Ρεαλιστικά µαθηµατικά & Εµπλαισιωµένη µάθηση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ρεαλιστικά µαθηµατικά & Εµπλαισιωµένη µάθηση"

Transcript

1 Ρεαλιστικά µαθηµατικά & Εµπλαισιωµένη µάθηση στη υπηρεσία της διδασκαλίας των µαθηµατικών

2 Ρεαλιστικά µαθηµατικά... σαν ορισµός Διδασκαλία µαθηµατικών µέσα από ρεαλιστικές καταστάσεις - καταστάσεις που έχουν νόηµα για τους µαθητές Τα θεµέλια της ρεαλιστικής µαθηµατικής εκπαίδευσης τέθηκαν από τον H. Freudenthal και τους συνεργάτες του, στα πλαίσια του «Ινστιτούτου για την Ανάπτυξη της Μαθηµατικής Εκπαίδευσης» στην Ολλανδία

3 βασικές παραδοχές Τα µαθηµατικά διδάσκονται για να είναι χρήσιµα χρήσιµα και για την οργάνωση της πραγµατικότητας και για την οργάνωση των µαθηµατικών Τα µαθηµατικά αποτελούν εργαλείο οργάνωσης του φυσικού, κοινωνικού και νοητικού κόσµου Η γνώση που αποκτά τελικά το άτοµο έχει άµεση σχέση µε τις αναπαραστάσεις που έχει σε καθαρά ατοµικό επίπεδο και η γνώση που ανασύρουµε από τη µνήµη µας κατά τη διαδικασία επίλυσης ενός προβλήµατος είναι µια «πλαισιοποιηµένη» γνώση η οποία σταδιακά µόνο αποπλαισιοποιείται. από το συγκεκριµένο στο αφηρηµένο Το πλαίσιο των «ρεαλιστικών» προβληµάτων δεν περιορίζεται στον πραγµατικό ή κοινωνικό κόσµο αλλά επεκτείνεται και στην πραγµατικότητα της φαντασίας των παιδιών

4 βασική δοµή Σηµείο εκκίνησης των ρεαλιστικών προβληµάτων είναι η άτυπη καθηµερινή γνώση και τα ενδιαφέροντα των µαθητών Ένα πρόβληµα/πλαίσιο µπορεί να έχει τη µορφή ενός λεκτικού προβλήµατος, ενός παιχνιδιού, µιας ιστορίας ή παραµυθιού, να αναπαρίσταται από µοντέλα, σχήµατα ή γραφήµατα ή να αποτελεί συνδυασµό όλων των προηγούµενων. Μέσω της διαδικασίας της µαθηµατικοποίησης οι µαθητές θα οικοδοµήσουν σιγά σιγά, µέσα από την κατασκευή µοντέλων, έναν «µαθηµατικό µικρόκοσµο» όπου θα µιλούν «Μαθηµατικά», θα δίνουν και θα ζητούν εξηγήσεις, θα σχεδιάζουν προτεινόµενες λύσεις έτσι θα επανεφεύρουν τα τυπικά µαθηµατικά.

5 θεωρητικό πλαίσιο Η θεωρία της ρεαλιστικής µαθηµατικής εκπαίδευσης (Realistic Mathematics Education. RME ) διαµορφώθηκε στη βάση κυρίως τριών θεωρητικών αξόνων: Την θεωρία των επιπέδων.(van Hiele) Την διδακτική φαινοµενολογία (Freudenthal) Την προοδευτική µαθηµατικοποίηση (Wiskobas) Και συνοµιλεί µε προσεγγίσεις όπως: Την εµπλαισιωµένη µάθηση (Collins) Γνωστική µαθητεία (Vygotsky) Τη µάθηση ως διαδικασία συµµετοχής/εµπλοκής (Vygotsky)

6 Θεωρία των επιπέδων Van Hiele λίγα λόγια

7 Θεωρία των επιπέδων Van Hiele Δηµιουργήθηκε αρχικά για την περιγραφή της διδασκαλίας και µάθησης της γεωµετρίας, αλλά µπορεί και να γενικευθεί Κατά τη διαδικασία της µάθησης ο µαθητής περνά από πέντε επίπεδα σκέψης τα επίπεδα αυτά είναι: διαδοχικά και ιεραρχικά η µετάβαση από το ένα στο άλλο εξαρτάται περισσότερο από τη διδασκαλία παρά από την ηλικία ή την ωριµότητα η σειρά δεν µπορεί να διαταραχθεί κάθε επίπεδο χαρακτηρίζεται από το δικό του δίκτυο σχέσεων, τις δικές του έννοιες και τη δική του γλώσσα Χρειάζονται κατάλληλες εµπειρίες για την κατάκτησή τους Ακατάλληλη εµπειρίες παρεµποδίζουν τη µάθηση

8 Θεωρία των επιπέδων Van Hiele Επίπεδο 1: Αναγνώρισης ή Ολιστικό (Visualization) Επίπεδο 2: Ανάλυσης ή Περιγραφικό (Analysis) Επίπεδο 3: Διάταξης, ή Συσχετιστικό, ή Άτυπης Αφαίρεσης (Informal Deduction) Επίπεδο 4: Παραγωγικό ή αφαίρεσης (Deduction) Επίπεδο 5: Αυστηρότητας

9 Θεωρία των επιπέδων Van Hiele Υπάρχουν και πέντε φάσεις µάθησης για το πέρασµα από το ένα επίπεδο στο άλλο που κινητοποιούνται µέσα από συγκεκριµένες διδακτικές παρεµβάσεις. Οι φάσεις είναι: Πρώτη φάση: Πληροφόρηση - Διερεύνηση Ο δάσκαλος ενηµερώνεται για το επίπεδο των µαθητών Οι µαθητές ερευνούν το θέµα µέσω των υλικών που ο δάσκαλος διαθέτει στους µαθητές, π.χ. εξετάζονται παραδείγµατα και αντιπαραδείγµατα για να ανακαλύψει µια δοµή. Δεύτερη φάση: Περιορισµένος/καθοδηγούµενος προσανατολισµός Μέσα από δραστηριότητες διερευνούν κάποιες πρώτες έννοιες. Το παιδί έρχεται σε επαφή µε τις αρχικές συνδέσεις του δικτύου των σχέσεων που πρόκειται να σχηµατιστούν µέσω µιας προσεκτικά οργανωµένης ακολουθίας δραστηριοτήτων και απλών βηµάτων που απαιτούν συγκεκριµένη απάντηση. Μαθαίνει κάνοντας και βρίσκοντας, όχι ακούγοντας τις εξηγήσεις του δασκάλου

10 Θεωρία των επιπέδων Van Hiele Τρίτη φάση: Επεξήγηση /Αποσαφήνιση. Ο δάσκαλος οργανώνει τη συζήτηση µέσα στην τάξη, η οποία θα καταλήξει σε µια σωστή χρήση της γλώσσας, την οποία ο µαθητής πρέπει να είναι σε θέση να χρησιµοποιεί. Τέταρτη φάση: Ελεύθερος προσανατολισµός. Οι µαθητές αντιµετωπίζουν στόχους που απαιτούν πολλά βήµατα και πραγµατοποιούνται µε διαφορετικούς τρόπους. Εφαρµόζουν τη γνώση σε άλλες καταστάσεις Πέµπτη φάση: Ολοκλήρωση. Ο δάσκαλος προσκαλεί τους µαθητές να αναστοχαστούν πάνω στις ενέργειές τους και βοηθάει ώστε τα αντικείµενα και οι σχέσεις να ενσωµατωθούν σε ένα νέο γνωστικό σχήµα. Θα πρέπει να ξεφύγουν από το σχήµα και να σκέφτονται µε τις ιδιότητες

11 Θεωρία των επιπέδων Van Hiele εφαρµογές στη διδασκαλία Παιχνίδια όπως: "Έγώ έχω - ποιος έχει» Βρείτε ίδια σχήµατα Πόσα διαφορετικά σχήµατα µπορώ να κάνω µε τα τανγράµ; Τι είναι κοινό σε όλα τα τρίγωνα; Ποιο σχήµα είµαι; Τι ιδιότητες έχω; Χρήση της τεχνολογίας (π.χ., Sketchpad) για να διερευνήσετε τις ιδιότητες των σχηµάτων Δηµιουργήστε ένα ορθογώνιο στο Sketchpad, µετρήστε τα µήκη των δύο διαγωνίων, τις αποστάσεις από τις κορυφές µε τα σηµεία τοµής των διαγωνίων και βγάλτε συµπεράσµατα Ταξινοµήστε τα σχήµατα µε βάση τις ιδιότητές τους Επιλύστε προβλήµατα που αφορούν τις ιδιότητες των σχηµάτων

12 ρεαλιστικά µαθηµατικά συνέχεια

13 ...σαν ορισµός Διδασκαλία µαθηµατικών µέσα από ρεαλιστικές καταστάσεις - καταστάσεις που έχουν νόηµα για τους µαθητές Τα θεµέλια της ρεαλιστικής µαθηµατικής εκπαίδευσης τέθηκαν από τον H. Freudenthal και τους συνεργάτες του, στα πλαίσια του «Ινστιτούτου για την Ανάπτυξη της Μαθηµατικής Εκπαίδευσης» στην Ολλανδία Η θεωρία της ρεαλιστικής µαθηµατικής εκπαίδευσης (Realistic Mathematics Education. RME ) διαµορφώθηκε στη βάση κυρίως τριών θεωρητικών αξόνων: Την θεωρία των επιπέδων.(van Hiele) Την διδακτική φαινοµενολογία (Freudenthal) Την προοδευτική µαθηµατικοποίηση (Wiskobas)

14 διδακτική φαινοµενολογία Φαινοµενολογία: Η φαινοµενολογία είναι φιλοσοφικό κίνηµα το οποίο βασίζεται στην διερεύνηση των φαινοµένων, δηλαδή των πραγµάτων που γίνονται αντιληπτά ενσυνείδητα, και όχι στην ύπαρξη οποιουδήποτε πράγµατος «αυτού καθ' εαυτού», ευρισκόµενου πέρα από τα όρια της ανθρώπινης συνειδητότητας. Με σηµείο εκκίνησης την εµπειρία των φαινοµένων (αυτό που αποτυπώνεται ως συνειδητή εµπειρία), επιχειρεί να εξαγάγει τα θεµελιώδη χαρακτηριστικά της αντιληπτικής διαδικασίας και την οντότητα των εµπειριών µας. Η σηµασία του πλαισίου που καθορίζει την οντολογία, βλ. Heidegger: experience is always already situated in a world and in ways of being Δεν προσεγγίζεται η οντολογία των πραγµάτων στη βάση ιδιοτήτων ή ουσιοκρατικών χαρακτηριστικών αλλά στη βάση της ιστορικά τοποθετηµένης επιτέλεσής τους και στη σηµασία αυτής.

15 διδακτική φαινοµενολογία (Freudenthal) Διδακτική Φαινοµενολογία: έννοιες ως «εργαλεία» οργάνωσης των πραγµατικών φαινοµένων Σε ποια φαινόµενα εµφανίζεται µια µαθηµατική έννοια; Σε ποια µπορεί να επεκταθεί; Ποια φαινόµενα οργανώνει; Από ποιες προβληµατικές καταστάσεις της καθηµερινής ζωής προέκυψε; Ποια προβλήµατα µπορεί να λύσει; Πώς συνδέεται µε άλλες έννοιες επί του φορµαλισµού των µαθηµατικών; Tι εννοιολογικές αλλαγές µπορεί να υποστεί η έννοια κατά τη διάρκεια της σχολικής εκπαίδευσης;

16 διδακτική φαινοµενολογία (Freudenthal) Επιλογή κατάλληλων δραστηριοτήτων µε «πραγµατικές» (ρεαλιστικές) προβληµατικές καταστάσεις για να επανεφεύρουν οι µαθητές τις έννοιες Ο µαθητής ξεκινά από τα ίδια τα φαινόµενα που ζητούν οργάνωση και µε αφετηρία αυτά, µαθαίνει πώς να χειρίζεται τις έννοιες και δοµές. Οι διαφορετικές δραστηριότητες συνδέονται στη βάση κοινών εννοιολογικών χαρακτηριστικών, ιδιοτήτων των εννοιών και κοινού συµβολισµού Ο δάσκαλος ελέγχει τη διαδικασία της καθοδηγούµενης επανεφεύρεσης της µαθηµατικής έννοιας και των τυπικών µαθηµατικών µέσα από τα άτυπα

17 καθοδηγούµενη επανεφεύρεση - µαθηµατικοποίηση bottom up process αρχικά οι µαθητές κατασκευάζουν µοντέλα της προβληµατικής κατάστασης δίνοντας λύσεις που βασίζονται σε διαισθήσεις και άτυπα µαθηµατικά στόχος να βιώσουν οι µαθητές καταστάσεις παρόµοιες µε αυτές που δηµιούργησαν την ανάγκη να δηµιουργηθεί εξ αρχής η έννοια µέσα από έλεγχο υποθέσεων, πειραµατισµούς, ανταλλαγή απόψεων, διατύπωση επιχειρηµατολογίας ΟΧΙ να αναπαρασταθεί το ιστορικό πλαίσιο χρήση της ιστορίας των µαθηµατικών για ιδέες και επιλογή δραστηριοτήτων µέσα από την επεξεργασία ερωτηµάτων ή προβληµατικών καταστάσεων µε κοινή µαθηµατική δοµή θα φάσουν σε τυπικές στρατηγικές, αφηρηµένα µαθηµατικά αντικείµενα και τυπικές µαθηµατικές δοµές η διαδικασία αυτή ονοµάζεται προοδευτική τυποποίηση ή µαθηµατικοποίηση

18 η διαδικασία της µαθηµατικοποίησης Οριζόντια µαθηµατικοποίηση: πρώτο στάδιο στη διδασκαλία µιας έννοιας Μέσω συγκεκριµένων ενεργειών (π.χ. διατύπωση και αναπαράσταση του προβλήµατος µε διαφόρους τρόπους, ανακάλυψη σχέσεων κλπ.) προσπαθούµε να εντοπίσουµε τις µαθηµατικές έννοιες που βρίσκονται διάχυτες µέσα στο πλαίσιο του προβλήµατος. Μοντελοποίηση της προβληµατικής κατάστασης στη βάση διαισθητικών και άτυπων µαθηµατικών γνώσεων Τα µοντέλα είναι γέφυρες µεταξύ πραγµατικού κόσµου και εσωτερικού νοητικού κόσµου Αναγνώριση κοινών χαρακτηριστικών ανάµεσα στις διάφορες δραστηριότητες Επινόηση εργαλείων, συµβόλων, αναπαραστάσεων για τη λύση και µοντελοποίηση των καταστάσεων...στη συνέχεια γίνεται χρήση όλο και πιο τυπικών µαθηµατικών συµβόλων και εργαλείων...τα µοντέλα γίνονται πιο αφηρηµένα και γενικά µοντέλα των κοινών χαρακτηριστικών των δραστηριοτήτων

19 η διαδικασία της µαθηµατικοποίησης Κατακόρυφη µαθηµατικοποίηση: δεύτερο στάδιο στη διδασκαλία µιας έννοιας Tο (πραγµατικό) πρόβληµα που έχει «µεταφραστεί» σε µαθηµατικό, αντιµετωπίζεται και επεξεργάζεται µε µαθηµατικά εργαλεία (πχ. αναπαράσταση σχέσεων µε τύπους, απόδειξη σχέσεων, χρήση γνωστών µοντέλων κλπ.) Κατασκευή ενός νέου, τυπικού, µαθηµατικού αντικειµένου/έννοιας χρήση τυπικών εργαλείων, συµβόλων και µαθηµατικής γλώσσας για την περιγραφή και λύση της προβληµατικής κατάστασης Στόχος: η απόκτηση τυπικής γνώσης που µπορεί να µεταφερθεί σε άλλες προβληµατικές καταστάσεις

20 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 1. Από το συγκεκριµένο στο αφηρηµένο: Η εκµάθηση των µαθηµατικών είναι µια κατασκευαστική διαδικασία και επιτυγχάνεται µέσα από συγκεκριµένα προβλήµατα και καταστάσεις. Στη φάση της εισαγωγής ενός σχετικά νέου αντικειµένου οι µαθηµατικές δραστηριότητες πρέπει να διατυπώνονται σε ένα συγκεκριµένο πλαίσιο (context) και τα πραγµατικά φαινόµενα πρέπει να διερευνώνται κάτω από όσο το δυνατό περισσότερες οπτικές γωνίες. Ένα πρόβληµα πλαίσιο µπορεί να έχει τη µορφή ενός λεκτικού προβλήµατος αλλά ενδέχεται επίσης να εµφανίζεται µε τη µορφή παιχνιδιού, µιας ιστορίας ή παραµυθιού, να αναπαρίσταται από µοντέλα, σχήµατα ή γραφήµατα ή να αποτελεί συνδυασµό όλων των προηγούµενων.

21 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 2. Η εκµάθηση µιας µαθηµατικής έννοιας είναι µια διαδικασία που θέλει χρόνο και κινείται σε διάφορα επίπεδα αφαίρεσης από το συγκεκριµένο ως το αφηρηµένο. Χρήση σταδιακής αύξησης των λογικών βηµάτων που απαιτούνται για την επεξεργασία της προβληµατικής κατάστασης Οι όροι αυτοί είναι σχετικοί καθώς το αφηρηµένο στην αρχή της διδασκαλίας, µπορεί να είναι συγκεκριµένο σε µεγαλύτερες τάξεις. Για να γεφυρωθεί αυτό το χάσµα µεταξύ συγκεκριµένου και αφηρηµένου χρησιµοποιείται συγκεκριµένο υλικό, οπτικά µοντέλα, πρότυπες καταστάσεις, σχήµατα, διαγράµµατα και σύµβολα.

22 Ο φούρναρης και ο γίγαντας Σ' ένα µακρινό δάσος στην πέρα -πέρα και παραπέρα χώρα ζούσε ένας γίγαντας σε ένα πανύψηλο πύργο. Πέντε χιλιόµετρα νότια υπήρχε ένα µικρό χωριουδάκι ( όχι των στρουµφ βέβαια ). Εκεί ζούσε ο κύριος Μαθηµάτας ο φούρναρης που ήταν πέντε φορές πιο κοντός από τον γίγαντά µας. Ζούσε σ ένα φτωχικό καλυβάκι που ήταν πέντε φορές χαµηλότερο απ τον πύργο του γίγαντα. Μια µέρα ο κύριος Μαθηµάτας αποφάσισε να κάνει περίπατο στο δάσος για να χαρεί τη φύση και το οξυγόνο. Οι πατούσες του ήταν πέντε φορές µικρότερες από τις πατούσες του γίγαντα. Καθώς προχωρούσε αισθάνθηκε περίεργα σα να συνταρασσόταν η γη από σεισµό. Γρήγορα ήρθε αντιµέτωπος µε τον πελώριο κάτοικο του δάσους. 'Εγιναν αµέσως φίλοι ( ο καλόκαρδος γίγαντας που λέµε...)! Από τότε ο φούρναρής µας έφτιαχνε καθηµερινά ψωµί για τον φίλο του. Μόνο που είχε ένα πρόβληµα : Το ψωµί που έτρωγε ο γίγαντας ήταν πέντε φορές µεγαλύτερο από το ψωµί του κυρίου Μαθηµάτα! Να συµπληρώσετε τον παρακάτω πίνακα :

23 Ο φούρναρης και ο γίγαντας Να συµπληρώσετε τον παρακάτω πίνακα : Ύψος φούρναρη Ύψος γίγαντα ύψος καλύβας ύψος πύργου 150cm 3m 600cm 25m µήκος πατούσας φούρναρη 25cm µήκος πατούσας γίγαντα 140cm µήκος ψωµιού φούρναρη µήκος ψωµιού γίγαντα 20cm

24 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 3. Χρήση µοντέλων Από το «µοντέλο του...» δηλ. µοντέλο µιας συγκεκριµένης κατάσταση στο «µοντέλο για...» δηλ. µοντέλο που περιγράφει ένα σύνολο καταστάσεων στη βάση της κοινής τυπικής µαθηµατικής δοµής (βλ. εξίσωση) Τα µοντέλα παίζουν ρόλο καθοδηγητικό (καθοδηγούν την ανακάλυψη) και περιγραφικό (περιγράφουν την µαθηµατική έννοια) Είναι οχήµατα για τη µαθηµατικοποίηση µπορεί να είναι χειραπτικά υλικά, σύµβολα, εργαλεία, εικόνες, διαγράµµατα, άτυπες ή τυπικές στρατηγικές, π.χ., πολ/σµος ως επαναλαµβανόµενη πρόσθεση π.χ., το µοντέλο της αριθµογραµµής, από χρήση σε απαρίθµηση (model of) σε χρήση για νοητική πρόσθεση ή αφαίρεση (model for)

25 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 4. Η µάθηση είναι προσωπική διαδικασία και άρα πρέπει να λαµβάνονται υπόψιν οι ατοµικές διαφορές Χρήση των αρχών της εξατοµικευµένης διδασκαλίας /µάθησης Σηµαντικός ο ρόλος της γνωστικής σύγκρουσης ανάµεσα στις διαισθητικές και τυπικές µαθηµατικές γνώσεις

26 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 5. Η µάθηση είναι µια κοινωνική δραστηριότητα οπότε η εκπαίδευση των µαθηµατικών να στηρίζεται στην αλληλεπίδραση. Οι µαθητές κατά τη διδασκαλία έχουν την ευκαιρία να επεξεργαστούν όχι µόνο τις δικές τους «κατασκευές» αλλά και των συµµαθητών τους. Για τη ρεαλιστική εκπαίδευση γενικά, η µαθησιακή διαδικασία εξελίσσεται στα πλαίσια µιας αλληλεπιδραστικής, αµφίδροµης διδασκαλίας όπου εκτός από το χρόνο για ατοµική εργασία πρέπει να δίνεται και η ευκαιρία για οµαδική συζήτηση, συλλογική προσπάθεια, παρουσίαση και κρίση εργασιών, ανταλλαγή επιχειρηµάτων κλπ.

27 βασικές αρχές της ρεαλιστικής µαθηµατικής εκπαίδευσης 6. Η εκµάθηση των µαθηµατικών δεν είναι η απορρόφηση µιας συλλογής «άσχετων» µεταξύ τους γνώσεων και δεξιοτήτων αλλά η οικοδόµηση εννοιών µέσα σε µια δοµηµένη ενότητα. Επειδή οι µαθηµατικές έννοιες όπως και τα πραγµατικά φαινόµενα - σπανίως εκφράζουν µια και µόνο δοµή, θα πρέπει οι µαθησιακές πορείες να αλληλοσυµπλέκονται και να συσχετίζονται µεταξύ τους. Αυτό πρέπει να συµβαίνει και για έναν ακόµα λόγο:. επειδή τα προαπαιτούµενα για την προοδευτική µαθηµατικοποίηση σε µια θεµατική περιοχή, συνήθως βρίσκονται σε άλλες θεµατικές περιοχές. Χρήση των αρχών της διαθεµατικής προσέγγισης στη µαθηµατική εκπαίδευση

28 κάποια παραδείγµατα

29 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

30 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

31 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

32 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

33 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

34 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

35 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

36 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα από: Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική επ. Κωνσταντίνος εργασία (επ: Π. Χρήστου Ε. Κολέζα)

37 µοντέλα στα µαθηµατικά & η διαδικασία της µοντελοποίησης

38 µοντέλα στα µαθηµατικά Πρόβληµα: Υπάρχουν 12 λουλούδια στην αυλή. Έκοψα τα 4 να τα δώσω στη φίλη µου. Πόσα έµειναν στον κήπο;

39 Σε ένα τραπέζι κάθονται 4 άτοµα Πήρε µία παρέα να κλείσει τραπέζι για 12 άτοµα, πόσα τραπέζια πρέπει να ενώσουµε; Πόσα τραπέζια για δέκα άτοµα;

40 τα µοντέλα στη διδακτική πράξη Υπό το πρίσµα της µοντελοποίησης, το ζητούµενο της µάθησης δεν περιορίζεται µόνο στην πρόσκτηση ενός µοντέλου αλλά επεκτείνεται και στην ανάπτυξη όλων εκείνων των γνωστικών εργαλείων που επιτρέπουν τις πρακτικές της µοντελοποίησης (Ραβάνης, 1999). Μοντελοποίηση: είναι η διαδικασία δηµιουργίας αφηρηµένων, εννοιολογικών, γραφικών ή και µαθηµατικών µοντέλων. Η προσέγγιση που βοηθά τους µαθητές να εκφράζουν και να σκέφτονται µε όρους µοντέλων και όχι µε µαθηµατικά σύµβολα ή γλωσσικές εκφράσεις φαίνεται ότι ενισχύουν την κατανόησή τους και όχι την στείρα αποµνηµόνευση (Βοσνιάδου, 1998).

41 µοντελοποίηση...συνέχεια

42 το µοντέλο της µοντελοποίησης

43 το µοντέλο της µοντελοποίησης

44 το µοντέλο της µοντελοποίησης

45 το µοντέλο της µοντελοποίησης

46 µοντελοποίηση στα µαθηµατικά: η διαδικασία µετατροπής µιας ρεαλιστικής προβληµατικής κατάστασης σε ένα µοντέλο /αναπαράσταση που θα βοηθήσει στην επίλυση ή/και διερεύνηση για τις λύσεις του προβλήµατος

47 παράδειγµα «α. Ποια σχέση συνδέει το χρόνο µε τον όγκο του νερού που µπαίνει σε ένα βαρέλι όταν η παροχή της βρύσης είναι σταθερή; β. Ποια σχέση συνδέει τον όγκο νερού µε την παροχή σε συγκεκριµένο χρονικό διάστηµα; γ. Ποια σχέση συνδέει τον χρόνο µε την παροχή όταν ο όγκος του νερού είναι συγκεκριµένος;».

48 µοντελοποίηση στα µαθηµατικά: ερµηνεία πραγµατικών καταστάσεων επίλυση ρεαλιστικών προβληµάτων σύνδεση µε την πραγµατικότητα διαθεµατικότητα χρήση διαφορετικών αναπαραστάσεων διερεύνηση διαφόρων τρόπων λύσεως συζήτηση επί των λύσεων αξιολόγηση του τρόπου δράσης

49 Ο φούρναρης και ο γίγαντας Σ' ένα µακρινό δάσος στην πέρα -πέρα και παραπέρα χώρα ζούσε ένας γίγαντας σε ένα πανύψηλο πύργο. Πέντε χιλιόµετρα νότια υπήρχε ένα µικρό χωριουδάκι ( όχι των στρουµφ βέβαια ). Εκεί ζούσε ο κύριος Μαθηµάτας ο φούρναρης που ήταν πέντε φορές πιο κοντός από τον γίγαντά µας. Ζούσε σ ένα φτωχικό καλυβάκι που ήταν πέντε φορές χαµηλότερο απ τον πύργο του γίγαντα. Μια µέρα ο κύριος Μαθηµάτας αποφάσισε να κάνει περίπατο στο δάσος για να χαρεί τη φύση και το οξυγόνο. Οι πατούσες του ήταν πέντε φορές µικρότερες από τις πατούσες του γίγαντα. Καθώς προχωρούσε αισθάνθηκε περίεργα σα να συνταρασσόταν η γη από σεισµό. Γρήγορα ήρθε αντιµέτωπος µε τον πελώριο κάτοικο του δάσους. 'Εγιναν αµέσως φίλοι ( ο καλόκαρδος γίγαντας που λέµε...)! Από τότε ο φούρναρής µας έφτιαχνε καθηµερινά ψωµί για τον φίλο του. Μόνο που είχε ένα πρόβληµα : Το ψωµί που έτρωγε ο γίγαντας ήταν πέντε φορές µεγαλύτερο από το ψωµί του κυρίου Μαθηµάτα! Να συµπληρώσετε τον παρακάτω πίνακα :

50 Ο φούρναρης και ο γίγαντας Να συµπληρώσετε τον παρακάτω πίνακα : Ύψος φούρναρη Ύψος γίγαντα ύψος καλύβας ύψος πύργου 150cm 3m 600cm 25m µήκος πατούσας φούρναρη 25cm µήκος πατούσας γίγαντα 140cm µήκος ψωµιού φούρναρη µήκος ψωµιού γίγαντα 20cm

51 διδακτικά ωφέλη από µοντελοποίηση προβληµάτων δεν γίνεται χρήση τυπικών µαθηµατικών όπως συµβαίνει µε τα κλασσικά συστήµατα µοντελοποίησης αλλά ευνοείται ο ποιοτικός και ο ηµιποσοτικός συλλογισµός, είναι εφικτή η µοντελοποίηση µε βάση την ανάλυση των προβληµάτων και των καταστάσεων σε οντότητες ή αντικείµενα, σε ιδιότητές τους καθώς και σχέσεις µεταξύ των ιδιοτήτων, επιτρέπεται η έκφραση µέσω οπτικοποίησης τόσο των οντοτήτων, και των ιδιοτήτων τους όσο και των σχέσεων ή των κανόνων που τις διέπουν ή επιδρούν πάνω σε αυτές, υποστηρίζονται ποικίλες και κατάλληλες συµβολικές και γραφικές αναπαραστάσεις, που συνιστούν γνωστικά εργαλεία και µαθησιακά βοηθήµατα, επιτρέπεται στο µαθητή η ανάπτυξη µεταγνωστικών ικανοτήτων, σηµαντικών για την οικοδόµηση των γνώσεων, υποστηρίζονται συνεργατικές δραστηριότητες µεταξύ οµάδων µαθητών αλλά και διδασκόντων τόσο σε επίπεδο τοπικού δικτύου, όσο και σε επίπεδο διαδικτύου.

52 Δραστηριότητες µοντελοποίησης Vs Λεκτικά προβλήµατα

53 Σενάριο για την εισαγωγή της έννοιας της δύναµης Σε µια λίµνη υπάρχει ένα νούφαρο µήκους 2 cm. Κάθε µέρα διπλασιάζει το µήκος του. Να καταγράψετε τα µήκη του νούφαρου στη διάρκεια των πρώτων 5 ηµερών: Λύση : 1η µέρα : 2 cm 2η µέρα : 2 * 2 cm 3η µέρα : 2 * 2 * 2 cm 4η µέρα : 2 * 2 * 2 * 2 cm 5η µέρα : 2 * 2 * 2 * 2 * 2 γραφική αναπαράσταση σε µιλιµιτρέ χαρτί σταδιακή µαθηµατικοποίηση

54 µοντελοποίηση και εξισώσεις Πρόβληµα : Η Τασία έχει διπλάσια χρήµατα από την Ελένη. Η Ελένη τριπλάσια απ τη Βούλα. Τα συνολικά τους χρήµατα είναι 200 ευρώ. Πόσα χρήµατα διαθέτουν η κάθε µία; Λύση : Εδώ προτείνετε η εικονική αναπαράσταση των χρηµατων της καθεµίας µε παύλες. Με - εικονίζουµε τα χρήµατα της Βούλας. Βούλα : - Ελένη : Τασία : Αν τώρα η - παριστάνει τον άγνωστο x γίνεται φανερό ότι η εξίσωσή µας είναι η x +3x+6x = 200.Ή ακόµη από το µέτρηµα των παυλών : 10x =200.

55 µοντελοποίηση π.χ., Ένας βιολόγος θέλει να µετρήσει τις πέστροφες που υπάρχουν σε µία λίµνη. Πιάνει την πρώτη φορά 150 πέστροφες, τις σηµαδεύει και τις ξαναπετάει στη λίµνη. Τη δεύτερη φορά ξανιαπιάνει 150 πέστροφες εκ των οποίων οι 9 ήταν συµαδεµένες. Τι συµπέρασµα µπορεί να βγάλει;

56 στόχος µοντελοποίησης Ο στόχος δεν είναι απλώς η παραγωγή µιας συγκεκριµένης απάντησης σε συγκεκριµένο ερώτηµα. Ο στόχος είναι η ανάπτυξη ενός εννοιολογικού εργαλείου (µοντέλου) για κατασκευή, περιγραφή, ή επεξήγηση ενός σηµαντικού µαθηµατικού συστήµατος. εφαρµοσιµότητα των µαθηµατικών: διδασκαλία των µαθηµατικών ως διαδικασία µαθηµατικοποίησης της πραγµατικότητας

57 παράδειγµα Νωρίς το πρωί η αστυνοµία ανακάλυψε ότι κάποιοι άνθρωποι επιδιόρθωσαν το περιτοίχισµα του πάρκου, που είχε καταστραφεί από τις βροχές του χειµώνα. Η κατασκευή του περιτοιχίσµατος είναι απαραίτητη για την ασφάλεια των παιδιών που παίζουν στο πάρκο. Οι γονείς των παιδιών θέλουν να ευχαριστήσουν τους ανθρώπους που είχαν επιδιορθώσει το περιτοίχισµα. Το µόνο, όµως, που βρήκε η αστυνοµία είναι τα ίχνη των παπουτσιών των ανθρώπων που εργάστηκαν για την επιδιόρθωση. Το ίχνος που φαίνεται στην εικόνα ανήκει πιθανώς σε κάποιο µεγαλόσωµο άτοµο. Η αστυνοµία είναι πιθανόν να ανακαλύψει την ταυτότητα των ανθρώπων από το ύψος τους. Για να βοηθήσετε την αστυνοµία να βρει αυτούς τους ανθρώπους, πρέπει να σκεφτείτε έναν τρόπο µε τον οποίο να υπολογίζετε το ύψος των ανθρώπων από το µέγεθος των παπουτσιών που φορούν.

58 Δραστηριότητες ανάδειξης µοντέλου /series32.html

59 Δραστηριότητες ανάδειξης µοντέλου Προβληµατική κατάσταση που απαιτεί τη δηµιουργία νέου µοντέλου Ενεργοποίηση προϋπάρχουσας γνώσης Διαχείριση και αξιολόγηση της χρήσιµης πληροφορίας Ενεργοποίηση δεξιοτήτων από άλλες περιοχές της γνώσης Αξιολόγηση-µετατροπή του µοντέλου Συλλογική δράση για τη διερεύνηση της λύσης Λήψη αποφάσεων, έκφραση υποθέσεων, διεξαγωγή πειραµατικών συνθηκών για την αξιολόγηση της λειτουργίας του µοντέλου Συνεργασία και ανάπτυξη κοινωνικών δεξιοτήτων Μεταφορά της γνώσης γενίκευση

60 Αρχές κατασκευής δραστηριοτήτων µοντελοποίησης Η ρεαλιστική αρχή να έχει σχέση µε την πραγµατικότητα των µαθητών, να περιγράφει κατά το δυνατόν µια ρεαλιστική κατάσταση Η αρχή της κατασκευής µοντέλου να έχει δυνατότητα να αναπαρασταθεί µε ένα (τουλάχιστον) µοντέλο Η αρχή της αυτό-αξιολόγησης Η αρχή της τεκµηρίωσης της έννοιας (Η αρχή της εξωτερίκευσης) να µπορεί να τρέξει το µοντέλο και να ελεγχθεί η λειτουργία του Η αρχή της µεταφοράς των γνώσεων και της επαναχρησιµοποίησης του µοντέλου η δυνατότητα του µοντέλου να µεταφερθεί σε άλλα αντικείµενα, ώστε να αποτελεί σηµαντική γνώση

61 Δραστηριότητες ανάδειξης µοντέλου Βασικά χαρακτηριστικά: Να δηµιουργεί κίνητρα ενασχόλησης Να έχει νόηµα και να είναι κοντά στα ενδιαφέροντα των µαθητών Να µπορεί να διερευνηθεί µε ποικιλία τρόπων και διαφορετικών αναπαραστάσεων Να έχει ξεκάθαρους στόχους και να είναι κοντινό στις ικανότητες των µαθητών Να µπορεί να γενικευθεί η γνώση και να µεταφερθεί σε άλλες περιπτώσεις

62 Δραστηριότητες ανάδειξης µοντέλου παραδείγµατα Μελέτη της µεταβολής της απόστασης κινούµενου αυτοκινήτου από δυο σταθερά σηµεία. Πρόβληµα: Ένας αυτοκινητόδροµος βρίσκεται κοντά σε δυο σταθµούς εκποµπής σήµατος κινητού τηλεφώνου Α και Β. Μπορείτε να περιγράψετε πώς µεταβάλλονται οι αποστάσεις ενός αυτοκίνητο του από τους σταθµούς Α και Β καθώς κινείται στον αυτοκινητόδροµο; Το πρόβληµα αυτό επιτρέπει στον µαθητή (1) να κατασκευάσει το µοντέλο ο ίδιος, επιλέγοντας τις πληροφορίες που του είναι αναγκαίες για τη µελέτη και (2) να χρησιµοποιεί τις δυνατότητες του µέσου για να αναπαριστά την κίνηση και να κάνει πειράµατα µε τη θέση του κινητού και τις αποστάσεις του από τους σταθµούς Α και Β.

63 Οι αποστάσεις ΣΑ και ΣΒ του κινητού Σ από τους δυο σταθµούς (1) καταγράφονται σε ένα πίνακα τιµών, (2) χρησιµοποιούνται ως πλευρές ενός ορθογωνίου και ακόµα (3) γίνονται συντεταγµένες ενός σηµείου. Καθώς οι αποστάσεις µεταβάλλονται µπορούµε να κάνουµε εγγραφές των αποστάσεων στον πίνακα τιµών µε το πλήκτρο Tab, να παρατηρούµε τον τρόπο µεταβολής των πλευρών του ορθογωνίου και τον γεωµετρικό τόπο που γράφει το σηµείο που ορίζουν επ. Κωνσταντίνος οι συντεταγµένες Π. Χρήστου - αποστάσεις.

64 Δραστηριότητες ανάδειξης µοντέλου παραδείγµατα Υλοποίηση: Οι µαθητές αρχικά εστιάζουν την προσοχή τους στην µεταβολή της απόστασης ΣΑ και περιγράφουν τον τρόπο µεταβολής της καθώς κινούν µε το ποντίκι τους το κινητό Σ. Μετά εστιάζουν την προσοχή τους στην µεταβολή της απόστασης ΣΒ και περιγράφουν τον τρόπο µεταβολής της. Οι µαθητές εστιάζουν την προσοχή τους ταυτόχρονα στην µεταβολή της απόστασης ΣΑ και της απόστασης ΣΒ και περιγράφουν τον τρόπο συµµεταβολής τους (η συνεχής επανάληψη της κίνησης βοηθά τους µαθητές να αποκτήσουν δυνατότητες νοητικού συντονισµού στην µεταβολή των αποστάσεων, δηλαδή στη «θέαση» της συµµεταβολής των δυο αποστάσεων). Περιγράφουν την συµµεταβολή µε τη βοήθεια του γραφήµατος ή του παραλληλογράµµου ή του πίνακα τιµών. Μεταβάλλουν τη θέση των πόλεων ή του δρόµου και επαναλαµβάνουν την ίδια διαδικασία. Εξετάζουν ειδικές περιπτώσεις οι δυο πόλεις να είναι στην ίδια πλευρά του δρόµου ή και στις δυο πλευρές του αλλά κοντά στα δυο άκρα του ή πάνω στο δρόµο και οι δυο ή η µια. Έτσι αποκτούν πληρέστερη εικόνα για τη συµµεταβολή. Αναζητούν την θέση που το άθροισµα των δυο αποστάσεων είναι ελάχιστο. Εκφράζουν τον τρόπο µεταβολής των δυο αποστάσεων µε πολλαπλούς τρόπους

65 µοντέλα σε σενάρια

66 Δραστηριότητες ανάδειξης µοντέλου παραδείγµατα «Το σχολείο σας οργανώνει µια εκδροµή. Απευθύνεται σε ένα τουριστικό πρακτορείο για να πάρει προσφορά. Το πρακτορείο αρχικά σκόπευε να χρεώσει 150 για κάθε µαθητή. Δεδοµένου όµως ότι 100 µαθητές έχουν ήδη δηλώσει συµµετοχή στην εκδροµή προτίθεται να µειώσει το κόστος συµµετοχής όλων των µαθητών κατά 10 για κάθε επιπλέον µαθητή που συµµετέχει πέρα από τους πρώτους 100. Να διερευνήσετε πως διαµορφώνεται το κόστος της εκδροµής µετά την νέα αυτή προσφορά του τουριστικού πρακτορείου; Πόσοι µαθητές πρέπει να συµµετάσχουν στην εκδροµή ώστε η προσφορά αυτή να συµφέρει το πρακτορείο και πόσοι για να συµφέρει τους µαθητές;»

67

68

69 Πρόβληµα Mία ομάδα μαθητών σχεδιάζει ένα ταξίδι στο Λονδίνο για να συγκεντρώσει χρήματα για φιλανθρωπικό σκοπό. Τα εισιτήρια έχουν τιμές 10 για ενήλικες και 5 για παιδιά. Περιορισμός 1: Το minibus που έχουν νοικιάσει έχει θέσεις για 14 μόνο άτομα. Περιορισμός 2: Η εκδήλωση θα πραγματοποιηθεί μόνο αν υπάρχουν 10 ή περισσότεροι συμμετέχοντες Περιορισμός 3: Χρειάζεται να συμμετάσχουν τουλάχιστον τόσα παιδιά όσα και ενήλικες. 3/27/13

70 Απάντηση Εστω x o αριθµός των παιδιών και y ο αριθµός των ενηλίκων. Οι περιορισµοί: Περιορισµός 1: x + y 14 Περιορισµός 2: x + y 10 Περιορισµός 3: x y Διόρθωση αξόνων ώστε 0 x 15 and 0 y 15. Οbjective function: 5x+10y=k k=10 3/27/13

71 ΠΟΣΟΣΤΑ - ΡΕΑΛΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Η διδασκαλία των ποσοστών ενσωµατώνεται στη λογική και τη διδασκαλία των ρητών αριθµών και συσχετίζεται µε τη διδασκαλία των κλασµάτων, των δεκαδικών και των αναλογιών. Το «ραβδο-µοντέλο» (bar model) συνδέει αυτές τις διαφορετικές εκφράσεις του ρητού αριθµού. Εκτός από το ραβδο-µοντέλο, που αργότερα γίνεται διπλή αριθµογραµµή, ο πίνακας αναλογιών και τα κυκλικά διαγράµµατα (pie -chart) διαδραµατίζουν επίσης έναν σηµαντικό ρόλο στη διδακτική και µαθησιακή πορεία του ποσοστού. 71

72 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 72

73 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα Αρχικά ξεκινάμε με μερικές διερευνητικές δραστηριότητες που προετοιμάζουν το «κτίσιμο» του μοντέλου. Θέμα: το σχολικό θέατρο. Οι μαθητές καλούνται να δείξουν για τις διαφορετικές παραστάσεις πόσο γεμάτο θα είναι το θέατρο. Μπορούν να το κάνουν αυτό χρωματίζοντας το μέρος της αίθουσας που είναι κατειλημμένη και γράφοντας έπειτα το ποσοστό των καθισμάτων που είναι κατειλημμένα. 73

74 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 74

75 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα Με τον ίδιο τρόπο όπως στην περίπτωση του θεάτρου, σε μια δραστηριότητα συνόψισης οι μαθητές καλούνται να φτιάξουν σχέδια για να εκφράσουν το νόημα μιας πρότασης που περιέχει ποσοστό. 75

76 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 76

77 77

78 Στο επόμενο βήμα το ορθογώνιο πλαίσιο που αναπαριστά το χώρο στάθμευσης αντικαθίσταται από ένα ραβδομοντέλο. Η πληρότητα του χώρου στάθμευσης στο ραβδομοντέλο εκφράζεται και μέσω ποσοστού. 78

79 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 79

80 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 80

81 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 81

82 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 82

83 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα Για να κατεβάσει ένα αρχείο ο υπολογιστής σου χρειάζεται 24 λεπτά. Πόσο θέλει ακόμα αν έχει κατέβει το 75% του αρχείου; 83

84 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 84

85 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 85

86 86

87 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 87

88 ρεαλιστική εκπαίδευση ένα διδακτικό παράδειγµα 88

89 ρεαλιστική συνθήκη ένα παράδειγµα 89

90 π.χ., µαθηµατικοποίησης Ι

91 π.χ., µαθηµατικοποίησης ΙΙ

92 π.χ., µαθηµατικοποίησης ΙΙΙ

93 Realism vs Romanticism in fine arts Caspar David Friedrich, Wanderer Above the Sea of Fog, 1818 Bonjour, Monsieur Courbet, Realist painting by Gustave Courbet.

94 ενδεικτική βιβλιογραφία Van Hiele, P., 1986, Structure and insight: A theory of Mathematics Education. New York: Academic Press, Inc. Κολέζα, Ε., 2000, Γνωσιολογική και Διδακτική προσέγγιση των Στοιχειωδών Εννοιών. Leader Books, Αθήνα Freudenthal H (1973), Mathematics as an educational task, Dordrecht - Holland: Reidel Publishing Company. Freudenthal H (1983), Didactical Phenomenology of Mathematical Structure, The Netherlands: Kluwer Academic Publishers Πιπίνος, Γ. (2006) Διδακτική αξιοποίηση της θεωρίας των Van Hiele, Επιστηµονικό βήµα, τ.5. Φουδούλη, A., 11 Σχέδια µαθήµατος ρεαλιστικών µαθηµατικών, Διπλωµατική εργασία (επ: Ε. Κολέζα)

Μαθηµατική. Μοντελοποίηση

Μαθηµατική. Μοντελοποίηση Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ

Μοντέλα. Μαθηματικά. Άγγελος Μάρκος. Λέκτορας ΠΤΔΕ Μαθηματικά Μοντέλα Άγγελος Μάρκος Λέκτορας ΠΤΔΕ Ορισμός Μαθηματικό μοντέλο είναι η μαθηματική περιγραφή ενός φαινομένου. Τα ονομαζόμενα εφαρμοσμένα μαθηματικά έχουν ως άμεσο στόχο την αναζήτηση μαθηματικών

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;

Διαβάστε περισσότερα

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

ιδακτικό Μοντέλο Περιεχόµενα ρ. Κωνσταντίνα Βασιλοπούλου Εποικοδοµισµός E-learning - Ορισµός Ανάλυση Αναγκών Μαθητή

ιδακτικό Μοντέλο Περιεχόµενα ρ. Κωνσταντίνα Βασιλοπούλου Εποικοδοµισµός E-learning - Ορισµός Ανάλυση Αναγκών Μαθητή ιδακτικό Μοντέλο ρ. Κωνσταντίνα Βασιλοπούλου Περιεχόµενα Εποικοδοµισµός E-learning - Ορισµός ιδακτικό Μοντέλο Ανάλυση Αναγκών Μαθητή Εποικοδοµισµός Construct ή construction: Κατασκεύασµα ή

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού

Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε Ειδικοί σκοποί ΑΠΣ Κατανόηση: φυσικού κόσμου νόμων που τον διέπουν φυσικών φαινομένων διαδικασιών που οδηγούν

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

Περιεχόμενα. Προλογικό Σημείωμα 9

Περιεχόμενα. Προλογικό Σημείωμα 9 Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών

3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών 3 βήματα για την ένταξη των ΤΠΕ: 1. Εμπλουτισμός 2. Δραστηριότητα 3. Σενάριο Πέτρος Κλιάπης-Όλγα Κασσώτη Επιμόρφωση εκπαιδευτικών Παρουσίαση βασισμένη στο κείμενο: «Προδιαγραφές ψηφιακής διαμόρφωσης των

Διαβάστε περισσότερα

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων.

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων. Θεωρίες Μάθησης και ιδακτικές Στρατηγικές Εισαγωγή γή στις βασικές έννοιες 11/4/2011 Σκοπός του 3 ου μαθήματος Η συνοπτική παρουσίαση των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών

Διαβάστε περισσότερα

Κωνσταντίνος Π. Χρήστου

Κωνσταντίνος Π. Χρήστου 1 Κριτήρια: Διδακτική διαδικασία Μαθητοκεντρικά Δασκαλοκεντρικά Αλληλεπίδρασης διδάσκοντα διδασκόµενου Είδος δεξιοτήτων που θέλουν να αναπτύξουν Επεξεργασίας Πληροφοριών Οργάνωση-ανάλυση πληροφοριών, λύση

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Φτιάχνω γεωµετρικά σχήµατα», (Μαθηµατικά Β ηµοτικού) 2. Εµπλεκόµενες γνωστικές περιοχές Κατά την υλοποίηση του διδακτικού σεναρίου θα αξιοποιηθούν κατά κύριο

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει. Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ

Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει. Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Αυθεντικό πλαίσιο μάθησης και διδασκαλίας για ένα σχολείο που μαθαίνει Κατερίνα Κασιμάτη Επικ. Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Ορισμός αυθεντικής μάθησης Αυθεντική μάθηση είναι η μάθηση που έχει

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

Η Μοντελοποίηση στη Διδασκαλία και τη Μάθηση των Επιστημών

Η Μοντελοποίηση στη Διδασκαλία και τη Μάθηση των Επιστημών Η Μοντελοποίηση στη Διδασκαλία και τη Μάθηση των Επιστημών Υπολογιστικά περιβάλλοντα και παιδαγωγικές προσεγγίσεις Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών

Διαβάστε περισσότερα

ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ:

ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, β τεύχος Τετράδιο εργασιών, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Τετράδιο

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ

ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ ΤΙΤΛΟΣ «Ο κύκλος του νερού» ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ Το σενάριο µάθησης περιλαµβάνει δραστηριότητες που καλύπτουν όλα τα γνωστικά αντικείµενα που προβλέπονται από το ΕΠΠΣ νηπιαγωγείου. Συγκεκριµένα

Διαβάστε περισσότερα

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΜΑΘΗΣΗ ΜΕΣΩ ΣΧΕΔΙΑΣΜΟΥ 1 ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΙΣΗΓΗΣΗΣ 1. Τι αλλαγές επιχειρούν τα νέα ΠΣ; 2 2. Γιατί το πέρασμα στην πράξη (θα)

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων 1. Οι ψηφιακές τεχνολογίες ως γνωστικά εργαλεία στην υποστήριξη της διδασκαλίας και της μάθηση

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

4. Σηµειώ -στε. 8 Μάθηση ως διαδικασία και όχι µόνον ως περιεχόµενο ή αποτέλεσµα 9 Διαθεµατική ολική προσέγγιση της διδασκαλίας και µάθησης

4. Σηµειώ -στε. 8 Μάθηση ως διαδικασία και όχι µόνον ως περιεχόµενο ή αποτέλεσµα 9 Διαθεµατική ολική προσέγγιση της διδασκαλίας και µάθησης ΑΣΚΗΣΗ ΑΞΙΟΛΟΓΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ Με βάση τα παρακάτω παιδαγωγικά κριτήρια αξιολογήστε το µαθησιακό περιβάλλον µίας διδακτικής παρέµβασης σηµειώνοντας την ύπαρξή τους είτε µε εισαγωγή σχολίου πάνω στα

Διαβάστε περισσότερα

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις Μαθηματικά: θεωρίες μάθησης Διαφορετικές σχολές Διαφορετικές υποθέσεις Τι είναι μάθηση; Συμπεριφορισμός: Aλλαγή συμπεριφοράς Γνωστική ψυχολογία: Aλλαγή νοητικών δομών Κοινωνικοπολιτισμικές προσεγγίσεις:

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών Δομημένης Μορφής Φύλλο Εργασίας (ΔΜΦΕ)

Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών Δομημένης Μορφής Φύλλο Εργασίας (ΔΜΦΕ) Η διδασκαλία του Θεωρήματος της εσωτερικής διχοτόμου με τη βοήθεια του συνδυασμού της θεωρίας van Hiele και της Γνωστικής Μαθητείας στα πλαίσια των ΤΠΕ Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Ισοδύναµα κλάσµατα» 2. Εµπλεκόµενες γνωστικές περιοχές Το σενάριο µπορεί να αξιοποιηθεί από τους µαθητές της Γ δηµοτικού και εντάσσεται στις γνωστικές περιοχές

Διαβάστε περισσότερα

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α.

Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Τι θα Δούμε. Γιατί αλλάζει το Αναλυτικό Πρόγραμμα Σπουδών. Παιδαγωγικό πλαίσιο του νέου Α.Π.Σ. Αρχές του νέου Α.Π.Σ. Μαθησιακές περιοχές του νέου

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των

α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των ΔΕΠΠΣ ΑΠΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ α. η παροχή γενικής παιδείας, β. η καλλιέργεια των δεξιοτήτων του μαθητή και η ανάδειξη των ενδιαφερόντων του, γ. η εξασφάλιση ίσων ευκαιριών και δυνατοτήτων μάθησης

Διαβάστε περισσότερα

Η προσέγγιση του γραπτού λόγου και η γραφή. Χ.Δαφέρμου

Η προσέγγιση του γραπτού λόγου και η γραφή. Χ.Δαφέρμου Η προσέγγιση του γραπτού λόγου και η γραφή Πώς μαθαίνουν τα παιδιά να μιλούν? Προσπαθώντας να επικοινωνήσουν Πώς μαθαίνουν τα παιδιά να γράφουν? Μαθαίνoυν να γράφουν γράφοντας Η γραφή λύνει προβλήματα

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

Οπτική αντίληψη. Μετά?..

Οπτική αντίληψη. Μετά?.. Οπτική αντίληψη Πρωτογενής ερεθισµός (φυσικό φαινόµενο) Μεταφορά µηνύµατος στον εγκέφαλο (ψυχολογική αντίδραση) Μετατροπή ερεθίσµατος σε έννοια Μετά?.. ΓΙΑ ΝΑ ΚΑΤΑΝΟΗΣΟΥΜΕ ΤΗΝ ΟΡΑΣΗ ΠΡΕΠΕΙ ΝΑ ΑΝΑΛΟΓΙΣΤΟΥΜΕ

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

Η Εκπαίδευση στην εποχή των ΤΠΕ

Η Εκπαίδευση στην εποχή των ΤΠΕ Η Εκπαίδευση στην εποχή των ΤΠΕ «Ενσωμάτωση και αξιοποίηση των εννοιολογικών χαρτών στην εκπαιδευτική διαδικασία μέσα από μία δραστηριότητα εποικοδομητικού τύπου» Δέγγλερη Σοφία Μουδατσάκη Ελένη Λιόβας

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Επιμόρφωση εκπαιδευτικών ΠΕ70. Όλγα Κασσώτη

Επιμόρφωση εκπαιδευτικών ΠΕ70. Όλγα Κασσώτη Αξιοποίηση λογισμικού εννοιολογικής χαρτογράφησης στα πλαίσια της θεωρίας μάθησης εποικοδομισμού /κοινωνικού κονστρουκτιβισμού (social constructivism) Επιμόρφωση εκπαιδευτικών ΠΕ70 Όλγα Κασσώτη Λογισμικά

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΕΑΠΗ ΜΑΘΗΜΑ: Μαθηματικά στην προσχολική εκπαίδευση ΕΞΑΜΗΝΟ: Ε (2015 2016) ΟΔΗΓΟΣ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΕΑΠΗ ΜΑΘΗΜΑ: Μαθηματικά στην προσχολική εκπαίδευση ΕΞΑΜΗΝΟ: Ε (2015 2016) ΟΔΗΓΟΣ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΕΑΠΗ ΜΑΘΗΜΑ: Μαθηματικά στην προσχολική εκπαίδευση ΕΞΑΜΗΝΟ: Ε (2015 2016) ΟΔΗΓΟΣ ΜΑΘΗΜΑΤΟΣ 1. ΠΕΡΙΕΧΟΜΕΝΟ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1 ος κύκλος (Μαθήματα 1-3): Περιεχόμενο και βασικός

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Προσχολική Παιδαγωγική Ενότητα 8: Σχεδιασμός Ημερησίων Προγραμμάτων

Προσχολική Παιδαγωγική Ενότητα 8: Σχεδιασμός Ημερησίων Προγραμμάτων Προσχολική Παιδαγωγική Ενότητα 8: Σχεδιασμός Ημερησίων Προγραμμάτων Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να συζητήσουν και να

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr

Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Το έργο υλοποιείται με δωρεά από το Σύντομη περιγραφή Το Ελληνικό Παιδικό Μουσείο

Διαβάστε περισσότερα

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ

ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΗΛΙΚΙΑΣ Ενότητα 10: Η μάθηση στην προσχολική ηλικία: αξιολόγηση Διδάσκων: Μανωλίτσης Γεώργιος ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΠΡΟΣΧΟΛΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Δραστηριότητες στη Μαθηματική Εκπαίδευση

Δραστηριότητες στη Μαθηματική Εκπαίδευση Παιδαγωγικό Τµήµα Νηπιαγωγών Δραστηριότητες στη Μαθηματική Εκπαίδευση Ενότητα 2: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών Παιδαγωγικό Τµήµα Νηπιαγωγών Δραστηριότητα activity στη διδασκαλία

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04)

ΠΕ60/70, ΠΕ02, ΠΕ03, ΠΕ04) «Επιµόρφωση εκπαιδευτικών στη χρήση και αξιοποίηση των ΤΠΕ στην εκπαιδευτική διδακτική διαδικασία» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.1, Ενέργεια 2.1.1, Κατηγορία Πράξεων 2.1.1 θ) Αναλυτικό Πρόγραµµα Σπουδών για

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο

ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΣΗΣ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο 1. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ/ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το οργανόγραμμα των εκπαιδευτικών δραστηριοτήτων που

Διαβάστε περισσότερα

Κωλέττη Ελένη, Εκπαιδευτικός ΠΕ70. Ψωμά Βασιλική, Εκπαιδευτικός ΠΕ70

Κωλέττη Ελένη, Εκπαιδευτικός ΠΕ70. Ψωμά Βασιλική, Εκπαιδευτικός ΠΕ70 Ρεαλιστική θεώρηση των μαθηματικών στο Δημοτικό Σχολείο: Η σημασία της οργάνωσης και της αναπαράστασης μιας προβληματικής κατάστασης για τη διατύπωση μαθηματικών συλλογισμών και τη δημιουργία μοντέλου

Διαβάστε περισσότερα

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης Βασικές παραδοχές : Η πραγματικότητα έχει την ίδια σημασία για όλους Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Αυτοί που δεν καταλαβαίνουν είναι ανίκανοι,

Διαβάστε περισσότερα

Ο υπολογιστής ως γνωστικό εργαλείο. Καθηγητής Τ. Α. Μικρόπουλος

Ο υπολογιστής ως γνωστικό εργαλείο. Καθηγητής Τ. Α. Μικρόπουλος Ο υπολογιστής ως γνωστικό εργαλείο Καθηγητής Τ. Α. Μικρόπουλος Τεχνολογίες Πληροφορίας & Επικοινωνιών ΟιΤΠΕχαρακτηρίζουνόλαταμέσαπουείναιφορείς άυλων μηνυμάτων (χαρακτήρες, εικόνες, ήχοι). Η αξιοποίησή

Διαβάστε περισσότερα

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Παιδαγωγικό Τµήµα Νηπιαγωγών Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Ενότητα 1: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών ένα απλό πρόβλημα Η οικογένεια

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ

ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΗΣ ΣΚΕΨΗΣ Κωνσταντίνος Π. Χρήστου Ένα αρχέγονο ερώτηµα Τι είναι η γνώση; Ποια η διαδικασία του γνωρίζειν; θεωρίες, επιστημολογίες, μεταφορές και πρακτικές στην τάξη των μαθηματικών Μάθηση

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

το καραµελοκατάστηµα κι ένα παιχνίδι µέχρι το 100»

το καραµελοκατάστηµα κι ένα παιχνίδι µέχρι το 100» «Το δεκαδικό σύστηµα αρίθµησης, η αξία θέσης ψηφίου, το καραµελοκατάστηµα κι ένα παιχνίδι µέχρι το 100» Ιωάννης Θ. Λαζαρίδης Τα µαθηµατικά δεν είναι κάτι αφηρηµένο, αλλά είναι µία ακόµη ανθρώπινη δραστηριότητα

Διαβάστε περισσότερα

2 ο Εργαστήριο (4 τμήματα) 3 ο Εργαστήριο (4 τμήματα) 4 ο Εργαστήριο (4 τμήματα)

2 ο Εργαστήριο (4 τμήματα) 3 ο Εργαστήριο (4 τμήματα) 4 ο Εργαστήριο (4 τμήματα) ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΣΗΣ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ E Εξάμηνο 1. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ/ ΟΡΓΑΝΟΓΡΑΜΜΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το οργανόγραμμα των εκπαιδευτικών δραστηριοτήτων που

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

Κοινωνικογνωστικές θεωρίες μάθησης. Διδάσκουσα Φ. Αντωνίου

Κοινωνικογνωστικές θεωρίες μάθησης. Διδάσκουσα Φ. Αντωνίου Κοινωνικογνωστικές θεωρίες μάθησης Διδάσκουσα Φ. Αντωνίου Περίγραμμα Νοοκατασκευαστική θεώρηση της μάθησης Ιστορικό υπόβαθρο Top-down * bottom up Ομαδοσυνεργατική μάθηση Νοοκατασκευαστικές μέθοδοι στην

Διαβάστε περισσότερα

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ )

ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ ) ΗΛΙΑΣ. ΑΝΑΓΝΩΣΤΟΥ, Σχολικός Σύµβουλος 41 ης ΕΠ Αττικής ΣΤΕΛΙΟΣ Κ. ΚΡΑΣΣΑΣ, Σχολικός Σύµβουλος 31 ης ΕΠ Αττικής ΕΠΠΣ & ΑΠΣ ΜΑΘΗΜΑΤΙΚΩΝ (ΦΕΚ 303/2003 σσ. 3983-4008) ΣΚΟΠΟΣ ΣΤΟ ΕΠΠΣ 1. Σκοπός της ιδασκαλίας

Διαβάστε περισσότερα

ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ

ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΦΥΣΙΚΑ Ε & Στ ΣΤΕΛΙΟΣ ΚΡΑΣΣΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ Φυσικές Επιστήμες Θεματικό εύρος το οποίο δεν είναι δυνατόν να αντιμετωπιστεί στο πλαίσιο του σχολικού μαθήματος. Έμφαση στην ποιότητα, στη συστηματική

Διαβάστε περισσότερα

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση

Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Μαθησιακά Αντικείμενα για το μάθημα ΤΠΕ-Πληροφορική: Παιδαγωγική αξιοποίηση στην πρωτοβάθμια εκπαίδευση Καθηγητής Αθανάσιος Τζιμογιάννης Πανεπιστήμιο Πελοποννήσου ΙΤΥΕ «Διόφαντος» ΗΜΕΡΙΔΑ ΕΠΙΜΟΡΦΩΣΗΣ ΣΧΟΛΙΚΩΝ

Διαβάστε περισσότερα