PROGRAMIRANJE 2 TOMAŽ DOBRAVEC

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PROGRAMIRANJE 2 TOMAŽ DOBRAVEC"

Transcript

1 UNIVERZA V LJUBLJANI Fakulteta za računalništvo in informatiko PROGRAMIRANJE 2 TOMAŽ DOBRAVEC Objektno programiranje

2 O OBJEKTNEM PROGRAMIRANJU l Osnova objektnega programiranja so OBJEKTI: program sestavlja množica samostojnih objektov, ki med seboj lahko sodelujejo. l Objekt združuje podatke in metode za delo z njimi. l Objekt izdelamo s pomočjo NAČRTA za izdelavo objektov določenega tipa (za vsak tip objektov obstaja drug načrt).

3 O OBJEKTNEM PROGRAMIRANJU l V objektno usmerjenem programskem jeziku se načrt imenuje RAZRED. l Na razred lahko gledamo kot na PREDLOGO (štampiljko) za izdelavo objektov. l Objekt je primerek (instanca) razreda. V programu imamo pogosto več primerkov istega razreda.

4 O OBJEKTNEM PROGRAMIRANJU Primer: z ukazoma ustvarimo dva objekta razreda String. l Vsi objekti razreda String poznajo (med drugim) tudi metodo charat(): l Pozor: za klic metode uporabljamo piko!

5 KARAKTERISTIKE OBJEKTOV l Osnovne karakteristike objektov so: stanje in obnašanje Stanje l Stanje objekta določajo njegovi atributi (spremenljivke). l Objekti istega razreda so lahko v različnih stanjih (različne vrednosti atributov).

6 OBNAŠANJE OBJEKTOV l Obnašanje objektov je določeno z metodami. l Objekti istega razreda se lahko različno obnašajo. l Obnašanje je odvisno od stanja, v katerem se objekt nahaja. l Če sta dva objekta istega razreda v istem stanju, se bosta praviloma enako obnašala.

7 PRIMER RAZREDA Naloga: Napiši razred za izdelavo dreves. l STANJA drevesa ime (v drevesnici je več dreves, vsako ima svoje "ime") starost (v letih) višina (odvisna od starosti: prva tri leta drevo zraste za en meter, potem vsako leto 20 cm) l OBNAŠANJE: vsako pomlad se starost poveča (za ena), spremeni se tudi višina (odvisno od starosti) drevo se zna narisati na zaslon (pozor: tega običajno drevesa ne počnejo J )

8 STANJE OBJEKTA (ATRIBUTI) l Stanje objekta je zajeto v atributih (angl. attributes, instance variables, fields) l Primer (razred Drevo): starost, visina, ime l Vsak objekt ima svoje atribute: objekt atributov ne deli z drugimi objekti, vsak objekt ima svoji kopijo posameznega atributa spreminjanje vrednosti atributa nekega objekta NE vpliva na vrednost istega atributa drugega objekta Prepričaj se, da imajo atributi starost in visina v različnih objektih različno vrednost.

9 STATIČNE SPREMENLJIVKE l Statične so tiste spremenljivke, ki jih najavimo z rezervirano besedo static. l Statične spremenljivke == spremenljivke razreda. l Vsi objekti nekega razreda imajo ISTO vrednost statičnih spremenljivk. l Če eden od objektov spremeni vrednost, se spremeni vsem objektom tega razreda! l Obstaja SAMO ena kopija spremenljivke za VSE objekte. l Statično spremenljivko lahko uporabljamo tudi, če nimamo nobenega objekta tega razreda!

10 STATIČNE SPREMENLJIVKE l Primer: če je ID statična spremenljivka razreda NekRazred, ne potrebujem objekta, da bi spremenil njeno vrednost. Namesto NA OBJEKTU NekRazred imeobjekta = new NekRazred(); imeobjekta.id = 5; lahko spremenljivko uporabim NA RAZREDU NekRazred.ID=5; Razredu Drevo dodaj statično spremenljivko ID, ki šteje, koliko dreves je bilo izdelanih.

11 OBNAŠANJE OBJEKTA l Obnašanje objekta narekujejo metode (angl. methods) Primer: drevo1.pomlad(). Spremeni se vrednost atributov drevo1.izrisise(). Vpliv na okolico (izris na zaslon) l Metode imajo pri objektnem programiranju podobno nalogo kot funkcije pri proceduralnem programiranju. l Logika" programa je razbita na eno ali več metod. l Metoda lahko spreminja objekt (nastavlja atribute) ali vpliva na "okolico" (druge objekte, sistem,...).

12 PARAMETRI METODE l Poznamo metode brez parametrov in take s parametri. l Primer metode brez parametrov je metoda izpisise(), ki jo kličemo takole: drevo1.izpisise() l Primer metode s parametri: void spremeniime(string novoime) { ime = novoime; } l Klic metode spremeniime() iz programa: drevo1.spremeniime("hrast"); V razred Drevo dodaj metodo spremeniime(string novoime)

13 REZULTAT METODE l Metode so lahko tipa void ali pa vračajo rezultat. l Primer metode tipa void je metoda izrisise(), l Metodo tipa void kličemo na objektu drevo1 takole: drevo1.izrisise(); l Primer metode, ki vrne rezultat: povprecnarast(), ki vrne, koliko je drevo v povprečju zraslo vsako leto: double povprecnarast() { } l Rezultat Metode povprecnarast() je tipa double.

14 REZULTAT METODE double povprecnarast() { if (starost==0) return 0; else return visina / starost; } l Metodo povprecnarast() kličemo takole: double rast = drevo1.povprecnarast(); (rezultat, ki ga vrne metoda povprecnarast() se shrani v spremenljivki rast). V razred Drevo dodaj metodo double povprecnarast()

15 STATIČNE METODE l Metode, ki jih najavimo z rezervirano besedo static, so statične metode. l Statične metode so metode razreda -- ne potrebujemo objekta, kličemo jih direktno na razredu. Primer statične metode: metoda sin() razreda Math. Namesto Math m = new Math(); double rezultat = m.sin(3.14); pišemo kar double rezultat = Math.sin(3.14); V razred Drevo dodaj statično metodo za izpis navodil za obrezovanje in statično metodo, ki vrne število že narejenih dreves.

16 REZERVIRANA BESEDA THIS l Rezervirano besedo this uporabjamo za sklicevanje na trenutni objekt l Besedo this lahko uporabljamo le v metodah, ki niso statične. l Besedo this preberemo kot»jaz«. l Besedo this običajno uporabljamo zato, da preprečimo konflikte z imeni

17 REZERVIRANA BESEDA THIS Primer: void spremeniime(string ime) { } this.ime = ime; l Priporočilo: rezervirano besedo this uporabljamo pred vsakim atributom (tudi, kadar ni nevarnosti, da bi prišlo do konflikta z imeni). V razredu Drevo spremeni metodo spremeniime(), kot je napisano zgoraj.

18 KONSTRUKTOR l Konstruktor je podoben metodi, vendar NI metoda. Primer: konstruktor za razred Drevo Drevo() { // koda, ki se izvrši // ob izgradnji objekta } l l Namen metode: združuje zaporedje javanskih ukazov Namen konstruktorja:»ustvari«objekt l Konstruktor ima isto ime kot razred. l Konstruktor ne vrača rezultata (niti void ne).

19 KONSTRUKTOR l Konstruktor ustvari razred, čas nastanka razreda pa je najprimernejši čas za nastavitev začetnih vrednosti atributom: Drevo() { ID = ID + 1; mojid = ID; ime = ""; starost=0; visina=0; }

20 KONSTRUKTOR l Razred ima lahko več konstruktorjev; vsi imajo enako ime (ime razreda), vendar različno število in tip parametrov. l Konstruktorji običajno kličejo eden drugega, v ta namen uporabijo rezervirano besedo this l Beseda this znotraj konstruktorja ima drug pomen kot this v metodi: v metodi pomeni 'trenutno izvedbo', v konstruktorju pomeni klic drugega konstruktorja. V razredu Drevo dodaj konstruktor Drevo(tIme String)

21 KONSTRUKTOR l V vsakem razredu obstaja vsaj en konstruktor (če ga programer ne napiše, ga doda prevajalnik). l Privzet konstruktor je konstruktor brez parametrov. Primer: Razreda in class MojRazred { } class MojRazred{ MojRazred() { super(); } } se prevedeta v popolnoma enak razred.

22 REZERVIRANA BESEDA INSTANCEOF l če imamo objekt x in bi radi preverili, ali je x objekt razreda X, uporabimo rezervirano besedo instanceof: x instanceof X (rezultat: true ali false) Primer: Drevo d1 = new Drevo(); boolean jedrevo = d1 instanceof Drevo; System.out.println(jeDrevo); Object s = Test ; System.out.println(s instanceof Drevo) System.out.println(s instanceof String) true false true

23 RAZŠIRITVE RAZREDOV IN DEDOVANJE l Razširitve razredov in dedovanje so najpomembnejši koncepti objektnega programiranja. l Osnovni ideja: za izhodišče izberem obstoječ razred in ustvarim njegovega»naslednika«; naslednik ima vse lastnosti (metode in atribute) ENAKE kot izhodiščni razred (ker je od njega vse podedoval); razreda se razlikujeta le po imenu; če želim, lahko v nasledniku nekatere metode spremenim (redefiniram); lahko dodam tudi povsem nove metode in atribute.

24 RAZŠIRITVE RAZREDOV IN DEDOVANJE l Primer razširitve: z rezervirano besedo extends ustvarim razširitev razreda. Primer: z deklaracijo class Bonsai extends Drevo { } ustvarim razred Bonsai, ki se ujema z razredom Drevo v vseh metodah in atributih.

25 RAZŠIRITVE RAZREDOV IN DEDOVANJE class Bonsai extends Drevo { } l Če želim, lahko (znotraj oklepajev, namesto ) nekatere metode razreda Bonsai napišem na novo (redefiniram). l Napišem lahko tudi nove metode (take, ki v razredu Drevo ne obstajajo). l Metode, ki jih v novem razredu ne redefiniram, ostanejo enake kot v njegovem predniku (so od njega podedovane).

26 l Izrazi: RAZŠIRITVE RAZREDOV IN DEDOVANJE Prvotni razred je prednik (oče, nadrazred, angl. super class) Razširjeni razred je potomec (sin, podrazred, angl. sub class), Razred Bonsai je potomec (podrazred) razreda Drevo. Razred Drevo je prednik (nadrazred) razreda Bonsai Napiši razred Bonsai, v katerem redeklariraš metodo povecajvisino (bonsai raste po 5 cm prvi 2 leti, potem pa se rast v višino ustavi).

27 NOVE METODE IN ATRIBUTI l Razred Bonsai je naslednik razreda Drevo, zato pozna vse metode razreda Drevo l Bonsai lahko nekatere metode razreda Drevo redefinira (prejšnji primer: povecajvisino() in izrisise()) l in še več: Bonsai lahko uvede nove atribute in metode, ki jih razred Drevo ni poznal! l Bonsai je torej Drevo s popravki in dodatki. V razred Bonsai dodaj atribut sirina (koliko je bonsai širok v cm);vsako pomlad naj se širina poveca za 2 cm; širino lahko zmanjšamo, če bonsai ostrižemo (vsako striženje: -1cm); dodaj še metodo za striženje

28 KATEREGA TIPA (RAZREDA) JE NEK OBJEKT? l Naredimo objekt razreda Drevo: Drevo d = new Drevo(); Ker je d primerek razreda Drevo, bo ukaz System.out.println(d instanceof Drevo); izpisal true. l Podobno: naredimo objekt razreda Bonsai: Bonsai b = new Bonsai(); Ker je b primerek razreda Bonsai, bo ukaz System.out.println(b instanceof Bonsai); izpisal true.

29 KATEREGA TIPA (RAZREDA) JE NEK OBJEKT? l Toda pozor: b je tudi primerek razreda Drevo, saj je Bonsai naslednik razreda Drevo (b ima vse kot Drevo, morda celo kaj več). Ukaz System.out.println(b instanceof Drevo); bo izpisal true, ukaz System.out.println(d instanceof Bonsai); pa seveda false.

30 KATEREGA TIPA (RAZREDA) JE NEK OBJEKT? l Ker je Bonsai nadgradnja razreda Drevo, lahko napišemo tudi tole: Drevo drevo1 = new Bonsai(); vendar potem lahko nad objektu d kličemo le metode, ki jih pozna Drevo, na pa tudi tistih, ki jih je uvedel Bonsai.

31 PRA-OČE OBJECT l Vsi razredi v Javi so potomci razreda Object. l Ob deklaraciji razreda prevajalnik sam doda besedi extends Object. l Na vseh javanskih objektih lahko kličemo metode, ki so jih podedovali od praočeta. l Ena od teh metod je tudi metoda tostring(), ki jo poznajo vsi objekti. Ustvari Drevo drevo1 in pokaži njegove metode, ki so podedovane iz razreda Object.

32 PRA-OČE OBJECT l Zanimiva posledica: v Javi lahko z ukazom System.out.println() izpisujemo vsak objekt. Izpiši drevo1 z ukazom println() l Kaj se je izpisalo? Njegova tostring() vrednost! l Če želimo, lahko redefiniramo metodo tostring() in s tem med drugim dosežemo tudi to, da bomo objekt lahko lepo izpisovali. V Drevo dodaj metodo tostring() in drevo1 ponovno izpiši.

33 SKRIVANJE ATRIBUTOV Ustvari primerek razreda Drevo in spremeni atribut starost l Da bi onemogočili možnost spreminjanja atributov, atribut najavimo z določilom private. Namesto int starost; pišemo private int starost; l S tem smo atribut starost skrili in do njega lahko dostopamo samo v razredu samem.

34 GETTER/SETTER l Ko smo skrili atribut starost, smo preprečili, da bi ga uporabnik nekontrolirano spremnijal. l Toda s tem smo preprečili vsakršen dostop do tega atributa uporabnik ga ne more niti brati niti spreminjati. l Nastalo težavo rešimo z uporabo getter-jev in setter-jev (t.j. metod, ki uporabniku omogočajo dostop do skritih atributov).

35 GETTER/SETTER l getter je metoda, ki omogoča branje atributa; ime metode: getimeatributa Primer: getstarost() l setter je metoda, s katero lahko kontrolirano nastavim vrednost atributa; ime metode: setimeatributa Primer: setstarost() Napiši getter in setter za starost.

36 ABSTRAKTNE METODE IN RAZREDI l V Java kontekstu beseda abstraktno pomeni, da nekaj ni (v celoti) definirano. l Metoda je abstraktna, če poznamo samo njen podpis, telo metode pa ni na voljo. l Abstraktni razred je razred, v katerem je vsaj ena od metod abstraktna. l Iz abstraktnega razreda ne moremo narediti objektov!

37 Primer: ABSTRAKTNE METODE IN RAZREDI abstract class Funkcija { } abstract double vrednost(double x); l Metoda vrednost je v Funkcija samo najavljena (brez telesa) new Funkcija(); napaka

38 ABSTRAKTNE METODE IN RAZREDI - PRIMER l Ničlo funkcije f(x) lahko iščemo z Newtnovo metodo: začnemo s približkom za ničlo (x0) na vsakem koraku iz prejšnjega približka (x0) izračunamo naslednji približek (x1) po formuli

39 ABSTRAKTNE METODE IN RAZREDI PRIMER Napiši program za računanje ničel funkcij s pomočjo Newtnove metode. Delovanje programa za računanje ničel funkcije preveri na naslednjih primerih: f(x) = 2 x 2 5 x 3 (ničle: x1 = -0.5, x2 = 3) f(x) = sin(x) (ničle: 0, π,.)

40 ANONIMNI NOTRANJI RAZRED l Razred za enkratno uporabo. l V fazi izdelave objekta lahko razred spremenimo (prilagodimo) - nastane anonimni notranji razred. l Nadomestimo lahko vse ne-statične metode. l Spremenimo lahko vrednost statičnim spremenljivkam. Napiši razred TestANR, v katerem boš z uporabo Newtnove metode in anonimnega notranjega razreda izračunal ničle funkcije f(x) = x 3 3 x 2 x + 3 (ničle: x1=1, x2=-1, x3=3)

41 VMESNIKI l Vmesnik (angl. interface) vsebuje podpise metod. l Podobna vloga kot abstraktni razred (podaja samo podpise metod, telo ni na voljo). l Vmesnik lahko vsebuje le konstante (static final spremenljivke). l Vmesnik implementiramo z rezervirano besedo implements

42 Primer: VMESNIKI interface Funkcija { double vrednost(double x); } class Sinus implements Funkcija { double vrednost(double x) { } }

43 VMESNIKI IN ABSTRAKTNI RAZREDI - PRIMERJAVA Abstraktni razred Prednosti: nekatere metode lahko implementiramo, imamo lahko atribute Slabosti: pri razširitvi (extends) lahko navedemo samo en razred (Java ne pozna večkratnega dedovanja) Vmesnik Prednosti: v nekem razredu lahko implementiramo več vmesnikov Slabosti: ni delne implementacije in atributov Primer z Newtnovo metodo napiši še z uporabo vmesnika.

44 OP PRIMER S HOTELOM 1/7 l Problem: investitor želi zgraditi verigo hotelov l Pot k rešitvi: - Investitor najame projektante. - Projektanti izdelajo dokument z naslovom 'Osnovne zahteve za gradnjo hotelov' in ga uskladijo z investitorjem.

45 OP PRIMER S HOTELOM 2/7 Osnovne zahteve za gradnjo hotelov Investitor, ki želi pridobiti dovoljenje za gradnjo hotelov, mora pripraviti projektno dokumentacijo, sestavljeno iz naslednjih delov. l Gradbeni načrt, ki vsebuje natančna navodila za izgradnjo hotela. l Načrt dela z obiskovalci, ki vsebuje opis postopkov za registracijo obiskovalcev ter odjavo obiskovalcev. l Računovodski načrt, ki vsebuje opis postopka za računanje dnevnega prometa.

46 OP PRIMER S HOTELOM 3/7 - Upravna enota potrdi dokument "Osnovne zahteve " - Projektanti izdelajo projektno dokumentacijo, skladno z "Osnovnimi zahtevami za gradnjo hotelov": gradbeni načrt, delo z gosti: knjiga gostov (po sobah), računanje prometa: število gostov * cena nočitve, dodatno: možnost pretvorbe med valutami (EUR/SIT).

47 OP PRIMER S HOTELOM 4/7 - Upravna enota preveri, ali je projektna dokumentacija skladna z izdanim dokumentom in s splošno znanimi pravili (gradbeni uzanci) - Ko investitor prejme potrjeno dokumentacijo, lahko začne graditi. - Pred gradnjo lahko uporabi le tiste komponente potrjenega projekta, ki niso vezane na konkretno izvedbo: cena nočitve in postopek za pretvorbo SIT/EUR.

48 OP PRIMER S HOTELOM 5/7 l Dokument Osnovne zahteve l Projektanti l Projektna dokumentacija.. vmesnik (interface).. programerji.. razred l Navodilo za izgradnjo hotela l Podatki Cena nočitve Knjiga zasedenosti sob.. konstruktor.. statična spremenljivka.. ne-statična spremenljivka

49 OP PRIMER S HOTELOM 6/7 l Postopki Pretvorba iz EUR v SIT Prijava/odjava obiskovalca l Upravna enota l Potrjena projektna dokumentacija l Postavljen hotel.. statična metoda.. ne-statična metoda.. prevajalnik.. preveden razred.. objekt

50 OP PRIMER S HOTELOM 7/7 Napiši program za "gradnjo" hotelov. 1. Napiši vmesnik "Osnovna zahteve" 2. Napiši razred Hotel 3. Napiši program, s katerim "zgradiš" nekaj hotelov 4. Napiši še razred za izgradnjo hotelov z bazenom

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Programiranje v Javi. Viljan Mahnič. UNIVERZA V LJUBLJANI Fakulteta za računalništvo in informatiko

Programiranje v Javi. Viljan Mahnič. UNIVERZA V LJUBLJANI Fakulteta za računalništvo in informatiko Viljan Mahnič UNIVERZA V LJUBLJANI Fakulteta za računalništvo in informatiko Programiranje in programski jeziki Kaj je računalniški program Štiri generacije programskih jezikov značilnosti visokonivojskih

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Dragi polinom, kje so tvoje ničle?

Dragi polinom, kje so tvoje ničle? 1 Dragi polinom, kje so tvoje ničle? Vito Vitrih FAMNIT - Izlet v matematično vesolje 17. december 2010 Polinomi: 2 Polinom stopnje n je funkcija p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, a i R.

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Εισαγωγή στον Προγ/μό Η/Υ

Εισαγωγή στον Προγ/μό Η/Υ Εισαγωγή στον Προγ/μό Η/Υ Ενότητα 7 2ο μέρος: Επιπλέον έννοιες σχετικά με αντικείμενα Διδάσκων: Μιχάλης Τίτσιας Περιεχόμενα Τι μπορεί να περιέχει μια τάξη Μέθοδοι τάξης και σταθερές τάξης Πολυμορφισμός

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Αντικειμενοστρεφής Προγραμματισμός

Αντικειμενοστρεφής Προγραμματισμός Αντικειμενοστρεφής Προγραμματισμός Διδάσκουσα: Αναπλ. Καθηγήτρια Ανδριάνα Πρέντζα aprentza@unipi.gr Εργαστηριακός Συνεργάτης: Δρ. Βασιλική Κούφη vassok@unipi.gr Εργαστήριο 2 Βασικοί Τύποι Μεταβλητών Java

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)

Διαβάστε περισσότερα

Υπερφόρτωση (Overloading) Υπέρβαση (Overriding) - Upcasting Downcasting Final classes, methods

Υπερφόρτωση (Overloading) Υπέρβαση (Overriding) - Upcasting Downcasting Final classes, methods (Object Oriented Programming) Υπερφόρτωση (Overloading) Υπέρβαση (Overriding) - Upcasting Downcasting Final classes, methods PhD http://aetos.it.teithe.gr/~sfetsos/ sfetsos@it.teithe.gr Περιεχόμενα Μαθήματος

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Java Παύλος Εφραιμίδης Java Βασικά Στοιχεία της γλώσσας Java 1 Τύποι Δεδομένων Η Java έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) τύπους δεδομένων αναφορές Java Βασικά

Διαβάστε περισσότερα

Αντικειµενοστραφής Προγραµµατισµός

Αντικειµενοστραφής Προγραµµατισµός Κλάσεις Αντικειµενοστραφής Προγραµµατισµός Κλάσεις Αντικείµενα Ιεραρχία κλάσεων Κλάσεις. Ιδιότητες Συµπεριφορά Ιδιότητες (Μεταβλητές) Συµπεριφορά (Μέθοδοι) Κληρονοµικότητα Μέθοδοι επικάλυψης Η χρήση του

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

Αντικειµενοστρεφής Προγραµµατισµός

Αντικειµενοστρεφής Προγραµµατισµός 16 η διάλεξη Π. Σταθοπούλου pstath@ece.upatras.gr ή pstath@upatras.gr Οµάδα Α (Φοιτητές µε µονό αριθµό Μητρώου ) ιδασκαλία : Παρασκευή 11πµ-13µµ ΗΛ7 Φροντιστήριο : ευτέρα 11πµ-12πµ ΗΛ4 Προηγούµενη ιάλεξη

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Η λέξη κλειδί this. Γαβαλάς Δαμιανός dgavalas@aegean.gr

Η λέξη κλειδί this. Γαβαλάς Δαμιανός dgavalas@aegean.gr Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Διάλεξη #6 η : Η λέξη κλειδί this, υπερφόρτωση μεθόδων, κληρονομικότητα, πολυμορφισμός, υπερκάλυψη, επίπεδα προσπέλασης Γαβαλάς Δαμιανός dgavalas@aegean.gr

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008

ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008 ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ (JAVA) 11/3/2008 Κατασκευαστές (Constructors) Ειδικός τύπος μεθόδων, οι οποίες: - είναι public και έχουν το ίδιο όνομα με αυτό της κλάσης - χρησιμοποιούνται για να αρχικοποιήσουν κάποιες

Διαβάστε περισσότερα

Βασικά Στοιχεία της Java

Βασικά Στοιχεία της Java Βασικά Στοιχεία της Παύλος Εφραιμίδης 1 Βασικά Στοιχεία της γλώσσας Τύποι Δεδομένων Η έχει δύο κατηγορίες τύπων δεδομένων: πρωτογενείς (primitive) iti τύπους δεδομένων δδ αναφορές 2 Βασικά Στοιχεία της

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

PODATKOVNI MODEL ENTITETA-RAZMERJE

PODATKOVNI MODEL ENTITETA-RAZMERJE PODATKOVNI MODEL ENTITETA-RAZMERJE Iztok Savnik 1 Osnovni elementi ER Entiteta Razmerje Atributi Odvisne entitete Identifikator Specializacija/generalizacija Agregacija/dekompozicija Vir: Ragu Ramakrishnan,

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

osnovni koraki Matija Lokar in Srečo Uranič V 0.9 oktober 2008

osnovni koraki Matija Lokar in Srečo Uranič V 0.9 oktober 2008 诲诲뾡盦盨 盨 ʚProgramski jezik C# osnovni koraki Matija Lokar in Srečo Uranič V 0.9 oktober 2008 2 3 Predgovor Omenjeno gradivo predstavlja prvi del gradiv, namenjenih predmetu Programiranje 1 na višješolskem

Διαβάστε περισσότερα

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija

Matematika vaja. Matematika FE, Ljubljana, Slovenija Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika 1 3. vaja B. Jurčič Zlobec 1 1 Univerza v Ljubljani, Fakulteta za Elektrotehniko 1000 Ljubljana, Tržaška 25, Slovenija Matematika FE, Ljubljana, Slovenija 2011 Določi stekališča zaporedja a

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

8. Navadne diferencialne enačbe

8. Navadne diferencialne enačbe 8. Navadne diferencialne enačbe 8.1. Začetni problem prvega reda Iščemo funkcijo y(x), ki zadošča diferencialni enačbi y = f(x, y) in začetnemu pogoju y(x 0 ) = y 0, kjer je f dana dovolj gladka funkcija

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

(Διαφάνειες Νίκου Βιδάκη)

(Διαφάνειες Νίκου Βιδάκη) (Διαφάνειες Νίκου Βιδάκη) JAVA Inheritance Εβδομάδα Νο. 3 2 Προηγούμενο μάθημα (1/2) Τι είναι αντικείμενο? Ανάλυση αντικειμένων Πραγματικά αντικείμενα Καταστάσεις Συμπεριφορές Αντικείμενα στον προγραμματισμό

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve

Διαβάστε περισσότερα

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk )

1. VAJA IZ TRDNOSTI. (linearna algebra - ponovitev, Kroneckerjev δ i j, permutacijski simbol e i jk ) VAJA IZ TRDNOSTI (lnearna algebra - ponovtev, Kroneckerev δ, permutacsk smbol e k ) NALOGA : Zapš vektor a = [, 2,5,] kot lnearno kombnaco vektorev e = [,,,], e 2 = [,2,3,], e 3 = [2,,, ] n e 4 = [,,,]

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Mεταβλητές (variables) και Σταθερές (constants)

Mεταβλητές (variables) και Σταθερές (constants) Mεταβλητές (variables) και Σταθερές (constants) Οι μεταβλητές είναι οι θέσεις μνήμης στις οποίες ένα πρόγραμμα τοποθετεί τα δεδομένα του κατά τη διάρκεια της λειτουργίας του. θα μάθουμε: πως δηλώνουμε

Διαβάστε περισσότερα

Κατασκευαστές. Μέθοδοι Κατασκευής (Constructors).

Κατασκευαστές. Μέθοδοι Κατασκευής (Constructors). Κατασκευαστές Μέθοδοι Κατασκευής (Constructors). Οι κατασκευαστές (constructors) είναι μέθοδοι που εκτελούνται όταν κατασκευάζεται ένα αντικείμενο. Μια τάξη μπορεί να έχει αρκετούς κατασκευαστές, οι οποίοι

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην.

I (JAVA) Ονοματεπώνυμο: Α. Μ.: Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. I (JAVA) Ονοματεπώνυμο: Α. Μ.: + ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ Δώστε τις απαντήσεις σας ΕΔΩ: Απαντήσεις στις σελίδες των ερωτήσεων ΔΕΝ θα ληφθούν υπ όψην. + 1 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 2/3) 2 ΦΥΛΛΟ ΑΠΑΝΤΗΣΕΩΝ (σελ. 3/3)

Διαβάστε περισσότερα

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak

Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA. Polona Oblak Univerza v Ljubljani Fakulteta za računalništvo in informatiko MATEMATIKA Polona Oblak Ljubljana, 04 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 5(075.8)(0.034.) OBLAK,

Διαβάστε περισσότερα

Βασίλης Χριστοφίδης Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία: 21 Σεπτεµβρίου 2012

Βασίλης Χριστοφίδης Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία: 21 Σεπτεµβρίου 2012 Πανεπιστήµιο Κρήτης Τµήµα Επιστήµης Υπολογιστών ΗΥ-252 Αντικειµενοστρεφής Προγραµµατισµός Βασίλης Χριστοφίδης Επαναληπτική Εξέταση (3 ώρες) Ηµεροµηνία: 21 Σεπτεµβρίου 2012 Θέμα 1 Θέμα 2 Θέμα 3 Θέμα 4 Θέμα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 7: Ενθυλάκωση (encapsulation), Τροποποιητές(modifiers) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ενθυλάκωση -Τροποποιητές Πρόσβασης (Access Modifiers), public, protected, private,

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Κλάσεις και Αντικείμενα Μέθοδοι ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Κλάσεις και Αντικείμενα Μέθοδοι Παράδειγμα 1 Θέλουμε ένα πρόγραμμα που να προσομοιώνει την κίνηση ενός αυτοκινήτου, το οποίο κινείται και τυπώνει τη θέση του.

Διαβάστε περισσότερα

Προγραμματισμός Διαδικτύου

Προγραμματισμός Διαδικτύου 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Προγραμματισμός Διαδικτύου Ενότητα 3 : Κατηγορίες και κληρονομικότητα Ιωάννης Τσούλος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Εισαγωγή στον Αντικειμενοστρέφή Προγραμματισμό Διάλεξη #12

Εισαγωγή στον Αντικειμενοστρέφή Προγραμματισμό Διάλεξη #12 Διάγραμμα κλάσεων [Class diagram] Διάλεξη #12: Υπο-τύποι και πολυμορφισμός [sub-typing and polymorphism] Database Music Εισαγωγή στον Αντικειμενοστρεφή Προγραμματισμό,, Slide 1 Εισαγωγή στον Αντικειμενοστρεφή

Διαβάστε περισσότερα

II. LIMITA IN ZVEZNOST FUNKCIJ

II. LIMITA IN ZVEZNOST FUNKCIJ II. LIMITA IN ZVEZNOST FUNKCIJ. Preslikave med množicami Funkcija ali preslikava med dvema množicama A in B je predpis f, ki vsakemu elementu x množice A priredi natanko določen element y množice B. Važno

Διαβάστε περισσότερα

Δομές Δεδομένων & Ανάλυση Αλγορίθμων. 3ο Εξάμηνο. Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα. http://aetos.it.teithe.gr/~demos/teaching_gr.

Δομές Δεδομένων & Ανάλυση Αλγορίθμων. 3ο Εξάμηνο. Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα. http://aetos.it.teithe.gr/~demos/teaching_gr. Δομές Δεδομένων & Ανάλυση Αλγορίθμων 3ο Εξάμηνο Ουρά (Queue) Υλοποίηση της με τη βοήθεια πίνακα http://aetos.it.teithe.gr/~demos/teaching_gr.html Δημοσθένης Σταμάτης Τμήμα Μηχανικών Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα