ΜΗΧΑΝΙΣΜΟΙ ΑΓΩΓΙΜΟΤΗΤΑΣ
|
|
- Αἴσων Καλογιάννης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΗΧΑΝΙΣΜΟΙ ΑΓΩΓΙΜΟΤΗΤΑΣ Η εμάξηεζε ηεο ειεθηξηθήο αγσγηκόηεηαο (σ) ησλ εκηαγσγώλ από ηε ζεξκνθξαζία κπνξεί λα δώζεη ζεκαληηθέο πιεξνθνξίεο γηα ηνπο κεραληζκνύο αγσγηκόηεηάο ηνπο. Oη ηδηόηεηεο ελόο δνκηθά ηέιεηνπ, ζηνηρεηνκεηξηθνύ εκηαγσγνύ ρσξίο πξνζκείμεηο, ζπληζηνύλ ηελ ελδνγελή (intrinsic) ζπκπεξηθνξά. Απνθιίζεηο από ηε ζηνηρεηνκεηξία, ιόγσ πξνζκείμεσλ ή αηειεηώλ, νδεγνύλ ζηελ εμσγελή (extrinsic) ζπκπεξηθνξά. Σην ζρήκα δίλεηαη ε εμάξηεζε ηεο ειεθηξηθήο αγσγηκόηεηαο (σ) από ην αληίζηξνθν ηεο ζεξκνθξαζίαο γηα έλα εκηαγσγό. Είλαη θαλεξό όηη ππάξρνπλ δηάθνξνη κεραληζκνί πνπ δξνπλ ζε δηαθνξεηηθέο πεξηνρέο ζεξκνθξαζίαο. Πξνθεηκέλνπ λα βξεζεί ν θαηάιιεινο κεραληζκόο ζε θάζε πεξηνρή θξίλεηαη απαξαίηεην λα γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ lnζ, ln(ζτ -1 ), ln(ζτ 1/2 ), ln(ζτ), ln(ζτ 3/2 ) ζπλαξηήζεη ηνπ 10 3 /Τ θαη ln(ζτ 1/2 ) ζπλαξηήζεη ηνπ Τ -1/4 πνπ αληηζηνηρνύλ ζε δηάθνξνπο κεραληζκνύο. ln[( -1 m -1 )] T(K) /T(K -1 )
2 Είλαη γλσζηό όηη ζε πςειέο ζεξκνθξαζίεο ε αγσγηκόηεηα ζηνπο ελδνγελείο εκηαγσγνύο νθείιεηαη ζηε ζεξκηθή δηέγεξζε ησλ θνξέσλ από ηε δώλε ζζέλνπο ζηε δώλε αγσγηκόηεηαο θαη εθθξάδεηαη από ηε ζρέζε: 0 exp( E g /kbt) όπνπ E g ην ελεξγεηαθό ράζκα ηνπ εκηαγσγνύ. Επνκέλσο πεηξακαηηθά, από ηε ζεξκνθξαζηαθή εμάξηεζε ηεο αγσγηκόηεηαο ζηελ πεξηνρή ησλ πςειώλ ζεξκνθξαζηώλ κπνξεί λα ππνινγηζζεί από ηελ θιίζε ηεο lnζ ζπλαξηήζεη ηνπ 10 3 /Τ ην ελεξγεηαθό ράζκα ηνπ εκηαγσγνύ E g. Σηελ πεξίπησζε εμσγελνύο εκηαγσγνύ ε αγσγηκόηεηα ζηελ πεξηνρή ησλ πςειώλ ζεξκνθξαζηώλ έρεη παξόκνηα κνξθή: 0 exp( E a /kbt) όπνπ Ε a ε ελέξγεηα ελεξγνπνίεζεο, δει. ε ελέξγεηα πνπ απαηηείηαη γηα ηε ζεξκηθή δηέγεξζε από ηα επίπεδα ησλ δνηώλ ή απνδεθηώλ ζηηο δώλεο αγσγηκόηεηαο θαη ζζέλνπο αληίζηνηρα. Από ηελ θιίζε ηεο lnζ ζπλαξηήζεη ηνπ 10 3 /Τ κπνξεί λα ππνινγηζζεί ε ελέξγεηα ελεξγνπνίεζεο Ε a. Η γξακκηθόηεηα ησλ ln(ζτ -1 ) ή ln(ζτ 1/2 ) ζπλαξηήζεη ηνπ 10 3 /Τ ζρεηίδεηαη κε ην μοντέλο των ορίων των κρσσταλλιτών (Grain boundary model (GB)). Σηα πνιπθξπζηαιιηθά πιηθά, ηα όξηα ησλ θξπζηαιιηηώλ κπνξνύλ λα παίμνπλ ζεκαληηθό ξόιν επηπξόζζεηα ζε άιιεο αηέιεηεο. Σην όξην θάζε θξπζηαιιίηε, ν θξπζηαιιίηεο πθίζηαηαη κηα απόηνκε κεηαβνιή ζηνλ πξνζαλαηνιηζκό ηνπ θαη επνκέλσο ηα όξηα απηά δξνπλ ζαλ αηέιεηεο.
