία Ευκαιρία και πρόκληση Περιεχόμενα Ποιοί είμαστε / Τι κάνουμε / Τι προσφέρουμε Η ζωή στη Γερμανία Επί της ουσίας Η ζούγκλα των παραγράφων Τι χρειάζομαι ms

Διαβάστε περισσότερα

ΜΗΝΙΑΙΑ ΕΦΗΜΕΡΙΔΑ ΓΙΑ ΤΟΝ ΕΛΛΗΝΙΣΜΟ ΓΕΡΜΑΝΙΑ ΚΑΙ ΕΥΡΩΠΗ GRIECHISCH-DEUTSCHE MONATSZEITUNG DEUTSCHLAND UND EUROPA

ΜΗΝΙΑΙΑ ΕΦΗΜΕΡΙΔΑ ΓΙΑ ΤΟΝ ΕΛΛΗΝΙΣΜΟ ΓΕΡΜΑΝΙΑ ΚΑΙ ΕΥΡΩΠΗ GRIECHISCH-DEUTSCHE MONATSZEITUNG DEUTSCHLAND UND EUROPA ΕLLINIKI GNOMI ΑΠΡΙΛΙΟΣ 2014 ΕΤΟΣ 16ο ΑΡ. ΦΥΛΛΟΥ 168 www.elliniki-gnomi.eu ΕΔΡΑ ΒΕΡΟΛΙΝΟ ΕΛΛΗΝΙΚΗ ΓΝΩΜΗ April 2014 η εφημερίδα που διαβάζεται! ΜΗΝΙΑΙΑ ΕΦΗΜΕΡΙΔΑ ΓΙΑ ΤΟΝ ΕΛΛΗΝΙΣΜΟ ΓΕΡΜΑΝΙΑ ΚΑΙ ΕΥΡΩΠΗ GRIECHISCH-DEUTSCHE

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Βασικά Μαθηµατικά ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 04 Μαρτίου 009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια περίληψη των ϐασικών µα- ϑηµατικών γνώσεων που

Διαβάστε περισσότερα

FLASHBACK: Die Spieldose, aha? Sie ist kaputt. Kein Problem Anna, ich repariere sie dir.

FLASHBACK: Die Spieldose, aha? Sie ist kaputt. Kein Problem Anna, ich repariere sie dir. 06 Η γυναίκα µε τα κόκκινα Η Άννα συναντά µια γυναίκα που ισχυρίζεται ότι ήταν φίλες το 1961. Κι εκτός αυτού η Άννα τα χάνει µε την πληροφορία ότι την κυνηγά µια γυναίκα ντυµένη στα κόκκινα. Σε κάθε γωνιά

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2 ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΑ-ΣΥΝΕΧΕΙΑ

KΕΦΑΛΑΙΟ 2 ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΑ-ΣΥΝΕΧΕΙΑ KΕΦΑΛΑΙΟ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΑ-ΣΥΝΕΧΕΙΑ Ορισµοί Ας θεωρήσουµε δύο σύνολα Α, Β Μία απεικόνιση f : A B καλείται συνάρτηση αν σε κάθε στοιχείο A αντιστοιχεί ένα και µόνο ένα στοιχείο y B Το σύνολο Α καλείται πεδίο

Διαβάστε περισσότερα

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 22 Έλα τώρα, κουνήσου

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 22 Έλα τώρα, κουνήσου 22 Έλα τώρα, κουνήσου Η Άννα µεταφέρεται στο Βερολίνο του έτους 1989, όπου κυριαρχεί ο ενθουσιασµός για την πτώση του Τείχους. Πρέπει να περάσει µέσα από το πλήθος και να πάρει τη θήκη. Θα τα καταφέρει;

Διαβάστε περισσότερα

FLOTT 1 - LEKTION 1. 1 η. S.13, Übungen 1, 2. 2 η ώρα S. 18, Das bin ich! Hausaufgaben: ΑΒ Übungen 3, 4 S. 13 Übungen S S. 19, Ηörverstehen 1

FLOTT 1 - LEKTION 1. 1 η. S.13, Übungen 1, 2. 2 η ώρα S. 18, Das bin ich! Hausaufgaben: ΑΒ Übungen 3, 4 S. 13 Übungen S S. 19, Ηörverstehen 1 FLOTT 1 Πλάνο διδασκαλίας* ιδασκαλία σε φροντιστήριο ή ιδιαίτερο µάθηµα : 4 ώρες την εβδοµάδα Σύνολο ωρών ετησίως κατά προσέγγιση: 120-130 (32 εβδοµάδες) Κάθε κεφάλαιο θα πρέπει να διδάσκεται σε συνολικά

Διαβάστε περισσότερα

Griechische und römische Rechtsgeschichte

Griechische und römische Rechtsgeschichte ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Griechische und römische Rechtsgeschichte Ενότητα 7: Gortyna Παπακωνσταντίνου Καλλιόπη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Griechisches Staatszertifikat - Deutsch

Griechisches Staatszertifikat - Deutsch ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ Griechisches Ministerium für Bildung und Religion Griechisches Staatszertifikat - Deutsch NIVEAU B1 Entspricht dem Gemeinsamen

Διαβάστε περισσότερα

Technisches Handbuch. Magna Pergola. metaform Bescha ungssysteme

Technisches Handbuch. Magna Pergola. metaform Bescha ungssysteme 03 Technisches Handbuch Magna Pergola Eine neue wegweisende Pergola, die exklusiv von Metaform ΑVΕΕ entworfen wurde. Verstärkte Konstruk on und verbesserte Ästhe k, wo die größtmögliche Bedeckung von Außengelände

Διαβάστε περισσότερα

γςω 6Ω ΩςΠΗΛςΩΗΥςΦΚ ΙΩ γςω 0ΗΛςΩΗΥςΦΚ ΙΩ %: %7,

γςω 6Ω ΩςΠΗΛςΩΗΥςΦΚ ΙΩ γςω 0ΗΛςΩΗΥςΦΚ ΙΩ %: %7, γςω6ω ΩςΠΗΛςΩΗΥςΦΚ ΙΩγςΩ0ΗΛςΩΗΥςΦΚ ΙΩ:7, 6Ω ΓΩς Ο+ΡΟΟ ΕΥΞΘΘ ΡςΗΙ:ΗΛςΟΗΛΘ6ΩΥ Η+ΡΟΟ ΕΥΞΘΘ ΞςΥΛΦΚΩΗΥ 7ΞΥΘΛΗΥΓ ΩΞΠ :6ΖΛΘϑΛΘΥΡΦς ΗΛςΛΩ]ΗΥ +ΗΛΓΛ6ΩΗΛΘΛΘϑΗΥ 3ΥΡΩΡΦΡΟ ΟΙΥΗΓ ΥΩΡς 7ΞΥΘΛΗΥΕΗΡΕ ΦΚΩΗΥ5ΡΕΗΥΩΛϑΘΗΥ ΥΠ

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Επιστολή

Εμπορική αλληλογραφία Επιστολή - Διεύθυνση Mr. J. Rhodes Rhodes & Rhodes Corp. 212 Silverback Drive California Springs CA 92926 Mr. J. Rhodes Rhodes & Rhodes Corp. 212 Silverback Drive California Springs CA 92926 Αμερικανική γραφή διεύθυνσης:

Διαβάστε περισσότερα

Η παράσταση αυτή ήταν πολύ καλή και οργανωµένη, να συνεχίσουµε έτσι. Langer ( ιευθύντρια του Albrecht-Ernst Gymnasium)

Η παράσταση αυτή ήταν πολύ καλή και οργανωµένη, να συνεχίσουµε έτσι. Langer ( ιευθύντρια του Albrecht-Ernst Gymnasium) ΓΕΡΜΑΝΙΑ 2008 Πειραµατικό Σχολείο Πανεπιστηµίου Πατρών Καλησπέρα, Είµαστε η Μαρία και ο Θοδωρής από το Πειραµατικό Σχολείο Πατρών. Έχουµε συγκεντρώσει τις απόψεις Ελλήνων και Γερµανών για τη συνεργασία

Διαβάστε περισσότερα

Empirische Sprachforschung

Empirische Sprachforschung Empirische Sprachforschung Einführung: Subsprachen und Kontrollierte Sprachen Dr. Chris;na Alexandris Na;onale Universität Athen Deutsche Sprache und Literatur Einführung: Subsprachen und Kontrollierte

Διαβάστε περισσότερα

Αιτήσεις Συνοδευτική Επιστολή

Αιτήσεις Συνοδευτική Επιστολή - Εισαγωγή Sehr geehrter Herr, Επίσημη επιστολή, αρσενικός αποδέκτης, όνομα άγνωστο Sehr geehrte Frau, Επίσημη επιστολή, θηλυκός αποδέκτης, όνομα άγνωστο Sehr geehrter Herr, Sehr geehrte Frau, Επίσημη

Διαβάστε περισσότερα