ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ"

Transcript

1 ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009

2 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας f X,Y (x i, y j ), i, j = 0, 1,..., και περιθώριες συναρτήσεις πιθανότητας f X (x i ), i = 0, 1,..., και f Y (y j ), j = 0, 1,.... Οι τυχαίες µεταβλητές X και Y καλούνται (στοχαστικά) ανεξάρτητες αν και µόνο αν f X,Y (x i, y j ) = f X (x i )f Y (y j ), i, j = 0, 1,.... (1) (ϐ) Εστω (X, Y) συνεχής διδιάστατη τυχαία µεταβλητή µε συνάρτηση πυκνότητας f X,Y (x, y), x, y R και περιθώριες συναρτήσεις πυκνότητας f X (x), x R και f Y (y), y R. Οι τυχαίες µεταβλητές X και Y καλούνται (στοχαστικά) ανεξάρτητες αν και µόνο αν f X,Y (x, y) = f X (x)f Y (y), x, y R. (2)

3 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Επισηµαίνουµε ότι, σύµφωνα µε τον ορισµό, αν υπάρχει έστω και ένα Ϲεύγος τιµών (x 0, y 0 ) µε f X,Y (x 0, y 0 ) f X (x 0 )f Y (y 0 ), τότε οι τυχαίες µεταβλητές X και Y είναι (στοχαστικά) εξαρτηµένες. Η έννοια της στοχαστικής ανεξαρτησίας δύο τυχαίων µεταβλητών επεκτείνεται άµεσα και σε ν τυχαίες µεταβλητές.

4 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ας ϑεωρήσουµε την από κοινού συνάρτηση πιθανότητας ν τυχαίων µεταβλητών X 1, X 2,..., X ν, f(x 1, x 2,..., x ν )=P(X 1 = x 1, X 2 = x 2,..., X ν = x ν ), x i R Xi, i =1, 2,..., ν, στην περίπτωση που αυτές είναι διακριτές ή την από κοινού συνάρτηση πυκνότητας, f(x 1, x 2,..., x ν ) 0, x i R Xi, i = 1, 2,..., ν, στην περίπτωση που αυτές είναι συνεχείς. Τότε οι τυχαίες µεταβλητές X 1, X 2,..., X ν καλούνται (στοχαστικά) ανεξάρτητες αν και µόνο αν f(x 1, x 2,..., x ν ) = f X1 (x 1 )f X2 (x 2 ) f Xν (x ν ), (3) για x i R Xi, i = 1, 2,..., ν.

5 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ εσµευµένες κατανοµές και στοχαστική ανεξαρτησία. Εστω X και Y διακριτές τυχαίες µεταβλητές µε από κοινού συνάρτηση πιϑανότητας f X,Y (x i, y j ), i, j = 0, 1,..., και περιθώριες συναρτήσεις πιθανότητας f X (x i ), i = 0, 1,..., και f Y (y j ), j = 0, 1,.... (α) Αν η δεσµευµένη συνάρτηση πιθανότητας της τ.µ. Y δεδοµένης της X = x i, f Y X (y j x i ) = f X,Y (x i, y j )/f X (x i ), j = 0, 1,..., i = 0, 1,..., είναι f Y X (y j x i ) = f Y (y j ), j = 0, 1,..., i = 0, 1,..., τότε, εξισώνοντας της δύο αυτές εκφράσεις, συµπεραίνουµε ότι f X,Y (x i, y j ) = f X (x i )f Y (y j ), i = 0, 1,..., j = 0, 1,..., και εποµένως οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες. Οµοίως, αν f X Y (x i y j ) = f X (x i ), i = 0, 1,..., j = 0, 1,..., τότε οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες.

6 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (ϐ) Αν οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες, οπότε ισχύει η σχέση f X,Y (x i, y j ) = f X (x i )f Y (y j ), i = 0, 1,..., j = 0, 1,..., τότε, η δεσµευµένη συνάρτηση πιθανότητας, f Y X (y j x i ) = f X,Y (x i, y j )/f X (x i ), j = 0, 1,..., i = 0, 1,..., είναι f Y X (y j x i ) = f Y (y j ), j = 0, 1,..., i = 0, 1,.... Οµοίως, συµπεραίνουµε ότι f X Y (x i y j ) = f X (x i ), i = 0, 1,..., j = 0, 1,.... Εποµένως, οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες αν και µόνο αν οι δεσµευµένες συναρτήσεις πιθανότητας δεν εξαρτώνται από την τιµή της δεσµεύουσας τυχαίας µεταβλητής. Ανάλογη παρατήρηση ισχύει και στην περίπτωση που οι X και Y είναι συνεχείς τυχαίες µεταβλητές.

7 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Παράδειγµα Ας ϑεωρήσουµε µία κληρωτίδα που περιέχει 5 αριθµηµένα σφαιρίδια {1, 2, 3, 4, 5} από τα οποία το {1} είναι άσπρο, τα {2, 3} είναι µαύρα και τα {4, 5} κόκκινα. Εστω ότι εξάγονται στην τύχη δύο σφαιρίδια (α) χωϱίς επανάθεση και (ϐ) µε επανάθεση. Αν X είναι ο αριθµός των εξαγοµένων άσπρων σφαιριδίων και Y ο αριθµός των εξαγοµένων µαύρων σφαιριδίων, να υπολογισθούν η από κοινού και οι περιθώριες συναρτήσεις πιθανότητας των τυχαίων µεταβλητών X και Y και να εξετασθεί αν είναι ανεξάρτητες.

8 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (α) Ο δειγµατικός χώρος, στην περίπτωση που η εξαγωγή των σφαιριδίων γίνεται χωρίς επανάθεση, είναι το σύνολο Ω = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)} των 20 διατάξεων των 5 ανά 2. Τα 20 αυτά δειγµατικά σηµεία είναι ισοπίθανα. Η από κοινού συνάρτηση πιθανότητας f(x, y) και οι περιθώριες συναρτήσεις πιθανότητας f X (x) και f Y (y) υπολογίζονται σύµφωνα µε τον Ορισµό και δίνονται στον ακόλουθο Πίνακα.

9 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ y x f X (x) f X,Y (x, y) 0 1/10 4/10 1/10 3/5 1 2/10 2/10 0 2/5 f Y (y) 3/10 6/10 1/10 1 Πίνακας 5.4. Από κοινού και περιθώριες συναρτήσεις πιθανότητας Παρατηρούµε ότι f(x, y) f X (x)f Y (y) και εποµένως οι τυχαίες µεταβλητές X και Y δεν είναι ανεξάρτητες.

10 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (ϐ) Ο δειγµατικός χώρος, στην περίπτωση που η εξαγωγή των σφαιριδίων γίνεται µε επανάθεση, είναι το σύνολο Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)} των 25 διατάξεων των 5 ανά 2 µε επανάληψη. Τα 25 αυτά δειγµατικά σηµεία είναι ισοπίθανα. Η από κοινού συνάρτηση πιθανότητας f(x, y) και οι περιθώριες συναρτήσεις πιθανότητας f X (x) και f Y (y) υπολογίζονται σύµφωνα µε τον Ορισµό και δίνονται στον ακόλουθο Πίνακα.

11 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ y x f X (x) f X,Y (x, y) 0 4/25 8/25 4/25 16/25 1 4/25 4/25 0 8/25 2 1/ /25 f Y (y) 3/10 6/10 1/10 1 Πίνακας 5.5. Από κοινού και περιθώριες συναρτήσεις πιθανότητας Παρατηρούµε ότι f(x, y) f X (x)f Y (y) και εποµένως οι τυχαίες µεταβλητές X και Y δεν είναι ανεξάρτητες.

12 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Παράδειγµα Η κατανοµή του ήχου σε διάφορα σηµεία µιας αίθουσας διδασκαλίας είναι χρήσιµη στη µελέτη της ηχητικής της αίθουσας. Εστω η συνάρτηση πυκνότητας του ήχου στο σηµείο (X, Y) δίνεται από την f X,Y (x, y) = xye (x2 +y 2 )/2, 0 < x <, 0 < y <. Να εξετασθεί κατά πόσον οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες.

13 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Η περιθώρια συνάρτηση πυκνότητας της X είναι η f X (x) = f X,Y (x, y)dy = xe x2 /2 ye y2 /2 dy = xe x2 /2, 0 < x <. 0 Οµοίως f Y (y) = ye y2 /2, 0 < y <. Εποµένως f X,Y (x, y) = f X (x)f Y (y), 0 < x <, 0 < y <, και οι X και Y είναι ανεξάρτητες.

14 Ας ϑεωρήσουµε µία διδιάστατη τυχαία µεταβλητή (X, Y) και µία συνάρτηση αυτής Z = g(x, Y). Η Z είναι µία (µονοδιάστατη) τυχαία µεταβλητή και η συνάρτηση πιθανότητας f Z (z κ ), κ = 0, 1,..., ή πυκνότητας f Z (z), z R, αυτής προσδιορίζεται µέσω της συνάρτησης πιθανότητας f X,Y (x i, y j ), i, j = 0, 1,..., ή πυκνότητας f X,Y (x, y), x, y R, της διδιάστατης τυχαίας µεταβλητής (X, Y). Είναι εποµένως ενδιαφέρον και έχει έννοια ο υπολογισµός της µέσης τιµής της Z = g(x, Y). Τούτο δεν είναι αναγκαίο να γίνεται σε κάθε µερική περίπτωση.

15 Σχετικά ισχύει η ακόλουθη έκφραση E(Z) E[g(X, Y)] = g(x i, y j )f X,Y (x i, y j ) (4) j=0 i=0 αν η διδιάστατη τυχαία µεταβλητή (X, Y) είναι διακριτή και η έκφραση E(Z) E[g(X, Y)] = g(x, y)f X,Y (x, y)dxdy (5) αν η (X, Y) είναι συνεχής.

16 Χρησιµοποιώντας τις (4) και (5) προκύπτει άµεσα η σχέση E[g(X, Y) + h(x, Y)] = E[g(X, Y)] + E[h(X, Y)] (6) και ως µερική περίπτωση αυτής συνάγουµε τη σχέση E[g(X) + h(y)] = E[g(X)] + E[h(Y)]. (7) Θέτοντας g(x) = αx και h(y) = ϐy, µε α και ϐ σταθερές, συµπεραίνουµε ότι E(αX + ϐy) = αe(x) + ϐe(y). (8) Επίσης, αν X και Y ανεξάρτητες τυχαίες µεταβλητές, τότε χρησιµοποιώντας (4) και (5), συνάγουµε άµεσα τη σχέση και ειδικότερα τη σχέση E[g(X)h(Y)] = E[g(X)]E[h(Y)], (9) E(XY) = E(X)E(Y). (10)

17 Οι ϱοπές µιας διδιάστατης τυχαίας µεταβλητής ορίζονται ως µέση τιµή µιας συγκεκριµένης, σε κάθε περίπτωση, συνάρτησης αυτής. Η από κοινού διακύµανση (διασπορά) δύο τυχαίων µεταβλητών εισάγεται στον ακόλουθο ορισµό. Ορισµός Εστω (X, Y) µία διδιάστατη τυχαία µεταβλητή µε µ X = E(X) και µ Y = E(Y). Η συνδιακύµανση (ή συνδιασπορά) των τυχαίων µεταβλητών X και Y, συµβολιζόµενη µε C(X, Y) ή σ X,Y, ορίζεται από τη σχέση σ X,Y C(X, Y) = E[(X µ X )(Y µ Y )]. (11) Σύµφωνα µε τον ορισµό, συµπεραίνουµε ως µερική περίπτωση τη σχέση C(X, X) = V(X).

18 Θεώρηµα (α) Αν X και Y είναι τυχαίες µεταβλητές και α, ϐ, γ, και δ είναι οποιεσδήποτε σταθερές, τότε C(αX + ϐ, γy + δ) = αγ C(X, Y). (12) (ϐ) Η συνδιακύµανση δύο τυχαίων µεταβλητών X και Y εκφράζεται ως C(X, Y) = E(XY) E(X)E(Y). (13)

19 Απόδειξη. (α) Σύµφωνα µε τον ορισµό και χρησιµοποιώντας τη γραµµικότητα της µέσης τιµής, συνάγουµε διαδοχικά E(αX + ϐ) = αµ X + ϐ, E(γY + δ) = γµ Y + δ, C(αX + ϐ, γy + δ) =E{[αX + ϐ E(αX + ϐ)] [γy + δ E(γY + δ)]} =E[(αX + ϐ αµ X ϐ) (γy + δ γµ Y δ)] =αγe[(x µ X )(Y µ Y )] = αγ C(X, Y).

20 (ϐ) Χρησιµοποιώντας τις (6) και (8) παίρνουµε C(X, Y) = E[(X µ X )(Y µ Y )] = E(XY µ X Y µ Y X + µ X µ Y ) = E(XY) + E( µ X Y µ Y X + µ X µ Y ) = E(XY) µ X E(Y) µ Y E(X) + µ X µ Y = E(XY) E(X)E(Y). Παρατηρούµε ότι αν οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες, τότε C(X, Y) = E(XY) E(X)E(Y) = 0. Το αντίστροφο δεν ισχύει γενικά. Οι τυχαίες µεταβλητές µε συνδιακύµανση µηδέν παϱουσιάϲουν ιδιαίτερο ενδιαφέρον και έτσι ϑεωρείται σκόπιµος ο ακόλουθος ορισµός.

21 Θεώρηµα Εστω X και Y οποιεσδήποτε τυχαίες µεταβλητές και α και ϐ σταθερές. Τότε V(αX + ϐy) = α 2 V(X) + ϐ 2 V(Y) + 2αϐ C(X, Y) (14) και ειδικότερα V(X ± Y) = V(X) + V(Y) ± 2C(X, Y). Αν οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες (ή απλώς ασυσχέτιστες), τότε V(αX + ϐy) = α 2 V(X) + ϐ 2 V(Y) (15) και ειδικότερα V(X ± Y) = V(X) + V(Y).

22 Απόδειξη. Χρησιµοποιώντας διαδοχικά την (6), παίρνουµε τη σχέση V(αX + ϐy) = E{[(αX + ϐy) E(αX + ϐy)] 2 } = E{[(αX + ϐy) (αµ X + ϐµ Y )] 2 } = E{[α(X µ X ) + ϐ(y µ Y )] 2 } = E[α 2 (X µ X ) 2 + ϐ 2 (Y µ Y ) 2 + 2αϐ(X µ X )(Y µ Y )] = α 2 E[(X µ X ) 2 ] + ϐ 2 E[(Y µ Y ) 2 ] + 2αϐE[(X µ X )(Y µ Y )] από την οποία συµπεραίνουµε άµεσα την (14). Στην περίπτωση που οι τυχαίες µεταβλητές X και Y είναι ανεξάρτητες (ή απλώς ασυσχέτιστες), C(X, Y) = 0 και έτσι από την (14) προκύπτει η (15).

23 Ορισµός Εστω (X, Y) µία διδιάστατη τυχαία µεταβλητή µε συνδιακύµανση σ X,Y = C(X, Y) και διασπορές σ 2 X = V(X) και σ2 Y = V(Y). Ο συντελεστής συσχέτισης των τυχαίων µεταβλητών X και Y, συµβολιζόµενος µε ρ(x, Y) ή ρ X,Y ή, απλώς, ρ, ορίζεται από τη σχέση ρ ρ(x, Y) = C(X, Y) V(X) V(Y) = σ X,Y σ X σ Y. (16)

24 Θεώρηµα Αν X και Y είναι τυχαίες µεταβλητές και α, ϐ, γ και δ είναι σταθερές, µε αγ 0, τότε ρ(αx + ϐ, γy + δ) = { ρ(x, Y), αν αγ > 0, ρ(x, Y), αν αγ < 0. (17) Απόδειξη. Χρησιµοποιώντας την (12) και τις σχέσεις V(αX + ϐ) = α 2 V(X), V(γY + δ) = γ 2 V(Y), συνάγουµε τη σχέση ρ(αx + ϐ, γy + δ) = C(αX + ϐ, γy + δ) V(αX + ϐ) V(γY + δ) = αγ α γ C(X, Y) = αγ ρ(x, Y), V(X) V(Y) αγ η οποία είναι ισοδύναµη µε την (17).

25 Θεώρηµα Αν ρ = ρ(x, Y) είναι ο συντελεστής συσχέτισης δύο τυχαίων µεταβλητών X και Y, τότε 1 ρ 1. (18) Απόδειξη. Ο συντελεστής συσχέτισης των τυχαίων µεταβλητών X και Y, σύµφωνα µε τις (11) και (16), είναι [( )( )] C(X, Y) X µx Y µy ρ ρ(x, Y) = = E, V(X) V(Y) και εισάγοντας τις τυποποιηµένες τυχαίες µεταβλητές σ X σ Y Z = X µ X σ X, W = Y µ Y σ Y,

26 δύναται να εκφρασθεί ως ρ ρ(x, Y) = E(ZW). (19) Ας ϑεωρήσουµε την τυχαία µεταβλητή U = t Z W, για t R. Τότε E(U 2 ) = t 2 E(Z 2 ) 2tE(ZW) + E(W 2 ) = t 2 2tE(ZW) + 1, t R εφ όσον E(Z 2 ) = V(Z) = 1 και E(W 2 ) = V(W) = 1. Οµως E(U 2 ) 0 και έτσι t 2 2E(ZW)t + 1 0, t R, Το τριώνυµο αυτό δεν αλλάζει πρόσηµο αν και µόνο αν η διακρίνουσά του δεν είναι ϑετική και εποµένως [E(ZW)] 2 1 0, ή ισοδύναµα 1 E(ZW) 1. Η τελευταία σχέση, λόγω της (19), συνεπάγεται την (18).

27 Η σηµασία του συντελεστή συσχέτισης δύο τυχαίων µεταβλητών ως µέτρου συσχέτισης (γραµµικής εξάρτησης) τούτων απορρέει από το ακόλουθο ϑεώϱηµα. Θεώρηµα Εστω X και Y δύο τυχαίες µεταβλητές µε συντελεστή συσχέτισης ρ = ρ(x, Y). Τότε ρ = ±1 αν και µόνο αν υπάρχουν πραγµατικοί αριθµοί α και ϐ, µε α 0, τέτοιοι ώστε, µε πιθανότητα 1, να ισχύει η γραµµική σχέση Y = αx + ϐ. (20)

28 Απόδειξη. Αν ισχύει η γραµµική σχέση Y = αx + ϐ, µε πιθανότητα 1, τότε, σύµφωνα µε την (12), C(X, Y) = C(X, αx + ϐ) = αc(x, X) = αv(x) και έτσι ρ(x, Y) = C(X, αx + ϐ) V(X) V(αX + ϐ) = αv(x) V(X) α 2 V(X) = α α = ±1, και µάλιστα ρ = 1 όταν α > 0, ενώ ρ = 1 όταν α < 0. Αντίστροφα, ας ϑεωϱήσουµε τις αντίστοιχες των X και Y τυποποιηµένες τυχαίες µεταβλητές Z = X µ X σ X και W = Y µ Y σ Y, και την U = ρz W.

29 Τότε E(U) = ρe(z) E(W) = 0 και V(U) = E(U 2 ) = ρ 2 E(Z 2 ) 2ρE(ZW) + E(W 2 ) = ρ 2 2ρ = 1 ρ 2, εφ όσον E(ZW) = ρ(x, Y) = ρ. Ετσι, αν ρ = ±1, τότε V(U) = 0 και επειδή E(U) = 0, έπεται ότι P(U = 0) = 1. Εποµένως, αν ρ = ±1, τότε, µε πιθανότητα 1, ισχύει η σχέση W = ±Z ή, ισοδύναµα, η σχέση Y = µ Y ± σ Y σ X (X µ X ). Συµπερασµατικά, αν ρ = 1, η (20) ισχύει µε α = σ Y /σ X > 0 και ϐ = µ Y µ X σ Y /σ X, ενώ αν ρ = 1, η (20) ισχύει µε α = σ Y /σ X < 0 και ϐ = µ Y + µ X σ Y /σ X.

30 Παράδειγµα Εστω (X, Y) µία διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας f X,Y (x, y) = x + y, x = 1, 2, y = 1, 2, Να υπολογισθεί ο συντελεστής συσχέτισης των τυχαίων µεταβλητών X και Y. Η µέση τιµή του γινοµένου των τυχαίων µεταβλητών X και Y, σύµϕωνα µε την (4), είναι E(XY) = = 3 2 y=1 x=1 xy x + y 21 3 y(3y + 5) y=1 21 = 3 y(1 + y) + 2y(2 + y) y=1 =

31 Οι περιθώριες συναρτήσεις πιθανότητας των X και Y δίνονται από τις Συνεπώς, f X (x) = x + 2 7, x = 1, 2, f Y (y) = 2y + 3, y = 1, 2, E(X) = 2 x=1 x x = 11 7, E(X 2 ) = 2 x=1 x 2 x = 19 7, και E(Y) = V(X) = E(X 2 ) [E(X)] 2 = 19 ( 11 ) 2 7 = y=1 y 2y = 46 21, E(Y 2 ) = 3 y=1 y 2 2y = , V(Y) = E(Y 2 ) [E(Y)] 2 = 114 ( 46 ) 2 21 =

32 Η συνδιακύµανση των τυχαίων µεταβλητών X και Y είναι ίση µε και εποµένως C(X, Y) = E(XY) E(X)E(Y) = = ρ(x, Y) = C(X, Y) V(X) V(Y) = 2/147 12/49 278/441 = ,03. Η µικρή (κοντά στο 0) αυτή τιµή του ρ δείχνει ότι υπάρχει πολύ ασθενής (αµελητέα) αρνητική γραµµική εξάρτηση των X και Y.

33 Παράδειγµα Εστω (X, Y) µια συνεχής διδιάστατη τυχαία µεταβλητή µε συνάρτηση πυκνότητας f X,Y (x, y) = 2, 0 x y 1. Να υπολογισθεί ο συντελεστής συσχέτισης των τυχαίων µεταβλητών X και Y. Η µέση τιµή του γινοµένου των τυχαίων µεταβλητών X και Y, σύµφωνα µε την (5), είναι 1 y 1 E(XY) = xy f X,Y (x, y)dxdy = 2 xydxdy = y 3 dy =

34 Οι περιθώριες συναρτήσεις πυκνότητας των X και Y δίνονται από τις και έτσι E(X r ) = οπότε E(Y r ) = f X (x) = 2(1 x), 0 x 1, f Y (y) = 2y, 0 y 1, 1 x r f X (x)dx = 2 x r (1 x)dx = 0 1 y r f Y (y)dy = 2 0 2, r = 1, 2,..., (r + 1)(r + 2) y r+1 dy = 2, r = 1, 2,..., r + 2 E(X) = 1 3, V(X) = E(X 2 ) [E(X)] 2 = 1 6 ( 1 3 E(Y) = 2 3, V(Y) = E(Y 2 ) [E(Y)] 2 = 1 2 ( 2 3 ) 2 = 1 18, ) 2 = 1 18.

35 Η συνδιακύµανση των X και Y, σύµφωνα µε την (13), είναι ίση µε C(X, Y) = E(XY) E(X)E(Y) = = 1 36 και εποµένως ρ(x, Y) = C(X, Y) V(X) V(Y) = 1/36 1/18 1/18 = 1 2.

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 16 εκεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ενδιαφέρον τόσο από ϑεωρητική άποψη, όσο και από άποψη εφαρµογών, παρουσιάζει και η από κοινού µελέτη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 19 Οκτωβρίου 2009 ΑΞΙΩΜΑΤΙΚΗ ΘΕΜΕΛΙΩΣΗ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Εστω Ω δειγµατικός χώρος στοχαστικού (τυχαίου) πειράµατος (ή ϕαινοµένου).

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Χαράλαµπος Α. Χαραλαµπίδης 3 Νοεµβρίου 29 ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ας ϑεωρήσουµε µια συνεχή τυχαία µεταβλητή X ορισµένη στον Ω µε πεδίο τιµών το διάστηµα [α, ϐ], όπου α < ϐ πραγµατικοί αριθµοί. Η οµοιόµορφη

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη

Διαβάστε περισσότερα

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος.

Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση ή ένας κανόνας που αντιστοιχίζει ένα αριθμό σε κάθε αποτέλεσμα ενός πειράματος. Εναλλακτικά η τιμή της τυχαίας μεταβλητής είναι ένα αριθμητικό γεγονός.

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )

X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 ) Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

f X,Y (x, y)dxdy = 1,

f X,Y (x, y)dxdy = 1, Πιθανότητες και Στατιστική Ενότητα 5: Πολυδιάστατες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διδιάστατη συνεχής τ.μ. Διδιάστατη συνεχής τ.μ. Μια διδιάστατη

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5

Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5 5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010 ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 1 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Θέμα 1 Θέμα Θέμα 3 Θέμα 4 Θέμα 5 Θέμα 5* Βαθμός ΝΠΣ ΠΠΣ / / / / / /1 / / / / / / /1 ΘΕΜΑ 1: Στο ράφι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός.

4. Απαγορεύεται η χρήση υπολογιστή χειρός. Απαγορεύεται η χρήση κινητού, και ως υπολογιστή χειρός. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ, ΙΩΑΝΝΗΣ ΚΟΝΤΟΓΙΑΝΝΗΣ, ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ, ΙΟΥΝΙΟΣ 207 ΟΝΟΜΑ ΦΟΙΤΗΤΗ:.............................. Οδηγίες. Συμπληρώστε το όνομά

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 011-01

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ Σκοπός Οι δειγματικοί χώροι, ανάλογα με τη φύση και τον τρόπο έκφρασης των ενδεχομένων τους κατατάσσονται σε ποσοτικούς και ποιοτικούς. Προφανώς ο υπολογισμός πιθανοτήτων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

4 4 2 = 3 2 = = 1 2

4 4 2 = 3 2 = = 1 2 Πιθανότητες και Τυχαία Σήματα Μάθημα 3 ΑΣΚΗΣΗ Εστω ότι έχουμε δύο νομίσματα. Στο νόμισμα A η πιθανότητα να έρθει κεφαλή είναι. Στο νόμισμα B 4 3 η πιθανότητα να έρθει κεφαλή είναι. Δεν είστε σίγουροι ποιο

Διαβάστε περισσότερα

3. Βασική Θεωρία Πιθανοτήτων

3. Βασική Θεωρία Πιθανοτήτων Περίληψη 3. Βασική Θεωρία Πιθανοτήτων Η στατιστική μηχανική βασίζεται στη θεωρία πιθανοτήτων για την παραγωγή μακροσκοπικών ιδιοτήτων στην ισορροπία. Οι θερμοδυναμικές μεταβλητές εμφανίζονται ως μέσοι

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 4: Πολυδιάστατες Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 17 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο

Διαβάστε περισσότερα

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας Διάλεξη 5: ΑΣΚΗΣΕΙΣ 1. Έστω η ποιότητα ενός προϊόντος που παίρνουμε από ένα σύνολο προϊόντων με απλή τυχαία δειγματοληψία. Ανάλογα με το αν το προϊόν είναι ελαττωματικό, καλο ή άριστο, η παίρνει τις τιμές,

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών

Μάθηµα 3 ο b. Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Μάθηµα 3 ο b Από Κοινού Κατανοµή Τυχαίων Μεταβλητών Έχουµε δύο, ή περισσότερες, τυχαίες µεταβλητές έστω Χ και Υ. Η σκπ των ζευγών ( x, y ) λέγεται από κοινού κατανοµή του ζεύγους ή του διανύσµατος ( X,Y

Διαβάστε περισσότερα

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8

2 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ και. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω µε Ρ(Α) = 8 5 και Ρ(Β) = Ρ(Α ). Αν τα Α, Β είναι ασυµβίβαστα, να εξετάσετε αν είναι ασυµβίβαστα και τα Α, Β 5 i είξτε ότι Ρ(Α Β)=

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Άσκηση 1 η 1 η Εργασία ΔΙΠ50 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50 Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΟΥ BAYES, Η ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΟΜΩΝΥΜΟΥ ΘΕΩΡΗΜΑΤΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Χαράλαµπος Α. Χαραλαµπίδης Τµήµα Μαθηµατικών, Πανεπιστήµιο Αθηνών 23 Οκτωβρίου 2009 ΣΧΕ ΙΟ ΙΑΛΕΞΗΣ ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΕΦΑΛΑΙΟ 6 ΣΥΝΑΡΤΗΣΕΙΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΠΟΛΥΜΕΤΑΒΛΗΤEΣ ΚΑΤΑΝΟΜEΣ Σε πολλά προβλήματα, ενδιαφερόμαστε για περισσότερα από ένα χαρακτηριστικά ενός πληθυσμού. Τα χαρακτηριστικά αυτά είναι πιθανό να αλληλοεξαρτώνται

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό ο Φροντιστηριο ΗΥ7 - Επαναληπτικό Επιµέλεια : Γ. Καφεντζής 7 Ιανουαρίου 4 Ασκηση. Το σήµα s µεταδίδεται από ένα δορυφόρο αλλά λόγω της επίδρασης του ϑορύβου το λαµβανόµενο σήµα έχει τη µορφή X s + W. Οταν

Διαβάστε περισσότερα

ΔΙΔΙΑΣΤΑΤΕΣ «COPULAS» ΜΕ ΕΜΦΑΣΗ ΣΕ ΑΣΦΑΛΙΣΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ

ΔΙΔΙΑΣΤΑΤΕΣ «COPULAS» ΜΕ ΕΜΦΑΣΗ ΣΕ ΑΣΦΑΛΙΣΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Μαθηματικά των Υπολογιστών και των Αποφάσεων» ΔΙΔΙΑΣΤΑΤΕΣ «COPULAS» ΜΕ ΕΜΦΑΣΗ ΣΕ ΑΣΦΑΛΙΣΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ x.5.5.75 4.5.5 y.75 ΝΤΑΤΣΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Διμεταβλητές κατανομές πιθανοτήτων

Διμεταβλητές κατανομές πιθανοτήτων Διμεταβλητές κατανομές πιθανοτήτων Για να περιγράψουμε την σχέση ανάμεσα σε δύο τυχαίες μεταβλητές χρειαζόμαστε την κοινή κατανομή πιθανοτήτων τους. Η κοινή συνάρτηση πιθανότητ ικανοποιε ί τις συνθ ήκες

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 2 Νοεµβρίου 2009 1.3. Ας ϑεωρήσουµε ένα σύνολο 11 ατόµων {α 0, α 1,..., α 10 } των οποίων καταγράφουµε τα γενέθλια. Να υπολογισθεί

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής. Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Διαβάστε περισσότερα

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών 3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής

Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβλητής Αριθµητικά χαρακτηριστικά µιάς τυχαίας µεταβητής (Α) Mέση τιµή Ορισµός Η µέση τιµή ή µαθηµατική επίδα µιας τ.µ. Χ µε πυκνότητα πιθανότητας f (x) είναι ο αριθµός: µ E() + xf (x) xf (x)dx διακριτή συνεχής

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε

Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f

Διαβάστε περισσότερα

4. ΔΙΜΕΤΑΒΛΗΤΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΣΕΙΡΕΣ

4. ΔΙΜΕΤΑΒΛΗΤΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΣΕΙΡΕΣ 36 4. ΔΙΜΕΤΑΒΛΗΤΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΣΕΙΡΕΣ Στα προηγούμενα εξετάστηκαν απλές μονομεταβλητές στατιστικές σειρές, δηλ. ενός στατιστικού πληθυσμού που εξετάζεται ως προς μια μεταβλητή. Όπως ήδη έχει αναφερθεί

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ) (ΣΥΝΕΧΕΙΑ) Χαράλαµπος Α. Χαραλαµπίδης 9 εκεµβρίου 2009 Η ηµαντικότερη κατανοµή πιθανότητας της Θεωρίας Πιθανοτήτων και της Στατιτικής, µε µεγάλο πεδίο εφαρµογών, είναι η κανονική κατανοµή. Η κατανοµή αυτή

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 009 ευτέρα, 8 Μα ου 009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o Α. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α Β)=Ρ(Α)+Ρ(Β) Μονάδες

Διαβάστε περισσότερα

X i = Y = X 1 + X X N.

X i = Y = X 1 + X X N. Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! ookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)

Διαβάστε περισσότερα

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011 Πάτρα, 7 Ιανουαρίου 011 Γενικά Πολλές ϕορές µας ενδιαφέρει να µελετήσουµε τις σχέσεις που υπάρχουν ανάµεσα στις µεταβλητές. Παράδειγµα 1 OZON 300 80 60 40 0 00 180 150 00 50 300 350 400 450 CFC 1 Από το

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα