Vježba 1. Predstavljanje multimedijalnih signala u MATLAB-u

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vježba 1. Predstavljanje multimedijalnih signala u MATLAB-u"

Transcript

1 Univerzitet u Banjaluci Elektrotehnički fakultet Katedra za opštu elektrotehniku Multimedijalni sistemi Vježba 1. Predstavljanje multimedijalnih signala u MATLAB-u Uvod u MATLAB MATLAB je jezik za naučna i inženjerska izračunavanja. Počevši od ove osnovne funkcionalnosti MATLAB je razvijen u sistem koji pored izračunavanja omogućava i vizuelizaciju, programiranje, povezivanje sa programima napisanim u Javi, C-u ili Fortranu. Posebnu snagu MATLAB-u daju biblioteke funkcija specijalizovane za rješavanje pojedinih problema (toolboxes). Funkcionalnosti MATLAB-a se može pristupiti korištenjem grafičkog integrisanog razvojnog okruženja. Prednosti korištenja MATLAB-a su: - jednostavna sintaksa lako izvršavanje numeričkih izračunavanja, - jednostavna vizuelizacija rezultata, - optimizovan za rad sa matricama i vektorima, - na raspolaganju su brojne biblioteke za rješavanje praktičnih problema, - podrška različitim multimedijalnim formatima, - grafičko integrisano razvojno okruženje. Sa druge strane, loše strane MATLAB-a se uglavnom odnose na činjenicu da je MATLAB interpretiran jezik što može rezultirati sporim izvršavanjem programa. Srećom, dobrom programerskom praksom se ovo u velikoj mjeri može izbjeći čime se dobija kraće ukupno vrijeme razvoja. Druga loša strana MATLAB-a je njegova cijena. Uvodne napomene, vektori, matrice MATLAB se pokreće biranjem Start Programs <oznaka verzije> Matlab. Nakon ovoga otvara se komandni prozor i pojavljuje MATLAB prompt >>. Iz MATLAB-a se može izići kucanjem komande:»quit U MATLAB je ugrađen i obiman sistem pomoći koji se dobija komandom:»help Odnosno, ako znate ime funkcije, ali se ne možete sjetiti tačne sintakse:»help ime_funkcije Većina matematičkih funkcija je ugrađena u MATLAB i obično je korisno da se komanda help izvrši za željenu funkciju da bi se upoznali sa njenim mogućnostima. Osnovna struktura podataka u MATLAB-u je matrica. Specijalni slučajevi su 1 1 matrica (skalar) i matrice čija je jedna dimenzija 1 vektori. Matrice se mogu unijeti: 1. nabrajanjem svih elemenata, 2. učitavanjem matrice iz fajla, 3. generisanje pomoću ugrađenih funkcija, 4. generisanje pomoću sopstvenih (korisničkih) funkcija. Na primjer, sledećim naredbama se definišu skalar, vektor i matrica, respektivno.

2 »x = 5»b = [ ]»A = [1, 7, 8; 2, 9, 13; 4, 8, 11; 2, 5, 3] MATLAB nakon izvršenja svake komande ispisuje rezultat. To se može izbjeći ako se linija završi sa ; Koristan način za zadavanje vektora može biti operator dvotačka : čija je sintaksa x = start:korak:kraj Ukoliko korak nije zadat podrazumijeva se da je njegova vrijednost jednaka 1. Na primjer:» x = 3:8 x = » x = 2:2:10 x = Korak može imati i negativnu vrijednost u kom slučaju se dobijaju vrijednosti u vektoru u opadajućem redoslijedu:» x = 10:-2:2 x = Nijedna od vrijednosti u ovom operatoru ne mora biti cjelobrojna:» x = 0:0.2:1 x = Pojedinim elementima matrice može se pristupiti navođenjem njihovih indeksa:» b(1) ans = 1» A(1,2) = 1 Indeksi ne moraju biti skalari, umjesto njih mogu se upotrebiti proizvoljni cjelobrojni vektori. Na ovaj način se iz date matrice mogu izdvojiti podmatrice. Npr. sledeća naredba daje matricu u kojoj su vrste druga i četvrta vrsta matrice A, a kolone prva i treća kolona iste matrice: >> A([2 4], [1 3]) ans = Vrlo često se za kreiranje indeksa koristi operator dvotačka. Npr. sledeća naredba vraća vektor-kolonu koji se sastoji od prva tri elementa prve kolone matrice A. >> A(1:3, 1) ans = 1

3 2 4 Ako se zada samo dvotačka onda se operacija izvršava nad cijelom vrstom ili kolonom:» A(1,:) = [1, 7, 8]» A(:,1) = [1; 2; 4; 2] Vještom upotrebom operatora dvotačka moguće je izbjeći korištenje for petlji prilikom programiranja u MATLAB-u čime se značajno poboljšavaju performanse programa. Postoji i niz funkcija koje generišu karakteristične matrice. Onovne su» A = zeros(n,m);» B = ones(n,m);» C = eye(n,m);» D = rand(n,m); Zeros generiše matricu dimenzija (n,m) čiji su svi elementi nule, ones matricu istih dimenzija čiji su svi elementi jedinice, eye jediničnu matricu, a rand matricu zadatih dimenzija čiji su elementi slučajni brojevi iz uniformne raspodjele na intervalu [0, 1]. Ovo je vrlo korisno kod zadavanja signala. Stringovi se u MATLAB-u zadaju korištenjem apostrofa ('), npr. s = 'string'. Interno, string se memoriše kao vektor čiji su elementi pojedini karakteri. Pored promjenljivih definisanih na pomenute načine u MATLAB-u postoje i neke specijalne predefinisane promjenljive: Specijalne promjenljive Opis ans Rezultat poslednje operacije pi Broj π eps Najmanji broj koji kada se doda jedinici, daje broj koji je na računaru veći od jedinice. flops Broj floating-point operacija inf Beskonačno (npr. 1/0). NaN (or) nan Nije broj Not-a-Number (npr. 0/0). i (and) j i = j = -1 realmin Najmanji mogući realan broj realmax Najveći upotrebljiv pozitivan realni broj Osnovne operacije i funkcije nad matricama Osnovne aritmetičke operacije +, -, *, / mogu da se koriste na isti način kao i u drugim višim programskim jezicima s tim što njihovi argumenti mogu biti i vektori, odnosno matrice. Na primjer ukoliko želite da pomnožite matrice A i B dovoljno je upotrebiti naredbu: C = A * B.

4 Isto vrijedi i za elementarne funkcije: exp, log, sqrt, sin, cos itd. Ako su argumenti ovih funkcija matrice onda se elementarne funkcije izračunavaju po elementima. Dimenzije matrice dobijaju se pomoću funkcije size.» size(a) Transponovanje niza/matrice vrši se pomoću operatora '» C = C' C = Da biste izvršili skalarnu operaciju na vektoru koristite obične matematičke operacije. Na primjer, da biste pomnožili svaki element vektora C sa 2 koristite komandu:» C = 2*C C = Pretpostavimo da želite da pomnožite svaki element vektora a odgovarajućim elementom vektora b. U tom slučaju koristićete operator. koji izvršava operacije po elementima. Na primjer:» a = [ ] a = » b = [ ] b = » a.*b ans = Ako biste koristili obično množenje * dobili biste:» a*b??? Error using ==> * Inner matrix dimensions must agree. zato što MATLAB pokušava da pomnoži matrice a i b, prema pravilima za množenje matrica. Konkatenacija nizova je takođe veoma jednostavna: >> A = [ ]; >> B = [ ];» C = [A B] C = [ ]

5 Grafičko prikazivanje podataka Osnovna funkcija za grafički prikaz podataka je plot. U zavisnosti od ulaznih argumenata dobijaju se različiti rezultati. Na primjer,» x = [1, 7, 5, 4.3, 2, 9, 11, 8.8];» plot(x) će nacrtati tačke iz vektora x u funkciji njihovog indeksa i povezati ih pravolinijskim segmentima, a» plot(x,'o') će nacrtati tačke označene kružićima i neće ih povezati. Primjer Nacrtati funkciju x = -2:0.01:2; y = x.^2; 2 y = x na intervalu [-2, 2]. plot(x,y); Moguće je na jednoj slici nacrtati više grafika i MATLAB ih crta različitim bojama iz predefinisanog skupa. y1 = x.^2 4; y2 = x.^2 + 4; plot(x,y,x,y1,x,y2); Boja, oblik tačkica, tip linija se mogu zadati eksplicitno, pogledati help stranicu za komandu plot. Komanda plot automatski otvara novi prozor, ako ne postoji ni jedan već otvoren. Ako je neki grafički prozor otvoren, plot crta u njega, a prethodni sadržaj se briše. Novi prozor se otvara pomoću komande figure i on postaje aktivan. Sledeća plot komanda crta u njega. Već postojeći prozor se aktivira sa figure(n), gdje je n broj prozora koji se nalazi u naslovnoj liniji, npr. Figure No.1 Pomenuto je da se crtanjem u već postojeći prozor njegov prethodni sadržaj briše. Ovakvo se ponašanje može promijeniti pomoću komande >> hold on koja zadržava postojeći grafik i sledeća komanda za crtanje crta preko njega. Predefinisano ponašanje vraća se sa: >> hold off Graficima se lako mogu dodati naslov, kao i oznake osa. t = -pi:pi/100:pi; y = sin(t); plot(t,y); title('grafik funkcije sinus'); xlabel('t'); ylabel('sin(t)');

6 3D grafika MATLAB posjeduje i veoma napredne mogućnosti za 3D inženjersku grafiku. Osnovne naredbe za generisanje 3D grafika su surf i mesh. Kao demonstracija može da posluži sledeća sekvenca naredbi: surf(40*membrane(1,25)); shading interp; daspect([ ] ); camlight axis off tight vis3d; Iz linije sa alatima izabrati Rotate 3D koji omogućava rotiranje prikazanog objekta klikom i pomjeranjem miša. Predstavljanje multimedijalnih signala u MATLAB-u Tema ove vježbe je upoznavanje sa načinom predstavljanja multimedijalnih signala u MATLAB-u. Kao i u drugim programskim okruženjima, u MATLAB-u su signali predstavljeni kao nizovi, odnosno, matrice. Zvučni signal Zvučni signal se u MATLAB-u predstavlja kao vektor čiji su elementi odmjerci signala. MATLAB može čitati WAV i AU muzičke fajlove korištenjem funkcija wavread() i auread(), respektivno. Npr. naredba: [y, Fs, nbits] = wavread('handel.wav'); učitava zvučni signal u datom WAV fajlu u vektor y. U promjenljivoj Fs će se nalaziti frekvencija odmjeravanja, a u promjenljivoj nbits broj bita korišten za kodiranje signala. Najjednostavnija naredba kojom se može reprodukovati zvuk je sound(). Njena sintaksa je: sound(y, Fs) Reprodukcija pomoću naredbe sound() je asinhrona. Više mogućnosti za kontrolu reprodukcije pruža korištenje audioplayer objekta. Konstruktoru objekta se prosljeđuju: vektor odmjeraka, frekvencija odmjeravanja i (opciono) broj bita korišten za kodiranje signala: p = audioplayer(y, Fs) Asinhrona reprodukcija se sada može postići korištenjem metoda play(): play(p) Reprodukcija se može zaustaviti: stop(p) ili pauzirati: pause(p) Sinhrona reprodukcija se postiže korištenjem metoda playblocking():

7 playblocking(p) Svi metodi objekta se mogu dobiti pomoću: methods(p) Svi metodi klase audioplayer se mogu dobiti pomoću: methods audioplayer Slično, osobine objekta, odnosno, klase se mogu dobiti pozivom naredbe properties, a događaji pozivom naredbe events. Dokumentacija za konkretan metod ilil osobinu može se dobiti pomoću help <ime klase>/<ime metode ili osobine> MATLAB može i vrijednosti vektora zapisti u WAV ili AU formatu korištenjem funkcija wavwrite() i auwrite(). Npr. wavwrite(y, Fs, nbits, filename) upisuje u fajl filename elemente vektora y sa frekvencijom odmjeravanja Fs i nbits za kodiranje odmjeraka. Slika Slika se u MATLAB-u predstavlja kao dvodimenzionalna ili trodimenzionalna matrica čiji elementi određuju boju piksela na određenoj lokaciji. Ukoliko se radi o grayscale slici matrica je dvodimenzionalna i vrijednosti elemenata matrice predstavljaju intenzitet piksela. Ukoliko se radi o slici u boji matrica je trodimenzionalna i sadrži intenzitete piksela za svaki od tri kolor kanala: R, G i B. Osnovne informacije o slici koja se nalazi u nekom fajlu na disku moguće je dobiti korištenjem funkcije imfinfo(). Slika se u memoriju učitava pomoću funkcije imread(). Na primjer, ako želimo da učitamo sliku lenacolor.jpg možemo iskoristiti sledeću naredbu: slika = imread('lenacolor.jpg'); Funkcijom imread() se mogu učitati slike u većini standardnih formata kao što su: JPEG, GIF, PNG, TIFF, itd. Slika koja se nalazi u matrici u radnom prostoru MATLAB-a se može prikazati pomoću funkcije imshow(), npr. imshow(slika). Pored ove funkcije na raspolaganju je i sofisticiraniji interaktivni alat za prikazivanje slika kojem se pristupa korištenjem funkcije imtool(): imtool(slika). Slika koja se nalazi u matrici u radnom prostoru MATLAB-a se može upisati u fajl na disku korištenjem funkcije imwrite(). Ova funkcija ima veliki broj opcija pomoću kojih se podešavaju različiti parametri fajlova. Najjednostavniji način pozivanja je: imwrite(slika, 'lena.tiff'). Video Video klipovi se u MATLAB-u predstavljaju nizom čiji je svaki element struktura tipa film (movie) koja ima dva polja cdata i colormap. Broj elemenata strukture jednak je

8 broju frejmova u videu. U polju cdata nalazi se slika koja odgovara datom frejmu, a u polju colormap odgovarajuća kolor-mapa. Polje colormap može biti i prazno u kom slučaju se radi o intenzitetskim slikama. Osnovne informacije o video-klipu koji se nalazi u nekom AVI fajlu na disku se mogu dobiti korištenjem funkcije aviinfo(). Video se u memoriju učitava korištenjem funkcije aviread(), npr. m = aviread('fishtank.avi'); Reprodukcija filma koji se nalazi u strukturi m se inicira korištenjem naredbe movie(): movie(m, n, fps), gdje je n broj ponavljanja klipa, a fps broj frejmova u sekundi za reprodukciju. Novi AVI fajl se može kreirati od MATLAB-ove promjenljive tipa film korištenjem funkcije movie2avi, npr: movie2avi(m, 'ft.avi') Zadaci Zvučni signal 1. Učitati zvučni signal u fajlu handel44100.wav u radni prostor MATLAB-a. Kakvom strukturom podataka je zvučni signal predstavljen u memoriji? Kolika je frekvencija odmjeravanja ovog signala i sa koliko bita je kodovan svaki odmjerak signala? Kolike su dimenzije vektora u kojem su odmjerci signala i koliko memorije zauzima? Koliko je trajanje signala u sekundama? Nacrtati signal korištenjem naredbe plot, kao da se radi o analognom signalu. Na apscisi označiti vrijeme u sekundama. 2. Zašto je frekvencija odmjeravanja signala na CD-u 44100Hz? Znajući frekvenciju odmjeravanja i broj bitova za kodovanje izračunati bit-rate zvučnog signala CD kvalitete, tj. koliko kilobajta podataka sadrži jedna sekunda muzike na CD-u. Koliki je memorijski prostor potreban za 74 minute muzike? Koliki je dinamički opseg signala na CD-u? 3. Reprodukovati zvučni signal iz tačke 1. Zašto je prilikom reprodukcije zvučnog signala potrebno zadati frekvenciju odmjeravanja? Šta bi se desilo ako biste koristili nižu ili višu frekvenciju odmjeravanja? Pokušajte upotrebiti npr Hz ili 88200Hz. Komentarisati rezultate. 4. Učitati i reprodukovati zvučne signale u fajlovima handel22050.wav i handel11025.wav. Uporediti kvalitetu reprodukcije ova tri signala i komentarisati razlike. U kakvoj vezi je frekvencija odmjeravanja signala sa razlikom u kvaliteti? 5. U sljedećim tačkama radićemo sa zvučnim signalom iz tačke 1 (handel44100.wav). Reprodukovati dati zvučni signal unazad. 6. Vrijednosti odmjeraka signala vezane su za intenzitet zvučnog signala. Na primjer, množenjem signala nekom konstantom dobija se njegovo pojačanje (ili slabljenje). Generišite novi signal koji je pojačan 2 puta u odnosu na signal iz tačke 1. Obratite pažnju na to da će ukoliko amplituda signala pređe vrijednost ± 1 doći do njegovog odsijecanja. Reprodukujte dobijeni signal.

9 Slika 7. Generišite vektor odmjeraka eksponencijalnog signala ( ) t T x t =, iste dužine kao dati zvučni signal. Vremenska promjenljiva t treba da uzima vrijednosti sa korakom 1 F s, gdje je F s frekvencija odmjeravanja zvučnog signala. Pomnožite ga sa datim signalom i poslušajte rezultat. Zadatak ponovite za vrijednosti T 1,2,3 sekunde. Komentarisati dobijene rezultate. Na ovaj način se dobija { } fade-out efekat. 8. Sačuvati jedan od rezultata iz prethodne tačke kao novi WAV fajl. 1. Pomoću imfinfo provjerite osnovne karakteristike slike LenaRGB.tif. Učitajte sliku korišćenjem funkcije imread. Kakvom strukturom podataka je slika predstavljena u memoriji? Kolike su dimenzije dobijene matrice? Pogledajte vrijednosti elemenata matrice dobijene na taj način. Kojem opsegu pripadaju njihove vrijednosti? Kojoj memorijskoj klasi (tipu) podataka pripadaju? 2. Funkcija imshow prikazuje sliku koja se nalazi u matrici u radnom prostoru MATLAB-a na ekranu. Proučite sintaksu funkcije imshow. Koje tipove slika podržava funkcija imshow? Prikažite sliku LenaRGB.tif na ekranu. 3. Pojedine komponente RGB slike moguće je izdvojiti i obrađivati kao zasebne intenzitetske slike. Neka se npr. RGB slika nalazi u matrici a. Sada je R komponentu moguće izdvojiti korištenjem a(:, :, 1) itd. Izdvojiti i prikazati u posebnim figure prozorima sve tri komponente slike LenaRGB.tif kao grayscale slike. 4. Ukoliko želite da prikažete RGB sliku koja sadrži samo jednu od komponenata slike, kreirajte novu sliku u kojoj ćete ostale dvije komponente postaviti na nulu, npr. r = a; % sačuvati originalnu sliku r(:, :, 2:3) = 0; % komponente 2 i 3 (G i B) Prikazati na ovaj način sve tri komponente slike LenaRGB.tif. 5. Funkcijom rgb2gray() se RGB slika može konvertovati u grayscale sliku. Primijenite ovu funkciju na matricu slike LenaRGB.tif i rezultat sačuvajte u novoj matrici. Prikažite rezultat. Koje su dimenzije nove matrice. Objasnite razliku u odnosu na dimenzije matrice originalne slike. 6. Invertovati grayscale sliku iz prethodne tačke i prikazati rezultat. 7. Sačuvati sliku iz prethodne tačke u JPEG formatu. Video 1. Pomoću funkcije aviinfo() ispitati osnovne karakteristike video klipa mobile.avi. Učitati video mobile.avi. Kojom strukturom podataka je video predstavljen u memoriji? Šta se nalazi u pojedinim poljima strukture? Kolike su dimenzije matrica? Kojoj memorijskoj klasi pripadaju njihovi elementi? 2. Reprodukovati video u MATLAB-u. e

10 3. Izdvojite pojedine frejmove videa kao slike. Kreirati negativ videa invertovanjem slika kao u tački 6. iz prethodnog odjeljka. 4. Sačuvati video iz prethodne tačke kao novi AVI fajl.

Vježba 1. Uvod u MATLAB

Vježba 1. Uvod u MATLAB Univerzitet u Banjaluci Elektrotehnički fakultet Katedra za opštu elektrotehniku Digitalna obrada signala Vježba 1. Uvod u MATLAB Uvodne napomene, vektori, matrice MATLAB se pokreće biranjem Start Programs

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Vježba 4. Diskretni signali i sistemi

Vježba 4. Diskretni signali i sistemi Univerzitet u Banjaluci Elektrotehnički fakultet Katedra za opštu elektrotehniku Teorija električnih kola 2 Vježba 4. Diskretni signali i sistemi Priprema Predstavljanje diskretnih signala u MATLAB-u Osnovni

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

INFORMATIKA II MATLAB 2. deo. Rudarsko-geološki fakultet Rudarski odsek

INFORMATIKA II MATLAB 2. deo. Rudarsko-geološki fakultet Rudarski odsek INFORMATIKA II MATLAB 2. deo Rudarsko-geološki fakultet Rudarski odsek Nizovi Niz (array) je osnovni oblik u kojem MATLAB čuva podatke i radi s njima Niz je skup brojeva poređanih u vrste (redove) i/ili

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Katedra za telekomunikacioni saobraćaj i mreže Statistička teorija telekomunikacija M A T L A B. - kratko uputstvo za korišćenje - Mart 2011.

Katedra za telekomunikacioni saobraćaj i mreže Statistička teorija telekomunikacija M A T L A B. - kratko uputstvo za korišćenje - Mart 2011. Katedra za telekomunikacioni saobraćaj i mreže Statistička teorija telekomunikacija M A T L A B - kratko uputstvo za korišćenje - Mart 2011. MATLAB Matlab je programski paket koji se koristi za rešavanje

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Informatika2. 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje.

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Informatika2. 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje. Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika2 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje Milica Ćirić Ciklična algoritamska struktura Ciklična struktura (petlja)

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα