1 Elementary Functions

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Elementary Functions"

Transcript

1 Elementary Functions. Power of Binomials. Power series.0 + q =+q + qq + +! qq...q + + =! q If q is neither a natural number nor zero, the series converges absolutely for < and diverges for >. For =, the series converges for q> and diverges for q. For =,theseries converges absolutely for q>0. For =, it converges absolutely for q>0 and diverges for q<0. If q = n is a natural number, the series.0 is reduced to the finite sum.. FI II 5 n n. a + n = a n.. + = =. + = = 3. + / = / = = < ] see also. q + + = q + q qq 3 qq q 5 ] !! 3! <, q is a real number ] AD

2 6 The Eponential Function.. + q q q q... q ] + + =+ +! q q 3... q ] +q + q + +! <, q isarealnumber ] AD635.. Series of rational fractions... = + = = + < ] AD > ] AD The Eponential Function. Series representation.. e =!. a ln a =! 3. e =!. e = lim + n n. e + =.3. e e = e.5 n +! e = + + +! B! !. e sin =+ +! 3!. e cos = e + 5! 85 5!! ! 6! +... <π] FI II 50 AD AD ! 7! AD 660.5

3 .3 Series of eponentials 7 3. e tan =+ +! AD !! 5!.6. e arcsin =+ +! AD !!. e arctan =+ +! 3 3! AD 660.8!.7. π eπ + e π e π e π =. π e π e π = = = + cf.. 3 AD cf.. 3 AD Functional relations.. a = e ln a. a log a = a log a =.. e =cosh +sinh. e i =cos + i sin.3 ] e a e b =a bep a + b + a b ] π MO 6.3 Series of eponentials.3 a = a a>and<0or0<a<and>0].3. tanh =+ e >0]. sech = e + 3. cosech =. sin =ep e + n= ] cos n n >0] >0] 0 π]

4 8 Trigonometric and Hyperbolic Functions.3.3. Trigonometric and Hyperbolic Functions.30 Introduction The trigonometric and hyperbolic sines are related by the identities sinh = i sini, sin = i sinhi. The trigonometric and hyperbolic cosines are related by the identities cosh =cosi, cos =coshi. Because of this duality, every relation involving trigonometric functions has its formal counterpart involving the corresponding hyperbolic functions, and vice versa. In many though not all cases, both pairs of relationships are meaningful. The idea of matching the relationships is carried out in the list of formulas given below. However, not all the meaningful pairs are included in the list..3 The basic functional relations.3. sin = e i e i i = i sinhi. sinh = e e = i sini 3. cos = e i + e i =coshi. cosh = e + e =cosi 5. tan = sin cos = i tanhi 6. tanh = sinh cosh = i tani 7. cot = cos sin = tan = i cothi 8. coth = cosh sinh = = i cot i tanh.3. cos +sin =

5 .3 The basic functional relations 9. cosh sinh =.33. sin ± y =sincos y ± sin y cos. sinh ± y =sinhcosh y ± sinh y cosh 3. sin ± iy =sincosh y ± i sinh y cos. sinh ± iy =sinhcos y ± i sin y cosh 5. cos ± y = cos cos y sin sin y 6. cosh ± y =coshcosh y ± sinh sinh y 7. cos ± iy = cos cosh y i sin sinh y 8. cosh ± iy =coshcos y ± i sinh sin y 9. tan ± tan y tan ± y = tan tan y 0. tanh ± tanh y tanh ± y = ± tanh tanh y. tan ± i tanh y tan ± iy = i tan tanh y. tanh ± i tan y tanh ± iy = ± i tanh tan y.3. sin ± sin y =sin ± ycos y. sinh ± sinh y =sinh ± ycosh y 3. cos +cosy = cos + ycos y. cosh +coshy =cosh + ycosh y 5. cos cos y =sin + ysin y 6. cosh cosh y =sinh + ysinh y 7. sin ± y tan ± tan y = cos cos y sinh ± y 8. tanh ± tanh y = cosh cosh y 9. sin ± cos y = ±sin + y ± π ] sin y ± π ] = ±cos + y π ] cos y π ] =sin ± y ± π ] cos y π ]

6 30 Trigonometric and Hyperbolic Functions a sin ± b cos = a + ] b b sin ± arctan a a. ±a sin + b cos = b + a a ] cos arctan b b a 0]. a sin ± b cos y = q + r sin ± y + arctan q q =a + bcos b 0] ] r q ] y, r =a bsin s s ] 3. a cos + b cos y = t + cos t y + arctan t 0] t ] t t = s + cos y arctan s 0] s s s =a bsin ± y.35. sin sin y =sin + ysin y = cos y cos. sinh sinh y =sinh + ysinh y =cosh cosh y 3. cos sin y =cos + ycos y = cos y sin. sinh +cosh y =cosh + ycosh y =cosh +sinh y.36. cos + i sin n =cosn + i sin n n is an integer]. cosh +sinh n =sinhn +coshn n is an integer].37. sin = ± cos ] y ], t =a + bcos q 0] ] ± y. sinh = ± cosh 3. cos = ± + cos. cosh = cosh + 5. tan = cos = sin sin + cos

7 .3 Trigonometric and hyperbolic functions: epansion in multiple angles 3 6. tanh = cosh sinh = sinh cosh + The signs in front of the radical in formulas.37,.37, and.37 3aretaensoastoagree with the signs of the left-hand members. The sign of the left hand members depends in turn on the value of..3 The representation of powers of trigonometric and hyperbolic functions in terms of functions of multiples of the argument angle.30. sin n = n { n. sinh n = n n n n { n n n 3. sin n = n n. sinh n = n n { 5. cos n = n n { 6. cosh n = n n 7. cos n = n 8. cosh n = n n n+ cos n + n n n+ n n n n cos n + n n cosh n + cosh n + } n KR 56 0, n } n n sinn KR 56 0, sinhn } n KR 56 0, n } n n cosn KR 56 0, 3 coshn Special cases.3. sin = cos +. sin 3 = sin 3 +3sin 3. sin = cos cos sin 5 = sin 5 5sin3 +0sin 6

8 3 Trigonometric and Hyperbolic Functions.3 5. sin 6 = cos 6 +6cos 5 cos sin 7 = sin 7 +7sin5 sin 3 +35sin 6.3. sinh = cosh. sinh 3 = sinh 3 3sinh 3. sinh = cosh cosh sinh 5 = sinh 5 5sinh3 +0sinh 6 5. sinh 6 = cosh 6 6cosh +5cosh sinh 7 = sinh 7 7sinh5 +sinh3 +35sinh cos = cos +. cos 3 = cos cos 3. cos = cos +cos cos 5 = cos 5 +5cos3 +0cos 6 5. cos 6 = cos 6 +6cos +5cos cos 7 = cos 7 +7cos5 +cos3 +35cos 6.3. cosh = cosh +. cosh 3 = cosh 3 +3cosh 3. cosh = cosh + cosh cosh 5 = cosh cosh 3 +0cosh 6 5. cosh 6 = cosh cosh +5cosh cosh 7 = cosh cosh 5 +cosh3 +35cosh 6

9 .33 Trigonometric and hyperbolic functions: epansion in powers The representation of trigonometric and hyperbolic functions of multiples of the argument angle in terms of powers of these functions.33 n n. 7 sin n = n cos n sin cos n 3 sin 3 + cos n 5 sin 5...; 3 5 n =sin n cos n n 3 cos n 3 n 3 n + n 5 cos n 5 n 7 cos n sinh n = n+/] =sinh 3. cos n =cos n. 3 cosh n = n /] n sinh cosh n + n n cos n sin + = n cos n n n 3 cos n + n n n n 7 cos n n/] n sinh cosh n n cosh n n cos n sin...; n 3 n 5 cos n n/] = n cosh n + n n n cosh n.33 {. sin n =ncos sin n n sin 3 n } + sin ! 5! { = n cos n sin n n n 3 sin n 3! n 3n + n 5 sin n 5! } n n 5n 6 n 7 sin n ! AD 3.75 AD 3.75 AD 3.7 AD 3.73

10 3 Trigonometric and Hyperbolic Functions.333. sinn =n {sin n sin 3 3! n ] n 3 ] } + sin ! { = n n sin n n n sin n 3! n n + n 6 sin n 5! } n n 5n 6 n 8 sin n ! 3. cos n = n! sin + n n! = n { n sin n n! n 3 sin n sin n n n 6! sin AD 3.7 AD 3.7 AD nn 3 n 5 sin n! } nn n 5 n 7 sin n ! AD 3.73a. cosn =cos { n sin! n ] n 3 ] } + sin...! { = n cos n sin n n 3 n sin n! n n 5 + n 6 sin n 6! } n 5n 6n 7 n 8 sin n ! AD 3.7 AD 3.7 By using the formulas and values of.30, we can write formulas for sinh n, sinhn, coshn, and coshn that are analogous to those of.33, just as was done in the formulas in.33. Special cases.333. sin =sincos. sin 3 =3sin sin 3 3. sin =cos sin 8sin 3. sin 5 =5sin 0 sin 3 +6sin 5 5. sin 6 =cos 6sin 3 sin 3 +3sin 5

11 .337 Trigonometric and hyperbolic functions: epansion in powers sin 7 =7sin 56 sin 3 + sin 5 6 sin sinh =sinhcosh. sinh 3 =3sinh +sinh 3 3. sinh =cosh sinh +8sinh 3. sinh 5 =5sinh +0sinh 3 +6sinh 5 5. sinh 6 =cosh 6sinh +3sinh 3 +3sinh 5 6. sinh 7 =7sinh +56sinh 3 + sinh 5 +6sinh cos = cos. cos 3 = cos 3 3cos 3. cos = 8 cos 8cos +. cos 5 =6cos 5 0 cos cos 5. cos 6 =3cos 6 8 cos +8cos 6. cos 7 =6cos 7 cos 5 +56cos 3 7cos.336. cosh =cosh. cosh 3 =cosh 3 3cosh 3. cosh =8cosh 8cosh +. cosh 5 =6cosh 5 0 cosh 3 +5cosh 5. cosh 6 =3cosh 6 8 cosh +8cosh 6. cosh 7 =6cosh 7 cosh 5 +56cosh 3 7cosh.337. cos 3 cos 3 = 3tan. cos cos = 6tan +tan 3. cos 5 cos 5 = 0 tan +5tan. cos 6 cos 6 = 5 tan +5tan tan 6 5. sin 3 cos 3 =3tan tan3 6. sin cos =tan tan3

12 36 Trigonometric and Hyperbolic Functions.3 7. sin 5 cos 5 =5tan 0 tan3 +tan 5 8. sin 6 cos 6 =6tan 0 tan3 +6tan 5 9. cos 3 sin 3 =cot3 3cot 0. cos sin =cot 6cot +. cos 5 sin 5 =cot5 0 cot cot. cos 6 sin 6 =cot6 5 cot +5cot 3. sin 3 sin 3 = 3 cot. sin sin = cot3 cot 5. sin 5 sin 5 = 5 cot 0 cot + 6. sin 6 sin 6 = 6 cot5 0 cot cot.3 Certain sums of trigonometric and hyperbolic functions n n n n n sin + y =sin sinh + y =sinh cos + y = cos cosh + y =cosh + n y + n y + n y sin ny cosec y + n y sinh ny sinh y sin ny cosec y sinh ny sinh y cos + y =sin + n y sin ny sec y n sin + y =sin + n y + π sin ny + π sec y AD 36.8 AD 36.9 JO 0 AD 0a

13 .35 Sums of powers of trigonometric functions of multiple angles 37 Special cases.3. n. 0 n sin =sin n + sin n cosec cos =cos n + sin n cosec + =cos n n + sin cosec = + sin n + sin AD 36. AD 36. n sin =sin n cosec AD 36.7 n cos = sin n cosec JO 07 n cos = + n cos n+ cos n + n+ sin n sin = cos n cos 3 + n sin =sinn cos n +sinn cos +sin cosec AD 36. AD 36.0 JO n sin π n =cot π n n sin π n n = + cos nπ sin nπ n cos π n n = + cos nπ +sinnπ AD 36.9 AD 36.8 AD Sums of powers of trigonometric functions of multiple angles.35. n sin = n +sin sinn +]cosec = n cosn +sin n sin AD 36.3

14 38 Trigonometric and Hyperbolic Functions n cos = n + cos n sinn +cosec = n cosn +sin n + sin n sin 3 = 3 n cos 3 = 3 n + sin sin n cosec 3n + sin sin 3n cosec 3 n + cos sin n cosec + 3n + cos sin 3n cosec 3 AD 36.a JO 0 JO a n sin = 3n cosn +sin n cosec + cos n +sin n cosec ] JO 8 n cos = 3n +cosn +sin n cosec + cos n +sin n cosec ] JO n sin n sin = sin. n n cos n sin cos = n sin n cos n sin sin AD 36.5 AD n p sin = p sin pn sin n + p n+ sinn p cos + p AD 36.a n p sinh = p sinh pn sinh n + p n+ sinhn p cosh + p n p cos = p cos pn cos n + p n+ cosn p cos + p AD 36.3a n p cosh = p cosh pn cosh n + p n+ coshn p cosh + p JO Sums of products of trigonometric functions of multiple angles.36.. n sin sin + = n +sin sin n +]cosec JO n sin sin + = n cos cosn +3sin n cosec JO 6

15 .38 Sums leading to hyperbolic tangents and cotangents n sin cos y =sin ny + n + sin ny n + n +y sin cosec +y ny sin cosec y JO n n sin = n sin n sin AD 36.5 sec =cosec n cosec n AD Sums of tangents of multiple angles.37.. n n tan = n cot cot AD 36.6 n tan = n+ 3 n + cot n cot n AD Sums leading to hyperbolic tangents and cotangents.38.. n n tanh + n sin + n tanh + tan n π tanh n sin π n + tanh π tan n π =tanhn JO 0a =cothn tanh +coth JO 03 n

16 0 Trigonometric and Hyperbolic Functions n tanh n +sin + n + π + tanh + tan n + π tanh n n +sin π n + tanh + π tan n + =tanhn + tanh n + =cothn + coth n + JO 0 JO n = n tanh n JO 06 + sin n π + sinh tanh. n =ncoth n coth JO 07 π sin n + sinh tanh 3.. n n + =n +tanh + sin n + π + sinh tanh tanh n n + =n +coth coth π sin n + + sinh tanh JO 08 JO 09

17 .395 Representing sines and cosines as finite products.39 The representation of cosines and sines of multiples of the angle as finite products.39. sin n = n sin cos. cos n = n 3. sin n = n sin. cos n =cos n n n sin π sin n sin sin π n sin sin π n is even] JO 568 n sin n is even] JO 569 π sin n.39 n. sin n = n sin + π n. cos n = n n.393. n n..39 n cos + n π sin + n π = sin + n π n is odd] JO 570 n is odd] JO 57a = cos n n odd] n = n ] n cos n n even] n n sin n n odd] JO 58 JO 59 JO 53 = n n cos n n even] JO 5 { y cos α + π } + y = n n y n cos nα + y n JO 573 n.395 n {. cos n cos ny = n cos cos y + π } n JO 573

18 Trigonometric and Hyperbolic Functions.396 n. cosh n cos ny = n { cosh cos y + π } n JO n n n n cos πn + = n π cos n + + = n+ π +cos n + + = n+ + KR KR KR π cos + = n + KR n. The epansion of trigonometric and hyperbolic functions in power series.. sin =. sinh = 3. cos = + +! + +!!. cosh =! ] 5. tan = B < π! 6. tanh = = B! ] < π 7. cot = FI II 53 B <π ] FI II 53a! 8. coth = = + B! <π ] FI II 5a

19 . Trigonometric and hyperbolic functions: power series epansion 3 9. sec = E! 0. sech = =+. cosec = + B! E. cosech = = ] < π! ] < π CE 330a CE 330 <π ] CE 39a B! <π ] JO 8.. sin = +!. cos = 3. sin 3 =. cos 3 = +! JO 5a JO ! + JO 5aa 3 +3! JO 3a.3. sinh =cosec +!. cosh =sec +sec 3. sinh =sec! /]!. cosh =cosec /]! JO 508 JO 507 JO 50 JO cos n ln + ] + = n +0 n +... n + ] + +! < ] AD 656.

20 Trigonometric and Hyperbolic Functions.. sin n ln + ] + = n n n + + n n + ] + +! < ] AD 656. Power series for ln sin, ln cos, and lntan see.58.. Epansion in series of simple fractions.. tan π = π. 0 tanh π = π 3. cot π = π + π. coth π = π + π 5. tan π =.. sec π = π BR* 9, AD = π + π = 0 + cf..7 AD 695., JO 50a 3... ] JO 50 + AD 695.3a. sec π = π { } cosec π = π + π. cosec π = π 5. + cosec 6. cosec π = π.3 = = = JO 5a see also.7 AD 695.a = π + π + π + JO 6 JO 9 JO 50b π π m cosec m + π m cot π m = m JO 77

21 .39 Representation in the form of an infinite product 5.3 Representation in the form of an infinite product.3. sin =. sinh = 3. cos =. cosh = π + π + π + + π EU EU EU EU.3. cos cos y = y sin y. cosh cos y = +.33 cos π sin π = y sin y + π + y + + ] π + y π y π y AD 653. AD 653. BR* 89.3 cos = π ] π + + MO 6 π sin π + a.35 = + a + MO 6 sin πa a a + a.36 sin π ] sin πa = MO 6 a = sin 3.37 sin = ] MO 6 + π = cosh cos a ].38 = + MO 6 cos a π + a.39. sin =. sin = cos < ] AD 65, MO 6 = 3 sin 3 ] MO 6

22 6 Trigonometric and Hyperbolic Functions...5 Trigonometric Fourier series sin cos = π 0 <<π] FI III 539 = ln cos ] 0 <<π] FI III 530a, AD 68 sin cos = =ln cos π <<π] FI III 5 π <<π] FI III sin cos = π sign π <<π] FI III 5 = ln cot 0 <<π] sin = π ln tan + π ] <<π. 0 cos = π = π π ] <<π ] π <<3π BR* 68, JO 66, GI III95 BR* 68, JO 68a BR* 68, JO cos π n = n n πn n! n = n π n B n n! n B n ρ 0, ρ = ] CE 30, GE 7. sin π n+ = n n πn+ n +! π n+ n+ = n n +! B n+ n + B n + ρ 0 <<; ρ = ] CE 30

23 .5 Trigonometric Fourier series cos cos sin 3 cos sin 5 = π 6 π + sin + + cos + + = π = π 6 π + 3 = π 90 π + π3 8 = π 90 π π π] FI III 57 π π] FI III 5 0 π] =sin π sin sin cos ln sin π =cos sin +sin ln sin 0 π] AD π] AD π] BR* 68, GI III 90 0 π] BR* 68 sin + =sin cos + + cos sin ln MO 3 cos + =cos cos + sin + cos ln MO 3 sin + + = π π π ] = π π π 3 ] π cos = π π cos + = π 0 sin π ] sin + α = π sinh απ sinh απ MO 3 π π] FI III 56 JO 59 0 <<π] BR* 57, JO cos + α = π cosh απ α sinh απ α 0 π] BR* 57, JO 0

24 8 Trigonometric and Hyperbolic Functions cos + α sin + α = π sinh α sinh απ = π cosh α α sinh απ α π π] FI III 56 sin sin {αm +π ]} = π α sinαπ π <<π] FI III, 56 if =mπ, then ] =0 mπ < < m +π, α not an integer] MO 3 cos α = α π cos α {m +π }] α sin απ mπ m +π, α not an integer] MO 3 sin sinαmπ ] = π if =m +π, then ] =0, α sinαπ m π <<m +π, α not an integer] FI III 55a 8. cos α = α π cosαmπ ] α sin απ m π m +π, α not an integer] FI III 55a 9. n= e inα n β + γ = π e iβα π sinhγα+e iβα sinh γπ α] γ coshπγ cosπβ 0 α π] cos = π 8 cos 3 cos π π ] BR* 56, GI III 89 p p sin sin = p cos + p p < ] FI II 559 p p cos cos = p cos + p p < ] FI II p p cos = p cos + p p < ] FI II 559a, MO 3

25 .9 Trigonometric Fourier series 9.8. p sin =arctan p sin p cos 0 <<π, p ] FI II p cos p sin = ln p cos + p 0 <<π, p ] FI II 559 = arctan p sin p 0 <<π, p ] JO 59. p cos = ln +p cos + p p cos + p 0 <<π, p ] JO p sin = ln +p sin + p p sin + p 0 <<π, p ] JO 6 6. p cos = arctan p cos p 0 <<π, p ] JO p sin! p cos! = e p cos sin p sin = e p cos cos p sin p ] JO 86 p ] JO 85 Let S = cos + and C = sin. 3. n n a Sn =π Ca cotπasa] 0 <<π, a 0, ±, ±,...] n=. n= 5. n= n a Cn = a π Sa cotπaca] a 0 π, a 0, ±, ±,...] n n n a Sn =π cosecπasa π <<π, a 0, ±, ±,...]

26 50 Trigonometric and Hyperbolic Functions.5 6. n= 7. n= 8. n= 9. n= 0. n= n n Cn = a a + π cosecπaca π <<π, a 0, ±, ±,...] a n πa ] n a Sn =π Ca+tan Sa n a Cn = π Sa tan a n n a Sn = π πa a sec Sa n n πa n a Cn =π sec Ca πa Ca 0 <<π, a 0, ±, ±,...] ] 0 π, a 0, ±, ±,...] π π ], a 0, ±, ±,... π π, a 0, ±, ±,... ] Fourier epansions of hyperbolic functions ]. sinh =cos sin + JO 50 +! ]. cosh =cos +cos sin JO 503!.5. sinh cos θ=sec sin θ. cosh cos θ=sec sin θ 3. sinh cos θ=cosec sin θ. cosh cos θ=cosec sin θ + cos +θ +! cos θ! sin θ! + sin +θ +! < ] JO 39 < ] JO 390 <, sin θ 0 ] JO 393 <, sin θ 0 ] JO 39

27 .80 Lobachevsiy s Angle of Parallelism 5.6 Series of products of eponential and trigonometric functions.6. e t sin = sin cosh t cos e t sinh t cos = cosh t cos sin sin y. e cos ϕ cos sin ϕ =. e cos ϕ sin sin ϕ = e t = ln n=0 n= n cos nϕ n! n sin nϕ n! sin + y sin y t >0] MO 3 t >0] MO 3 +sinh t MO +sinh t < ] AD 676. < ] AD Series of hyperbolic functions sinh! cosh! = e cosh sinh sinh. JO 395 = e cosh cosh sinh. JO 39 m +π + 3 tanh + tanh ] m +π = π3 6 p p sinh sinh = p p cosh + p < ] JO 396 p cosh = p cosh p cosh + p p < ] JO 397a.8 Lobachevsiy s Angle of Parallelism Π.80 Definition.. Π = arccot e = arctan e 0] LO III 97, LOI 0

28 5 Trigonometric and Hyperbolic Functions.8. Π =π Π <0] LO III 83, LOI 93.8 Functional relations. sin Π = LO III 97 cosh. cos Π =tanh LO III tan Π = LO III 97 sinh. cot Π =sinh LO III sin Π + y = 6. cos Π + y = sin ΠsinΠy + cos ΠcosΠy cos Π + cos Πy + cos ΠcosΠy.8 Connection with the Gudermannian. gd =Π π Definite integral of the angle of parallelism: cf..58 and The hyperbolic amplitude the Gudermannian gd LO III 97 LO III Definition. dt. gd = 0 cosh t = arctan e π gd dt gd. = cos t =lntan + π 0 JA JA.9 Functional relations.. cosh = secgd AD 33., JA. sinh = tangd AD 33., JA π 3. e = secgd +tangd =tan + gd = +singd AD 33.5, JA cosgd. tanh = singd AD 33.3, JA 5. tanh =tan gd AD 33., JA 6. arctan tanh = gd AD 33.6a.9 If γ =gd, theni =gdiγ JA.93 Series epansion.. gd = + tanh+ JA

29 .53 Series representation 53. = + tan+ gd 3. gd = =gd + gd The Logarithm + gd 5.5 Series representation + JA + 6gd ln + = = ln = =. ln = 3. ln = ɛ ln = lim ɛ 0 ɛ gd < π ] < ] ] = 0 < ] = 0 <] ] + JA JA AD ln + = < ] FI II. ln + = > ] AD ln. ln 5. = or>] JO 88a = ln = + <] JO 88b <] JO 0

30 5 The Logarithm ln = 3 ln n= n = ln cos ϕ + =.55. ln + + cos ϕ ; see.63,.6,.6,.66 < ] JO 88e <] AD 65. ln + + =arcsinh, cos ϕ ] MO 98, FI II =ln ! =ln! ] JO 9. ln + + =ln =ln + +!!! + + ] AD ln + + =!! + +! ] JO 93 ln =! +! + ] JO {ln ± } = 6 {ln + }3 = ln + ln =. + n= n= n= { + ln + } +ln n n + n+ n n m= = + m < ] JO 86, JO 85 < ] AD 6. < ] JO <<] AD 65.

31 .5 Series of logarithms cf { ln + arctan } = + arctan ln = arctan ln + = n= n n n= + + n 0 < ] AD 65.3 < ] BR* 63 ] AD ln sin =ln B =ln +! 0 <<π] AD 63.a. 3 ln cos = B = =! sin ] < π 3. ln tan =ln , =ln + + B! 0 << π ] FI II 5 AD 63.3a.5 Series of logarithms cf ln π =lncos ln π =lnsin ln π ] <<π 0 <<π]

32 56 The Inverse Trigonometric and Hyperbolic Functions.6.6 The Inverse Trigonometric and Hyperbolic Functions.6 The domain of definition The principal values of the inverse trigonometric functions are defined by the inequalities:. π arcsin π ; 0 arccos π ] FI II 553. π < arctan <π ; 0 < arccot <π <<+ ] FI II Functional relations.6 The relationship between the inverse and the direct trigonometric functions.. arcsin sin = nπ = +n +π nπ π nπ + π ] n +π π n +π + π ]. arccos cos = nπ nπ n +π] = +n +π n +π n +π] 3. arctan tan = nπ nπ π <<nπ+ π ]. arccot cot = nπ nπ < < n +π].6 The relationship between the inverse trigonometric functions, the inverse hyperbolic functions, and the logarithm.. arcsin z = i ln iz + z = i arcsinhiz. arccos z = z i ln + z = i arccosh z 3. arctan z = +iz ln i iz = i arctanhiz. arccot z = iz ln i iz + = i arccothiz 5. arcsinh z =ln z + z + = i arcsiniz 6. arccosh z =ln z + z = i arccos z 7. arctanh z = 8. arccoth z = ln +z z = i arctaniz ln z + z = i arccot iz

33 .6 Functional relations 57 Relations between different inverse trigonometric functions.63. arcsin + arccos = π. arctan + arccot = π NV 3 NV 3.6. arcsin = arccos 0 ] NV 7 5 = arccos 0] NV 6. arcsin =arctan < ] 3. arcsin = arccot 0 < ] = arccot π <0] NV 9 0. arccos =arcsin 0 ] = π arcsin 0] NV arccos =arctan = π +arctan 6. arccos = arccot 7. arctan =arcsin + 8. arctan = arccos + = arccos + 0 < ] <0] NV 8 8 <] NV 6 NV 6 3 0] 0] NV arctan = arccot >0] = arccot π <0] NV arccot =arcsin + = π arcsin +. arccot = arccos + >0] <0] NV 9 NV 6

34 58 The Inverse Trigonometric and Hyperbolic Functions.65. arccot =arctan = π +arctan >0] <0] NV arcsin +arcsiny =arcsin y + y y 0or + y ] = π arcsin y + y >0, y > 0and + y > ] = π arcsin y + y <0, y < 0and + y > ]. arcsin +arcsiny = arccos y y = arccos y y 0, y 0] NV 5, GI I 880 <0, y < 0] NV arcsin +arcsiny =arctan y + y y y y 0or + y < ] =arctan y + y y y + π >0, y > 0and + y > ] =arctan y + y y y π <0, y < 0and + y > ]. arcsin arcsin y =arcsin y y y 0or + y ] = π arcsin y y >0, y < 0and + y > ] = π arcsin y y <0, y > 0and + y > ] 5. arcsin arcsin y = arccos y + y = arccos y + y y > y] NV 56 NV 55 <y] NV arccos + arccos y = arccos y y =π arccos y y 7. arccos arccos y = arccos y + y = arccos y + y + y 0] + y<0] NV 57 3 y] <y] NV 57

35 .67 Functional relations arctan +arctany =arctan + y y = π +arctan + y y = π +arctan + y y 9. arctan arctan y =arctan y +y = π +arctan y +y = π +arctan y +y y < ] >0, y > ] <0, y > ] y > ] >0, y < ] <0, y < ] NV 595, GI I 879 NV arcsin =arcsin ] = π arcsin ] < = π arcsin < ] NV 6 7. arccos = arccos 0 ] =π arccos <0] NV arctan =arctan < ] =arctan + π >] =arctan π < ] NV arctan +arctan = π = π >0] <0] GI I 878. arctan +arctan + = π > ] = 3 π < ] NV 6, GI I 88

36 60 The Inverse Trigonometric and Hyperbolic Functions arcsin = π arctan + ] = arctan ] = π arctan ] NV 65. arccos + = arctan 0] = arctan 0] NV π arctan tan π = E GI Relations between the inverse hyperbolic functions.. arcsinh = arccosh +=arctanh + JA. arccosh =arcsinh = arctanh 3. arctanh =arcsinh = arccosh = arccoth. arcsinh ± arcsinh y =arcsinh +y ± y + 5. arccosh ± arccosh y = arccosh y ± y 6. arctanh ± arctanh y =arctanh ± y ± y JA JA JA JA JA.6 Series representations.6. arcsin = π arccos = ! =! + + = F, ; 3 ; ] FI II 79. arcsinh = ; =!! + + = F, ; 3 ; ] FI II 80

37 .65 Series representations 6.6. arcsinh =ln ! =ln +!. arccosh =ln.63!!. arctan = = +. arctanh = = + + ] AD 680.a ] AD 680.3a ] FI II 79 < ] AD arctan = =! +! + F +, ; 3 ; + + < ] AD 6.3. arctan = π = π + + AD arcsec = π = π! +! + = π F, ; 3 ; > ]. arcsin =! + +! + 3. arcsin 3 = 3 + 3! 5! ! 7! 3 5 AD 6.5 ] AD 6., GI III 5a ] BR* 88, AD 6., GI III 53a

38 6 The Inverse Trigonometric and Hyperbolic Functions arcsinh = arcosech =!! + ] AD arccosh =arcsech =ln!! 0 < ] AD arcsinh = arcosech =ln + +!! 0 < ] AD 680.7a. arctanh = arccoth = + + > ] AD tanh π/ n+3 = πn+3 n j j n j+ Bj B n j+3 j!n j +! j= + n n+ B n+ n +!] sech π/ n+ = πn+ n n+3 j= n =0,,,..., j B j B n j j!n j! + B n n! + n Bn n]! n =,,..., The summation term on the right is to be omitted for n =. See page iii for the definition of B r.

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Trigonometry Functions (5B) Young Won Lim 7/24/14

Trigonometry Functions (5B) Young Won Lim 7/24/14 Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Comparison of Numerical Performance of Mathematica 11.2 and Maple

Comparison of Numerical Performance of Mathematica 11.2 and Maple Comparison of Numerical Performance of Mathematica. and Maple 07. Summary Category Tests Median Mathematica speed Real data operations 0 s faster Real data operations (manual type override) 0 s faster

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim. Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ

Διαβάστε περισσότερα

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets System of Equations and Matrices 3 Matrix Row Operations: MATH 41-PreCalculus Switch any two rows. Multiply any row by a nonzero constant. Add any constant-multiple row to another Even and Odd functions

Διαβάστε περισσότερα

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx. ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

1 Σύντομη επανάληψη βασικών εννοιών

1 Σύντομη επανάληψη βασικών εννοιών Σύντομη επανάληψη βασικών εννοιών Μερικές χρήσιμες ταυτότητες + r + r 2 + + r n = rn r r + 2 + 3 + + n = 2 n(n + ) 2 + 2 2 + 3 2 + n 2 = n(n + )(2n + ) 6 Ανισότητα Cauchy Schwarz ( n ) 2 ( n x i y i i=

Διαβάστε περισσότερα

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ)

ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ 1(ΑΝΑΛΥΣΗ) ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ- ΦΥΛΛΑΔΙΟ (ΑΝΑΛΥΣΗ) Ι. Οι τριγωνομετρικές συναρτήσεις και οι αντίστροφές τους. Η συνάρτηση = sin. Η συνάρτηση sin : -, [,], = sin είναι, αφού (sin ) = cos >, για κάθε -,. Άρα

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers 2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

1999 by CRC Press LLC

1999 by CRC Press LLC Plarikas A. D. Trignmetric and Hyperblic Fnctins The Handbk f Frmlas and Tables fr Signal Prcessing. Ed. Aleander D. Plarikas Bca Ratn: CRC Press LLC,999 999 by CRC Press LLC 43 Trignmetry and Hyperblic

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

10.4 Trigonometric Identities

10.4 Trigonometric Identities 770 Foundations of Trigonometry 0. Trigonometric Identities In Section 0.3, we saw the utility of the Pythagorean Identities in Theorem 0.8 along with the Quotient and Reciprocal Identities in Theorem

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Formulario di Trigonometria

Formulario di Trigonometria Formulario di Trigonometria Indice degli argomenti Formule fondamentali Valori noti delle funzioni trigonometriche Simmetrie delle funzioni trigonometriche Relazioni tra funzioni goniometriche elementari

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x) Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

CORDIC Background (4A)

CORDIC Background (4A) CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS Werner Rosenheinrich 191016 Ernst - Abbe - Hochschule Jena First variant: 40900 University of Applied Sciences Germany TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS Integrals of the type J 0

Διαβάστε περισσότερα

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation GegenbauerC3General Notations Traditional name Gegenbauer function Traditional notation C Ν Λ z Mathematica StandardForm notation GegenbauerCΝ, Λ, z Primary definition 07.4.0.000.0 C Λ Ν z Λ Π Ν Λ F Ν,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Η ΜΑΛΑΞΗ ΚΑΙ ΤΑ ΕΙ Η ΤΗΣ ΣΤΟ ΙΝΣΤΙΤΟΥΤΟ ΑΙΣΘΗΤΙΚΗΣ

Η ΜΑΛΑΞΗ ΚΑΙ ΤΑ ΕΙ Η ΤΗΣ ΣΤΟ ΙΝΣΤΙΤΟΥΤΟ ΑΙΣΘΗΤΙΚΗΣ ΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΑΙΣΘΗΤΙΚΗΣ ΚΑΙ ΚΟΣΜΕΤΟΛΟΓΙΑΣ Η ΜΑΛΑΞΗ ΚΑΙ ΤΑ ΕΙ Η ΤΗΣ ΣΤΟ ΙΝΣΤΙΤΟΥΤΟ ΑΙΣΘΗΤΙΚΗΣ Σταµάτη Κωνσταντίνα Φεβρουάριος 2012 ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION) . 1 (INTERPOLATION) A a 1x1 [ ] Sin[ A] [ Sin[ a]], Cos[ A] [ Cos[ a]], Tan[ A] [ Tan[ a]], Cot[ A] [ Cot[ a]]. a x + yi x, y R Sin[ a] Cosh[ y] Sin[ x] + Cos[ x] Sinh[ y] i Cos[ a] Cos[ x] Cosh[ y] Sin[

Διαβάστε περισσότερα

Jörg Gayler, Lubov Vassilevskaya

Jörg Gayler, Lubov Vassilevskaya Differentialrechnung: Aufgaben Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Erste Ableitung der elementaren Funktionen......................... Ableitungsregeln......................................

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

TABLES OF SOME INDEFINITE INTEGRAL OF BESSEL FUNCTIONS OF INTEGER ORDER

TABLES OF SOME INDEFINITE INTEGRAL OF BESSEL FUNCTIONS OF INTEGER ORDER Werner Rosenheinrich 0511017 Ernst - Abbe - Hochschule Jena First variant: 40900 University of Applied Sciences Departement of Basic Sciences Germany TABLES OF SOME INDEFINITE INTEGRAL OF BESSEL FUNCTIONS

Διαβάστε περισσότερα

Formula for Success a Mathematics Resource

Formula for Success a Mathematics Resource A C A D E M I C S K I L L S C E N T R E ( A S C ) Formula for Success a Mathematics Resource P e t e r b o r o u g h O s h a w a Contents Section 1: Formulas and Quick Reference Guide 1. Formulas From

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Answers to Selected Exercises

Answers to Selected Exercises Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795) List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7 Mensuration Surface area of shere

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Cable Systems - Postive/Negative Seq Impedance

Cable Systems - Postive/Negative Seq Impedance Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. BetaRegularized Notations Traditional name Regularized incomplete beta function Traditional notation I z a, b Mathematica StandardForm notation BetaRegularizedz, a, b Primary definition Basic definition

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα