Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim."

Transcript

1 Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ < δ f (ξ) g(x, ξ) < ɛ Ορισμός Heine: x n ξ g(x n, ξ) f (ξ) f (x) { Παράγωγος από αριστερά Παράγωγος από δεξιά } g(x, ξ) f (ξ) f +(ξ) x ξ x ξ+ g(x, ξ)

2 ΕΝΑΛΛΑΚΤΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΠΑΡΑΓΩΓΟΥ f (x) f(x + h) f(x) h 0 h x 0 f(x) x ( x 0 όπου f(x) f(x + x) f(x) f(x + x) f(x) x ) df df n f (x) d ( ) df d2 f 2, f(x n ) f(x) x n x f (n) (x) dn f n

3 Πρόταση Αν υπάρχει το f (ξ) τότε η συνάρτηση f(x) είναι συνεχής στο ξ Απόδειξη. f(x) f(ξ) f(x) f(ξ) (f(x) f(ξ)) x ξ x ξ x ξ f(x) f(ξ) (x ξ) x ξ x ξ (x ξ) 0 Προσοχή: Το αντίστροφο δεν ισχύει. Η συνάρτηση f(x) x είναι συνεχής σε κάθε περιοχή γύρω από το x 0 αλλά δεν έχει παράγωγο στο x 0 Υπάρχουν συναρτήσεις παντού συνεχείς αλλά δεν έχουν πουθενά παράγωγο! πχ η συνάρτηση Weierstrass f(x) n0 cos (17 n x) 2 n

4 Υπάρχουν συναρτήσεις παντού συνεχείς αλλά δεν έχουν πουθενά παράγωγο! πχ η συνάρτηση Weierstrass f(x) n0 cos (17 n x) 2 n fractal δομή της καμπύλης.

5 ΙΔΙΟΤΗΤΕΣ ΠΑΡΑΓΩΓΩΝ 1 (µf) (x) µf (x) για µ R 2 (f + g) (x) f (x) + g (x) 3 (f ( g) ) (x) f (x)g(x) + f(x)g (x) Leibnitz rule 4 f g (x) f (x)g(x) f(x)g (x) g 2 (x) 5 (f g) (x) f (g(x)) g (x) Chain rule ή df df dg dg 6 f(x) γνήσια μονότονη } συνάρτηση, f (x) 0 f(ξ) η ξ f 1 ( f (η) (η) 1/f (ξ) ή df 1 (η) dη dξ dη 1 dη/dξ 1 df(ξ)/dξ

6 ΙΔΙΟΤΗΤΕΣ ΠΑΡΑΓΩΓΩΝ- Αποδείξεις 1 (µf) (x) µf (x) για µ R 2 (f + g) (x) f (x) + g (x) 3 (f g) (x) f (x)g(x) + f(x)g (x) Leibnitz rule Απόδ (Heine): f(x)g(x) f(x n )g(x n ) x x n f(x) g(x) g(x n) x x n + g(x n ) f(x) f(x n) x x n Παίρνουμε το όριο x n x ( ) n 4 f g (x) f (x)g(x) f(x)g (x) g 2 (x) 5 (f g) (x) f (g(x)) g (x) Chain rule ή df df dg dg Απόδ (Heine): f (g(x)) f (g(x n )) x x n f (g(x)) f (g(x n)) g(x) g(x n ) g(x) g(x n) x x n f (g) f (g) g g n g(x) g(x n) x x n Παίρνουμε το όριο x n x g n g n n 6 f(x) γνήσια μονότονη } συνάρτηση, f (x) 0 f(ξ) η ξ f 1 ( f (η) 1) (η) 1/f (ξ) df 1 (η) dη ή Απόδ (Heine): dξ dη 1 dη/dξ 1 df(ξ)/dξ y n x n n ξ f(x n ) y n n η f 1 (y n ) x n η f(ξ) n ξ f 1 (η) n f 1 (η) f 1 (y n ) ξ x n η y n f(ξ) f(x n ) 1 f(ξ) f(x n ) ξ x n Παίρνουμε το όριο x n n ξ y n η n

7 Παραγωγίσεις Παραμετρικών μορφών συναρτήσεων Μια καμπύλη περιγράφεται είναι με μια συνάρτηση y f(x) είτε με μια παραμετρική συνάρτηση των συντεταγμένων πχ. x X(t), y Y (t) Θέτουμε y f(x) και y f(x ) dy x x y y x x t t y y t t x x t t t t t t y y t t x x t t dy/dt /dt d 2 y 2 d ( ) df d dt ( ) dy/dt /dt dt

8 Παράδειγμα x t 3 t, y t 4 t 2 1, 1 t x t 3 t, dy 4 t3 2 t 3 t 2 1, 1 t 1 3 x t 3 t, d 2 y 2 12 t t t 4 t3 2 t 3 t t 2 1, 1 t , 3

9 Παράδειγμα x sin t, y cos4 t, Π 4 2 t Π x sin t, dy sin t cos2 t, 1.0 Π 2 t Π 2 x sin t, d 2 y 2 2 sin 2 t cos 2 t, Π 2 t Π , 1.0

10 e x n0 x n n! για 0 y < x < (x y)e y < e x e y < (x y)e x e y < ex e y x y (e x ) y x x y (e x ) + ex d ex ex < ex e x e y x y e x (x y)e y < e x e y < (x y)e x (x y)e x < e y e x < (x y)e y

11 x > 0, y ln x exp 1 x 1:1 x exp y e y, y > 0 d (ln x) d exp 1 x 1 x d (ln x) x x y y ln x ln x x x y y exp y exp y y y 1 exp y exp y y y 1 d dy (exp y) 1 exp y 1 x

12 Παράδειγμα x 1 y arcsin x sin 1 x 1:1 x sin y, π 2 y π 2 d (arcsin x) d sin 1 x 1 1 x 2 d (arcsin x) x x y y y y arcsin x arcsin x x x y y sin y sin y 1 sin y sin y y y 1 d dy (sin y) 1 cos y 1 1 sin 2 y 1 1 x 2

13 Παράδειγμα x y arctan x tan 1 x 1:1 x tan y, π 2 y π 2 d (arctan x) d tan 1 x x 2 d (arctan x) x x y y y y 1 1 cos 2 y arctan x arctan x x x y y tan y sin y 1 tan y tan y y y tan 2 y x 2 1 d dy (tan y)

14 ΥΠΕΡΒΟΛΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ cosh x ex + e x 2 x 2n sinh x ex e x n0 (2n)! 2 cosh 2 x sinh 2 x 1 n0 x 2n+1 (2n + 1)! cosh x arccosh x cosh 1 x sinh x arcsinh x sinh 1 x

15 tanh x sinh x cosh x tanh x 1.5 arctanh x tanh 1 x

16 d cosh x d cosh 1 x sinh x, d sinh x d arccosh x cosh x 1 x 2 1 d sinh 1 x d arcsinh x 1 x dtanh 1 x dcoth 1 x d tanh x d arctanh x d coth x d arccoth x 1 cosh 2 x 1 1 x 2, x < 1 1 sinh 2 x 1 1 x 2, x >

17 ΤΥΠΟΣ NEWTON (x + y) n n k0 ( ) n x k y n k k ΤΥΠΟΣ LEIBNITZ (f g) (n) n k0 ( ) n f (k) g (n k) k

18 Θεώρημα εσωτερικών ακραίων τιμών/interior Extremum Theorem Πρόταση f : [a, b] R και c (a, b) f (c) αν f (c) > 0 δ > 0 : c < x < c + δ f(c) < f(x) και c δ < x < c f(x ) < f(c) f (c) > 0 η f(x) είναι τοπικά αύξουσα f (c) < 0 η f(x) είναι τοπικά φθίνουσα Θεώρημα εσωτερικών ακραίων τιμών/interior Extremum Theorem f(x) παραγωγίσιμη στο [a, b] f(x) συνεχής στο [a, b] x m [a, b] : f(x m ) min f(x) Αν x m (a, b) f (x m ) 0 x [a, b] και x M [a, b] : f(x M ) max f(x) Αν x M (a, b) f (x M ) 0 x [a, b]

19 Πρόταση Θεώρημα εσωτερικών ακραίων τιμών/interior Extremum Theorem- Αποδείξεις Απόδειξη. f : [a, b] R και c (a, b) f (c) αν f (c) > 0 δ > 0 : c < x < c + δ f(c) < f(x) και c δ < x < c f(x ) < f(c) f(c) f(x) g(x, c) c x f (c) > 0 g(x, c) f (c) x c ɛ > 0 δ > 0 : c δ < x < c + δ f (c) ɛ < g(x, c) < f (c) + ɛ Αν ɛ < f (c) ( πχ ɛ f (c)) 0 < g(x, c) 10 Αν c < x < c + δ 0 < Αν c δ < x < c 0 < f(c) f(x) c x f(c) f(x) c x f(c) f(x) < 0 f(c) f(x) > 0 f (c) > 0 η f(x) είναι τοπικά αύξουσα f (c) < 0 η f(x) είναι τοπικά φθίνουσα Θεώρημα εσωτερικών ακραίων τιμών/interior Extremum Theorem f(x) παραγωγίσιμη στο [a, b] f(x) συνεχής στο [a, b] x m [a, b] : f(x m ) min x [a, b] f(x) Αν x m (a, b) f (x m ) 0 και x M [a, b] : f(x M ) max x [a, b] f(x) Αν x M (a, b) f (x M ) 0

20 ΘΕΩΡΗΜΑ DARBOUX ΘΕΩΡΗΜΑ DARBOUX ή Θεώρημα ενδιαμέσων τιμών για παραγώγους αν f : [a, b] R και x [a, b] f (x) και f (a) < f (b) (ή f (a) > f (b)) f (a) < k < f (b) ( ή f (a) > k > f (b) ) ξ (a, b) : f (ξ) k

21 ΘΕΩΡΗΜΑ DARBOUX-Απόδειξη ΘΕΩΡΗΜΑ DARBOUX ή Θεώρημα ενδιαμέσων τιμών για παραγώγους Απόδειξη. f : [a, b] R και x [a, b] f (x) και f (a) < f (b) (ή f (a) > f (b)) αν f (a) < k < f (b) ( ή f (a) > k > f (b) ) ξ (a, b) : f (ξ) k f (a) < k < f (b), g(x) f(x) kx g (a) f (a) k < 0 δ 1 > 0 : a < x < a + δ 1 g (b) f (b) k > 0 g(x) < g(a) δ 2 > 0 : b δ 2 < x < b g(x) < g(b) f(x) συνεχής ξ (a, b) : { } g(ξ) min g(x), x [a, b] g (ξ) 0 f (ξ) k Σημ. Το ξ δεν μπορεί να είναι το a είτε το b.

22 ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE f : [a, b] R συνεχής και x (a, b) f (x) και f(a) f(b) { } ξ (a, b) : f (ξ) 0 f(ξ) f(a)f(b) a ξ b Μεταξύ δύο (διαδοχικών) ριζών μιας παραγωγίσιμης συνάρτησης υπάρχει μια ρίζα της παραγώγου

23 Από τις υποθέσεις του θεωρήματος Rolle καμμιά δεν μπορεί να παραληφθεί f(x) συνεχής, f(0) f(1) αλλά μη παραγωγίσιμη σε κάποιο σημείο π.χ x, αν 0 x < 1 2 f(x) ΟΧΙ f (ξ) x αν 2 x 1 f(x) μη συνεχής σε κάποιο σημείο, f(0) f(1), παραγωγίσιμη στο (0, 1) π.χ x, αν 0 x < 1 f(x) x [x] f(x) 0 αν x 1 f (x) 1 για x (0, 1) f(x) συνεχής και παραγωγίσιμη αλλά f(1) f(2) πχ f(x) x 2, x [1, 2] ΟΧΙ f (ξ) 0

24 ΘΕΩΡΗΜΑ ROLLE-Απόδειξη ΘΕΩΡΗΜΑ ROLLE f : [a, b] R συνεχής και x (a, b) f (x) και f(a) f(b) { } ξ (a, b) : f (ξ) 0 f(ξ) f(a)f(b) a Απόδειξη. Απόδ: ξ b f(x) συνεχής { } x m [a, b] m f(x m ) min f(x), x [a, b] { } x M [a, b] M f(x M ) max f(x), x [a, b] Περίπτωση 1: m M f(x) σταθερά f (x) 0 Περίπτωση 2α: m < M Αν x M a και x M b τότε ξ x M (a, b) f (ξ) 0 Περίπτωση 2β: m < M Αν x M a ( ή x M b) τότε f(a) f(b) M ξ x m (a, b) f (ξ) 0

25 ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ- ΓΕΝΙΚΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ f : [a, b] R συνεχής και x (a, b) f (x) } { ξ (a, b) : f (ξ) f(b) f(a) b a f(ξ) f(a) a ξ b ΓΕΝΙΚΕΥΜΕΝΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ f : [a, b] R συνεχής και x (a, b) f (x) g : [a, b] R συνεχής και x (a, b) g (x) και g(a) g(b) ξ (a, b) : f (ξ) g (ξ) f(b) f(a) g(b) g(a)

26 ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ- Απόδειξη ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ { f : [a, b] R συνεχής και x (a, b) f (x) ξ (a, b) : f (ξ) } f(b) f(a) b a f(ξ) f(a) a ξ b Απόδειξη. h(x) x (f(b) f(a)) f(x) (b a) h(a) a (f(b) f(a)) f(a) (b a) af(b) bf(a) h(b) b (f(b) f(a)) f(b) (b a) af(b) bf(a) h(a) h(b) h (x) (f(b) f(a)) f (x) (b a) Η συνάρτηση h(x) είναι συνεχής για x [a, b] και f (x) για x (a, b) Rolle ξ (a, b) τέτοιο ώστε h (ξ) 0 f f(b) f(a) (ξ) b a

27 ΓΕΝΙΚΕΥΜΕΝΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ-Απόδειξη f : [a, b] R συνεχής και x (a, b) f (x) g : [a, b] R συνεχής και x (a, b) g (x) και g(a) g(b) f (ξ) f(b) f(a) ξ (a, b) : g (ξ) g(b) g(a) Απόδειξη. h(x) g(x) (f(b) f(a)) f(x) (g(b) g(a)) h(a) g(a) (f(b) f(a)) f(a) (g(b) g(a)) g(a)f(b) g(b)f(a) h(b) g(b) (f(b) f(a)) f(b) (g(b) g(a)) g(a)f(b) g(b)f(a) h(a) h(b) h (x) g (x) (f(b) f(a)) f (x) (g(b) g(a)) Η συνάρτηση h(x) είναι συνεχής για x [a, b] και f (x) για x (a, b) Rolle ξ (a, b) τέτοιο ώστε h (ξ) 0 f f(b) f(a) (ξ) g(b) g(a)

28 Εφαρμογές Θεωρήματος Μέσης Τιμής f(x) είναι συνεχής στο [a, b] και f (x) 0 για x (a, b). Τότε η συνάρτηση είναι σταθερά στο [a, b]. f(x) είναι συνεχής και παραγωγίσιμη στο x (a, b). Αν η f (x) δεν αλλάζει πρόσιμο τότε είναιο μονότονη. Αν f (x) < M τότε f(x) f(y) < x y

29 ΚΑΝΟΝΕΣ de l HOSPITAL ΚΑΝΟΝΕΣ de l HOSPITAL σε ένα σημείο για συναρτήσεις που μηδενίζονται f(x) και g(x) συνεχείς συναρτήσεις και παραγωγίσιμες γιά x (a, ξ) Απόδειξη. Περίπτωση ξ < f(x) 0 και g(x) 0 x ξ + x ξ + f (x) x ξ + g (x) f(x) x ξ + g(x) f (x) x ξ + g (x) { f (x) } x ξ + g (x) l, ɛ > 0, δ > 0 : ξ < s < ξ + δ ɛ < f (s) g (s) l < ɛ Γενικευμένο Θεωρ. Μ.Τ. Αν ξ < y < x < ξ + δ s : ξ < y < s < x < ξ + δ f (s) f(x) f(y) g (s) g(x) g(y) επομένως ɛ y ξ + Δηλαδή αποδείξαμε ότι: ( f(x) f(y) g(x) g(y) l f(x) f(y) ɛ < g(x) g(y) l < ɛ ) f(x) g(x) l ɛ, ɛ > 0, δ > 0 : ξ < x < ξ + δ ɛ f(x) g(x) l ɛ f(x) x ξ + g(x) l Περίπτωση ξ Ιδια απόδειξη, θέτουμε ξ και ξ + δ R ΚΑΝΟΝΕΣ de l HOSPITAL σε ένα σημείο για συναρτήσεις που μηδενίζονται f(x) και g(x) συνεχείς συναρτήσεις και παραγωγίσιμες γιά x (a, ξ) f(x) 0 και g(x) 0 x ξ x ξ f (x) x ξ g (x) f(x) x ξ + g(x) x ξ f (x) g (x)

30 Κανόνες de l Hospital για απειρήσημες συναρτήσεις Κανόνες de l Hospital για απειρήσημες συναρτήσεις f(x) και g(x) συνεχείς συναρτήσεις και παραγωγίσιμες γιά x (ξ, b) Απόδειξη. Περίπτωση ξ < f (x) x ξ + g (x) g(x) ± x ξ + f(x) x ξ + g(x) f (x) x ξ + g (x) { f (x) } x ξ + g (x) l, ɛ > 0, δ > 0 : ξ < s < ξ + δ ɛ < f (s) g (s) l < ɛ Γενικευμένο Θεωρ. Μ.Τ. Αν ξ < y < x < ξ + δ s : ξ < y < s < x < ξ + δ επομένως f (s) f(y) f(x) g (s) g(y) g(x) { f(y) g(y) f(x) g(y) 1 g(x) g(y) } g(x) ± x ξ + δ1 : ξ < y < ξ + δ1 g(x) g(y) < 1 0 < 1 g(x) g(y) l ɛ < ( (l ɛ) 1 g(x) ) < f(y) g(y) g(y) f(x) g(y) (l ɛ) + f(x) g(y) { f(y) g(y) f(x) g(y) 1 g(x) g(y) < (l + ɛ) g(x) (l ɛ) g(y) } {{ } KL < l + ɛ ( 1 g(x) ) g(y) < f(y) g(y) < (l + ɛ) + f(x) g(x) (l + ɛ) g(y) g(y) } {{ } { KR } g(y) ± y ξ + g(x) f(x) } 0, και y ξ + g(y) y ξ + g(y) 0 KR 0 και y ξ + y ξ KL + 0 δ2 : ξ < y < ξ + δ2 KR < ɛ 2 και ɛ 2 < KL Δηλαδή αποδείξαμε ότι:, ɛ > 0, δ min{δ, δ1, δ2} > 0 : ξ < y < ξ + δ 3ɛ 2 f(y) g(y) l 3ɛ 2 Περίπτωση ξ Ιδια απόδειξη, θέτουμε ξ και ξ + δ R f(y) y ξ + g(y) l f(x) και g(x) συνεχείς συναρτήσεις και παραγωγίσιμες γιά x (a, ξ) f (x) x ξ g (x) g(x) ± x ξ f(x) x ξ g(x) x ξ f (x) g (x)

31 Παραδείγματα: 0 0 : a x b x ln a x 0 x b 1 cos x x 0 (3 x 2 x ) 2 1 ( ) 3 2 ln 2 2 x 1/2 a 1/2 + (x a) 1/2 1 x a + (x 2 a 2 ) 1/2 2a e x + e x 2 2 x 0 1 cos x 0 0 x ( n xn + a 1 x n 1 + a 2 x n a n x ) a 1 n x ( b 1/x 1 ) ln b x (1 + x x)1/x 1 x 0 x 0 (1+x) 1/x e x e 2 ( 1 x cot x) 0

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός Ι Ενότητα 4: Παράγωγοι Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός Ι 1 / 68 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x

Διαβάστε περισσότερα

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.

Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής. f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy

ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy ΣΥΓΚΛΙΣΗ ΣΥΝΑΡΤΗΣΗΣ: Ορισμός Cauchy Augustin- Louis Cauchy 1789-1857 ΠΛΕΥΡΙΚΑ ΟΡΙΑ Ορισμός σύγκλισης Cauchy συγκλίνει για x ξ Η συνάρτηση f(x) ɛ > 0 δ (ɛ, ξ) : x ξ < δ f(x) l < ɛ f(x) = l + f(x) = l +

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΚΤΟ ΜΑΘΗΜΑ, 14-1-14 Μ. Παπαδημητράκης. 1 Τις διάφορες απλές ιδιότητες των παραγώγων θα τις θεωρήσω γνωστές από πιο στοιχειώδη μαθήματα απειροστικού λογισμού και από το λύκειο. Τώρα

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις έβδομου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 2018-19. Λύσεις έβδομου φυλλαδίου ασκήσεων. 1. Έχουν οι παρακάτω συναρτήσεις μέγιστη ή ελάχιστη τιμή στο διάστημα (0, 1); Στο διάστημα (, + ); Στο διάστημα [0,

Διαβάστε περισσότερα

lim (f(x + 1) f(x)) = 0.

lim (f(x + 1) f(x)) = 0. Ανάλυση Ι και Εφαρμογές 4ο Τεστ (Σειρά Α) 17-19 Δεκεμβρίου 2018 Ονοματεπώνυμο:.................................................................. Αριθμός Μητρώου:...............................................................

Διαβάστε περισσότερα

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x)

f (x) g(h) = 1. f(x + h) f(x) f(x)f(h) f(x) = lim f(x) (f(h) 1) = lim = lim = lim f(x)g(h) g(h) = f(x) lim = f(x) 1 = f(x) Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - Λύσεις 2ης Σειράς Ασκήσεων Ασκηση 1. Για κάθε a,b και x 2, η f είναι παραγωγίσιµη.

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx, Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων.

Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. Ανάλυση πολλών μεταβλητών. Δεύτερο φυλλάδιο ασκήσεων. 1. Ποιά από τα παρακάτω σύνολα είναι συμπαγή; Μία κλειστή μπάλα, μία ανοικτή μπάλα, ένα ανοικτό ορθ. παραλληλεπίπεδο, ένα ευθ. τμήμα (στον R n ), μία

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l.

f (x) = l R, τότε f (x 0 ) = l. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα 1. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1

dy df(x) y= f(x) y = f (x), = dx dx θ x m= 1 I. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ d df() = f() = f (), = d d.κλίση ευθείας.μεταολές 3.(Οριακός) ρυθμός μεταολής ή παράγωγος 4.Παράγωγοι ασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία 8.Στάσιμα

Διαβάστε περισσότερα

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α

Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Ο Λ Ο Κ Λ Η Ρ Ω Μ Α Τ Α Α Σ Κ Η Σ Ε Ι Σ 1. Να υπολογιστεί το ολοκλήρωμα: Ι ΑΠ. 36 2. Να δείξετε ότι: i) Για κάθε x (0, + ), 2x e x + e x -1 > 0 ii) Θεωρώ την συνάρτηση f(x) = 2x e x + e x - 1 iii. Αρκεί

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β)

ΘΕΩΡΗΜΑ (Μέσης Τιμής) Έστω f: [α, β] R συνεχής και παραγωγίσιμη στο (α, β). Τότε υπάρχει ξ (α, β) Έστω συνάρτηση f: [α, β] R παραγωγίσιμη. Τότε η παράγωγος συνάρτηση f (x) παίρνει όλες τις τιμές μεταξύ των f (α) και f (β). Έστω f (α) < λ < f (β). Πρέπει να δείξουμε ότι υπάρχει x 0 ώστε f (x 0 ) = λ.

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΡΙΑΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 16-1-14 Μ. Παπαδημητράκης. 1 Άσκηση 5..15. Έστω f παραγωγίσιμη στο (0, + ) και lim x + f (x) = 0. Αποδείξτε ότι ( ) lim f(x + 1) f(x) = 0. x + Λύση: Θα εκμεταλλευτούμε

Διαβάστε περισσότερα

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010 Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 6: Παράγωγοι Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων.

Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ένατου φυλλαδίου ασκήσεων. Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 018-19. Λύσεις ένατου φυλλαδίου ασκήσεων. 1. Έστω a < b. Αποδείξτε ότι υπάρχει ξ ώστε (i) a < ξ < b και e b e a = (b a)e ξ. (ii) a < ξ < b και cos b cos a = (e

Διαβάστε περισσότερα

x είναι f 1 f 0 f κ λ

x είναι f 1 f 0 f κ λ 3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

Συνέχεια - Παράγωγος ως συνάρτηση. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Συνέχεια - Παράγωγος ως συνάρτηση. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 4 η Διάλεξη Συνέχεια - Παράγωγος ως συνάρτηση 27 Σεπτεµβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 12-12-13 Μ. Παπαδημητράκης. 1 Ας δούμε ένα παράδειγμα υπολογισμού ορίου με χρήση της συνέχειας της σύνθεσης συνεχών συναρτήσεων. Παράδειγμα. Θέλουμε να υπολογίσουμε το όριο

Διαβάστε περισσότερα

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx. ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) =

M. J. Lighthill. g(y) = f(x) e 2πixy dx, (1) d N. g (p) (y) = Εισαγωγή στην ανάλυση Fourier και τις γενικευμένες συναρτήσεις * M. J. Lighthill μετάφραση: Γ. Ευθυβουλίδης ΚΕΦΑΛΑΙΟ 2 Η ΘΕΩΡΙΑ ΤΩΝ ΓΕΝΙΚΕΥΜΕΝΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΩΝ ΤΟΥΣ FOURIER 2.1. Καλές

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Ενότητα 1: Λογισμός ΙΙ Κ. Δασκαλογιάννης Τμήμα Μαθηματικών Α.Π.Θ. (Α.Π.Θ.) Λογισμός ΙΙ 1 / 210 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 7: Εφαρμογές παραγώγων Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Ομάδα 1: Αριθμοί ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι, Σ. ΤΟΥΜΠΗΣ

Ομάδα 1: Αριθμοί ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι, Σ. ΤΟΥΜΠΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι, 5-6 Σ. ΤΟΥΜΠΗΣ Ομάδα : Αριθμοί. (Άθροισμα Minkowski) Εκτός από την ένωση και την τομή, μπορούμε να ορίσουμε και το άθροισμα δύο συνόλων.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι Εφαρμογές παραγώγων Διαφορικός Λογισμός μιας μεταβλητής Ι Ακρότατα Α Θα δούμε πώς οι παράγωγοι βοηθούν στην αναζήτηση ακρότατων (μέγιστα και ελάχιστα) μιας συνάρτησης ώστε να αντιλαμβανόμαστε πώς εξελίσσεται

Διαβάστε περισσότερα

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ

ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!). Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 8-9 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε ένα των σημειώσεων, και η καταληκτική

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 02, 09 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Μη γραμμικές εξισώσεις 2. Η μέθοδος της διχοτόμησης 1 Μη γραμμικές

Διαβάστε περισσότερα

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x )

Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του. f(x h) f(x ) Σχόλια στις Παραγώγους. Μια συνάρτηση θα λέγεται παραγωγίσιμη σε ένα σημείο x 0 του Π.Ο της μόνον και μόνον όταν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 πραγματικός αριθμός. και είναι Η παραγωγισιμότητα

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ <

Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [ < Οι ασκήσεις βασίζονται στο αξιόλογο φυλλάδιο του Μαθηματικού Μιλτ. Παπαγρηγοράκη, από τις σημειώσεις του για το 4ο Γενικό Λύκειο Χανίων [2008-2009 < Mathematica.gr], τον οποίο κι ευχαριστώ ιδιαίτερα για

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

z k z + n N f(z n ) + K z n = z n 1 2N

z k z + n N f(z n ) + K z n = z n 1 2N Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο

Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Διάλεξη 5: Συνέχεια συναρτήσεων και όρια στο άπειρο Ακριβής ορισμός του πλευρικού ορίου Έστω ότι το πεδίο ορισμού της f x περιέχει ένα διάστημα d, c στα αριστερά του c. Η f x έχει αριστερό όριο L στο c

Διαβάστε περισσότερα

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ (

ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ ( ΛΥΣΕΙΣ ΙΟΥΝΙΟΣ 0 ΘΕΜΑ Α Α. Θεωρία : Σχολικό βιβλίο σελίδα 53 Α. Θεωρία : Σχολικό βιβλίο σελίδα 9 Α3. Θεωρία : Σχολικό βιβλίο σελίδα 58 Α4.. α.σ, β.σ, γ.λ, δ.λ, ε.λ ΘΕΜΑ Β Β. Έστω yi 4 ( ) yi ( ) yi 4 (

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Δευτέρα Ιουνίου 9 Λύσεις των θεμάτων Έκδοση η (/6/9, 9:3) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου. Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.. Βρείτε τον μετασχηματισμό Fourier της συνάρτησης x, αν x xχ [,] (x) =, αν x < ή < x Λύση. Εειδή η συνάρτηση είναι τμηματικά συνεχής και μηδενίζεται έξω

Διαβάστε περισσότερα

Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη

Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. τότε η f(x) είναι παραγωγίσιμη Κεφάλαιο 2 ο ανάλυσης ερωτήσεις στις παραγώγους. 1. Αν υπάρχει το lim x x0 f(x) f(x 0 ) x x 0 τότε η f(x) είναι παραγωγίσιμη στο x 0 του Π.Ο της; : όχι. Πρέπει επιπλέον το όριο να είναι πραγματικός αριθμός.

Διαβάστε περισσότερα

ΔΕΟ 13 - ΠΛΗ 12 Όρια Συναρτήσεων. Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις

ΔΕΟ 13 - ΠΛΗ 12 Όρια Συναρτήσεων. Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις Συνέχεια και Παραγωγισιμότητα Θεώρημα Δεξιά Παράγωγος Αριστερή Παράγωγος Γωνιακό στρίψιμο Γωνιακό Σημείο

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΙΑ Παράδοση

2 η ΕΡΓΑΣΙΑ Παράδοση η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Πρακτικές και καινοτομίες στην εκπαίδευση και στην έρευνα. Χρόνης Χ. Παναγιώτης pachronis@gmail.com Περίληψη Στόχος της εργασίας αυτής είναι να καταδείξει

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 ) Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ. Έκδοση 01 Φεβρουάριος Ντάνος Γιώργος

Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ. Έκδοση 01 Φεβρουάριος Ντάνος Γιώργος Έκδοση 01 Φεβρουάριος 2018 Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ Ντάνος Γιώργος ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ΑΠΟΛΥΤΗ ΕΠΑΝΑΛΗΨΗ Copyright ΦΕΒΡΟΥΑΡΙΟΣ 2017 1 Περιεχόμενα Μέρος Α Α1. Συναρτήσεις.σελίδα

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί Μία συνάρτηση f λέγεται: 1 γνησίως αύξουσα σ' ένα υποσύνολο Β του πεδίου ορισμού της όταν για κάθε 1, Β με 1 < ισχύει ότι f( 1 ) < f( ) γνησίως φθίνουσα σ' ένα υποσύνολο Β

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 18 Φεβρουαρίου 005. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου

Διαβάστε περισσότερα

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΜΑΣ: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση) ΟΛΟΚΛΗΡΩΜΑΤΑ:. Να υπολογιστούν τα ολοκληρώματα: 5 d d csc cot d (β) Απάντησεις: C (β) ln C C. Να υπολογιστούν τα ορισμένα ολοκληρώματα: d csc( ) C C d d (β) /5

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ

I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του Δημητρίου Α. Ντρίζου Σχολικού Συμβούλου Μαθηματικών Στο κείμενο που ακολουθεί διατυπώνουμε μια σειρά προτάσεων, καθεμιά από τις ο- ποίες, αφού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΓΕΛ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 213-14 Ονοματεπώνυμο Τμήμα Θεώρημα Rolle Michel Rolle (1652 1719) Γάλλος μαθηματικός γεννήθηκε στο Ambert- Basse και πέθανε στο Παρίσι. Αυτοδίδακτος μαθηματικός σε αυτόν οφείλεται ο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ MICHEL ROLLE Μία μορφή του θεωρήματος Rolle δόθηκε από τον Ινδό αστρονόμο Bhaskara

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 9 Ιουνίου ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απαντήσεις Θεμάτων Επαναληπτικών Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο & Παλιό Σύστημα)

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE

Διαβάστε περισσότερα

1,2,3,7. i. f(x) = x x, x [1, 3] ii. f(x) = { x2 + 2x + 3, x < 1. iii. f(x) = x x. iv. f(x) = { x ln(x), 0 < x 1. cx 2 + 4x + 4, 0 x 1. Rolle.

1,2,3,7. i. f(x) = x x, x [1, 3] ii. f(x) = { x2 + 2x + 3, x < 1. iii. f(x) = x x. iv. f(x) = { x ln(x), 0 < x 1. cx 2 + 4x + 4, 0 x 1. Rolle. Πράξεις και ιδιότητες πραγματικών αριθμών. 1 Εισαγωγή - Οδηγίες Οι ασκήσεις είναι κατηγοριοποιημένες ανάλογα με το βαθμό δυσκολίας τους. Μία άσκηση που δεν είναι επισημασμένη είναι μία απλή εφαρμογή της

Διαβάστε περισσότερα