3 Απηέο νη αηέιεηεο (GB) ηζνδπλακνύλ κε θαηαζηάζεηο παγίδσλ γηα ηνπο θνξείο θαη πξνθαινύλ ηε δεκηνπξγία ελόο εζσηεξηθνύ θξάγκαηνο δπλακηθνύ. Επεηδή ζπλήζσο ζηα πιηθά ππάξρνπλ πξνζκίμεηο, ε παξνπζία ηνπο επεξεάδεη ηε ζπκπεξηθνξά ηνπο. Πξνζκίμεηο ζηα όξηα ησλ θξπζηαιιηηώλ κπνξνύλ λα επηδξάζνπλ ζηηο κεραληθέο ηδηόηεηεο ηνπ πιηθνύ, θαζηζηώληαο, π.ρ. έλα πιηθό πνπ είλαη όιθηκν όηαλ είλαη πςειήο θαζαξόηεηαο, ππεξβνιηθά εύζξαπζην θαηά κήθνο ησλ νξίσλ ησλ θξπζηαιιηηώλ. Σηνπο εκηαγσγνύο ε παξνπζία ησλ νξίσλ ησλ θξπζηαιιηηώλ επεξεάδεη ηηο ειεθηξηθέο ηνπο ηδηόηεηεο. Η ηνπηθή κεηαβνιή ζηε δνκή ηνπο επηθέξεη δηαηαξαρή ζηελ θαλνληθόηεηα ησλ δεζκώλ ηνπο ή ζηελ θαηαλνκή ησλ ειεθηξνλίσλ ζζέλνπο κε ζπλέπεηα ηε θόξηηζε ησλ νξίσλ ησλ θξπζηαιιηηώλ. Έηζη δεκηνπξγείηαη έλα θξάγκα ζηε ξνή ηνπ ξεύκαηνο θαηά κήθνο ηνπο, πξνθαιώληαο ηελ αύμεζε ηεο αληίζηαζεο ηνπ δείγκαηνο. Εάλ ε ζπγθέληξσζε ησλ πξνζκίμεσλ Ν D είλαη κηθξόηεξε κηαο ραξαθηεξηζηηθήο * * ηηκήο Ν D ηόηε νη θξπζηαιιίηεο απνγπκλώλνληαη πιήξσο, ελώ αλ Ν D >Ν D απνγπκλώλνληαη κεξηθώο. Απνδεηθλύεηαη όηη ε αγσγηκόηεηα εθθξάδεηαη από ηηο ζρέζεηο: E ζ Texp( ) h (N LN ) k T 2 2 e L 2πkBm ND b 3 t D B όηαλ Ν D <Ν D * (πιήξεο απόγύκλσζε) E (2m k ) k T 2 e Lno 1/ 2 B 1/ 2 b T exp( ) B όηαλ Ν D >Ν D * ( κεξηθή απνγύκλσζε) όπνπ L ην κέγεζνο ηνπ θξπζηαιιίηε, m* ε ελεξγόο κάδα ηνπ θνξέα, Ν D ε ζπγθέληξσζε ησλ πξνζκίμεσλ, N t ε ζπγθέληξσζε ησλ θαηαζηάζεσλ παγίδσλ, n o ε ζπγθέληξσζε ησλ ειεθηξνλίσλ ζηελ νπδέηεξε πεξηνρή ησλ θξπζηαιιηηώλ θαη E b ην ύςνο ηνπ θξάγκαηνο δπλακηθνύ. Αλ ε γξαθηθή παξάζηαζε ησλ ln(ζτ -1 ) ή ln(ζτ 1/2 ) ζπλαξηήζεη ηνπ 10 3 /Τ είλαη γξακκηθή, ηόηε ν κεραληζκόο αγσγηκόηεηαο ζρεηίδεηαη κε ην μοντέλο των ορίων
4 ln[t 1/2 ( -1 m -1 K 1/2 )] ln [T -1 ( -1 m -1 K -1 )] των κρσσταλλιτών (Grain boundary model (GB)). Η θιίζε ηνπο δίλεη ηε δπλαηόηεηα ππνινγηζκνύ ηνπ E b γηα ηελ πεξίπησζε πιήξνπο ή κεξηθήο απνγύκλσζεο αληίζηνηρα /T (K -1 ) -8.5 T(K) /T (K -1 )
5 Σηελ πεξηνρή ζεξκνθξαζηώλ γηα ηελ νπνία ε εμάξηεζε ησλ ln(ζτ) ή ln(ζτ 3/2 ) από ην 10 3 /Τ είλαη γξακκηθή ηόηε ν κεραληζκόο πνπ επηθξαηεί είλαη εθείλνο των μικρών πολαρονίων (SPH). Έλα ειεθηξόλην όηαλ θηλείηαη αλάκεζα από ηα άηνκα ελόο ζηεξενύ πξνθαιεί άπσζε ζηα γεηηνληθά αξλεηηθά θνξηία θαη έιμε ζηα γεηηνληθά ζεηηθά θνξηία. Απηή ε δηαηαξαρή ζηηο θαλνληθέο ζέζεηο ησλ ειεθηξηθώλ θνξηίσλ δεκηνπξγεί κηα πεξηνρή πόισζεο πνπ ηαμηδεύεη καδί κε ην ειεθηξόλην. Όηαλ ην ειεθηξόλην απνκαθξπλζεί, ε πεξηνρή επαλέξρεηαη ζηελ θαλνληθή ηεο θαηάζηαζε. Τν ειεθηξόλην ζπλνδεπόκελν από απηό ην είδνο ηεο ειεθηξηθήο κεηαηόπηζεο ησλ γεηηνληθώλ θνξηίσλ ιέγεηαη πολαρόνιο. Όηαλ ε αθηίλα ηνπ πνιαξνλίνπ είλαη πνιύ κεγαιύηεξε από ηε ζηαζεξά ηνπ πιέγκαηνο, ην πνιαξόλην θαιείηαη κεγάιν ελώ αλ είλαη ίζε ή κηθξόηεξε ηεο ζηαζεξάο ηνπ πιέγκαηνο θαιείηαη κηθξό. Τν κνληέιν ηνπ κηθξνύ πνιαξνλίνπ κπνξεί λα είλαη αδηαβαηηθήο ή κε αδηαβαηηθήο πξνζέγγηζεο. Σηελ αδηαβαηηθή πξνζέγγηζε ε πηζαλόηεηα ην πνιαξόλην λα πξαγκαηνπνηεί άικα ζε δηαδνρηθέο ζέζεηο είλαη πςειή. Σ απηήλ ηελ πεξίπησζε πξνβιέπεηαη κηα εθζεηηθή εμάξηεζε ηνπ ζt από ην 10 3 /Τ. ( W /k T) ζ (ζ / T)e B, όπνπ W ε ελέξγεηα ελεξγνπνίεζεο. 0 Επνκέλσο αλ ε γξαθηθή παξάζηαζε ηνπ ln(ζτ) ζπλαξηήζεη ηνπ 10 3 /Τ είλαη γξακκηθή πξόθεηηαη γηα κεραληζκό αγσγηκόηεηαο κηθξνύ πνιαξνλίνπ κε αδηαβαηηθή πξνζέγγηζε. Σηε κε αδηαβαηηθή πξνζέγγηζε ε αληίζηνηρε πηζαλόηεηα είλαη κηθξή θαη ε αγσγηκόηεηα δίλεηαη από ηε ζρέζε: 3 / 2 ζ (ζ0t ) e ( W /k T) B Αλ ε γξαθηθή παξάζηαζε ηνπ ln(ζτ 3/2 ) ζπλαξηήζεη ηνπ 10 3 /Τ είλαη γξακκηθή πξόθεηηαη γηα κεραληζκό αγσγηκόηεηαο κηθξνύ πνιαξνλίνπ κε κε αδηαβαηηθή πξνζέγγηζε.
6 ln[t 3/2 ( -1 m -1 K 3/2 )] ln[t( -1 m -1 K)] Από ηε θιίζε ηνπο κπνξνύλ λα πξνζδηνξηζηνύλ νη ελέξγεηεο ελεξγνπνίεζεο W γηα ηελ αδηαβαηηθή θαη κε αδηαβαηηθή πξνζέγγηζε αληίζηνηρα. T(K) (b) /T(K -1 ) Έλαο άιινο κεραληζκόο πνπ δξα όκσο ζε ρακειόηεξεο ζεξκνθξαζίεο είλαη ν βηματικός μητανισμός μεταβλητής εμβέλειας [variable range hopping (VRH)] ηνπ Mott πνπ ραξαθηεξίδεηαη από κηθξή ελέξγεηα ελεξγνπνίεζεο Q. O κεραληζκόο απηόο είλαη ελεξγόο αλ ππάξρνπλ ζπλερή κνλνπάηηα πνπ επηηξέπνπλ ηε βεκαηηθή κεηαθίλεζε κέζα ζην ζηεξεό. Ο Mott ζεώξεζε όηη ζε ρακειέο ζεξκνθξαζίεο ε θίλεζε ησλ ειεθηξνλίσλ γίλεηαη κέζσ ελόο ζπζηήκαηνο ηπραία θαηαλεκεκέλσλ εληνπηζκέλσλ
7 θαηαζηάζεσλ. Σε ρακειέο ζεξκνθξαζίεο, είλαη πην πηζαλέο νη κεηαβάζεηο ησλ ειεθηξνλίσλ κεηαμύ θαηαζηάζεσλ κε ελέξγεηεο θνληά ζηελ ελέξγεηα Fermi, γηαηί κόλν ζ απηήλ ηελ πεξηνρή ελεξγεηώλ κπνξνύλ λα βξεζνύλ θαηεηιεκκέλεο θαη θελέο θαηαζηάζεηο κε παξαπιήζηεο ελέξγεηεο. Βαζηδόκελνο ζ απηή ηε ζεώξεζε απέδεημε όηη ε αγσγηκόηεηα ππαθνύεη ζηε ζρέζε: 0 T0 exp T 1/ 4 κε Τ 0 κηα ραξαθηεξηζηηθή ζεξκνθξαζία πνπ εμαξηάηαη από ηελ ππθλόηεηα θαηαζηάζεσλ ζηελ ελέξγεηα Fermi. Σηηο ρακειέο ζεξκνθξαζίεο, αλ ε εμάξηεζε ηνπ ln(ζt 1/2 ) κε ην Τ -1/4 είλαη γξακκηθή ν κεραληζκόο αγσγηκόηεηαο πνπ επηθξαηεί είλαη ν βεκαηηθόο κεραληζκόο κεηαβιεηήο εκβέιεηαο.
ΚΕΦ. 2.3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ
ΚΕΦ..3 ΑΠΟΛΤΣΗ ΣΘΜΗ ΠΡΑΓΜΑΣΘΚΟΤ ΑΡΘΘΜΟΤ Οπιζμόρ απόλςηηρ ηιμήρ: Σηνλ άμνλα ησλ πξαγκαηηθώλ αξηζκώλ ζεσξνύκε έλαλ αξηζκό α πνπ ζπκβνιίδεηαη κε ην ζεκείν Α. Η απόζηαζε ηνπ ζεκείνπ Α από ηελ αξρή Ο, δειαδή
2
1 2 3 4 5 6 7 8 9 Η δίνδνο ζπλαληάηαη σο δνκή ζε θάζε MOS ηξαλδίζηνξ. Απνηειείηαη από δπν νκνηνγελείο πεξηνρέο n θαη p ππξηηίνπ, νη νπνίεο δηαρσξίδνληαη από έλα ρώξν κεηάβαζεο ηεο πνιηθόηεηαο, ηνλ ιεγόκελν
iii. iv. γηα ηελ νπνία ηζρύνπλ: f (1) 2 θαη
ΔΠΑΝΑΛΗΠΣΙΚΑ ΘΔΜΑΣΑ ΣΟ ΓΙΑΦΟΡΙΚΟ ΛΟΓΙΜΟ Μάρτιος 0 ΘΔΜΑ Να ππνινγίζεηε ηα όξηα: i ii lim 0 0 lim iii iv lim e 0 lim e 0 ΘΔΜΑ Γίλεηαη ε άξηηα ζπλάξηεζε '( ) ( ) γηα θάζε 0 * : R R γηα ηελ νπνία ηζρύνπλ:
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 2011-12
Απνηειέζκαηα Εξσηεκαηνινγίνπ 2o ηεηξάκελν 11-12 Project 6: Ταμίδη κε ηε Μεραλή ηνπ Φξόλνπ Υπεύζπλνη Καζεγεηέο: Ε. Μπηιαλάθε Φ. Αλησλάηνο Δρώηηζη 3: Πνηα από ηα παξαθάησ ΜΜΕ ηεξαξρείηε από πιεπξάο ζεκαζίαο;
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ. G. Mitsou
ΦΥΣΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ηαηηθή ηωλ ξεπζηώλ (Τδξνζηαηηθή) Ση είλαη ηα ξεπζηά - Γεληθά Ππθλόηεηα Πίεζε Μεηαβνιή ηεο πίεζεο ζπλαξηήζεη ηνπ βάζνπο Αξρή ηνπ Pascal Τδξνζηαηηθή πίεζε Αηκνζθαηξηθή πίεζε Απόιπηε &
(γ) Να βξεζεί ε ρξνλνεμαξηώκελε πηζαλόηεηα κέηξεζεο ηεο ζεηηθήο ηδηνηηκήο ηνπ ηειεζηή W.
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τειηθή Εμέηαζε: 5 Σεπηέκβξε 6 (Δηδάζθσλ: ΑΦ Τεξδήο) ΘΕΜΑ Θεσξνύκε θβαληηθό ζύζηεκα πνπ πεξηγξάθεηαη από Φακηιηνληαλή Η, ε νπνία ζε κνξθή πίλαθα ρξεζηκνπνηώληαο ηηο ηδηνζπλαξηήζεηο, θαη
x x x x tan(2 x) x 2 2x x 1
ΘΕΡΙΝΟ ΣΜΗΜΑ ΜΑΘΗΜΑΣΙΚΑ Ι ΕΠΑΝΑΛΗΠΣΙΚΕ ΑΚΗΕΙ ΜΕΡΟ Ι 1. Να γίλνπλ νη γξαθηθέο παξαζηάζεηο ησλ παξαθάησ ζπλαξηήζεσλ. t ( i) e ( ii) ln( ) ( iii). Να βξεζεί ην Π.Ο., ν ηύπνο ηεο αλίζηξνθεο θαη ην Π.Τ. ησλ
Ενδεικτικά Θέματα Στατιστικής ΙΙ
Ενδεικτικά Θέματα Στατιστικής ΙΙ Θέματα. Έζησ όηη ζε δείγκα 35 θαηνηθηώλ πνπ ελνηθηάδνληαη ζε θνηηεηέο ζηελ Κνδάλε βξέζεθε ην κέζν κεληαίν κίζζσκα ζηα 5 επξώ, ελώ ζην Ζξάθιεην ην κέζν κεληαίν κίζζσκα ζε
Μονοψϊνιο. Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ.
Μονοψϊνιο Ολιγοψώνιο Αγνξά κε ιίγνπο αγνξαζηέο. Δύναμη μονοψωνίος Η ηθαλόηεηα πνπ έρεη ν αγνξαζηήο λα επεξεάζεη ηελ ηηκή ηνπ αγαζνύ. Οπιακή αξία Δπηπξόζζεηα νθέιε από ηελ ρξήζε/θαηαλάισζε κηαο επηπξόζζεηε
α) ηε κεηαηόπηζε x όηαλ ην ζώκα έρεη κέγηζην ξπζκό κεηαβνιήο ζέζεο δ) ην κέγηζην ξπζκό κεηαβνιήο ηεο ηαρύηεηαο
Έξγν ελέξγεηα 3 (Λύζε) Σώκα κάδαο m = 4Kg εξεκεί ζηε βάζε θεθιηκέλνπ επηπέδνπ γσλίαο θιίζεο ζ κε εκζ = 0,6 θαη ζπλζ = 0,8. Τν ζώκα αξρίδεη λα δέρεηαη νξηδόληηα δύλακε θαη μεθηλά λα αλεβαίλεη ζην θεθιηκέλν
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ. Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη Εήηημα 1 ο :
ΓΗΑΓΩΝΗΣΜΑ ΣΤΑ ΜΑΘΖΜΑΤΗΚΑ Ον/μο:.. Γ Λσκείοσ Ύλη: Μιγαδικοί-Σσναρηήζεις-Παράγωγοι Θεη.-Τετν. Καη. 11-1-11 Εήηημα 1 ο : Α. Γηα ηελ ζπλάξηεζε f, λα βξείηε ην δηάζηεκα ζην νπνίν είλαη παξαγσγίζηκε θαζώο θαη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Εσθύγραμμη Κίνηζη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Είμαζηε ηυχεροί που είμαζηε δάζκαλοι Ον/μο:.. A Λσκείοσ Ύλη: Εσθύγραμμη Κίνηζη 8-11-2015 Θέμα 1 ο : 1. Η εμίζωζε θίλεζεο ελόο θηλεηνύ πνπ θηλείηαη επζύγξακκα είλαη ε x = 5t. Πνηα
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ
ΘΔΚΑ ΡΖΠ ΑΛΑΓΛΩΟΗΠΖΠ 1.Απηόο πνπ ζα αλαγλσξηζηεί απνπζηάδεη γηα πνιύ θαηξό. 2.Δπηζηξέθεη κε πιαζηή ηαπηόηεηα ή κεηακνξθσκέλνο. 3.Απνκνλώλνληαη ηα δύν πξόζσπα 4.Άξζε κεηακόξθσζεο 5.Απνθάιπςε 6.Ακθηβνιίεο-απνδεηθηηθά
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ
ΟΠΤΙΚΗ Α. ΑΝΑΚΛΑΣΖ - ΓΗΑΘΛΑΣΖ. Μία αθηίλα θωηόο πξνζπίπηεη κε κία γωλία ζ ζηε επάλω επηθάλεηα ελόο θύβνπ από πνιπεζηέξα ν νπνίνο έρεη δείθηε δηάζιαζεο ε =,49 (ζρήκα ). Βξείηε πνηα ζα είλαη ε κέγηζηε γωλία
ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1. Να ιπζνύλ ηα ζπζηήκαηα. 1 0,3x 0,1y x 3 3x 4y 2 4x 2y ( x 1) 6( y 1) (i) (ii)
. Να ιπζνύλ ηα ζπζηήκαηα.,, 6 4 4 4 5( ) 6( ). Να ιπζνύλ ηα ζπζηήκαηα.,,,6 7. Να ιπζνύλ ηα ζπζηήκαηα. 5 ( )( ) ( ) 4. Να ιπζνύλ ηα ζπζηήκαηα. 5 4 6 7 4. 5. Να ιπζνύλ ηα ζπζηήκαηα. 59 ( )( ) ()( 5) 7 6.
Αζκήζεις ζτ.βιβλίοσ ζελίδας 13 14
.1.10 ζκήζεις ζτ.βιβλίοσ ζελίδας 13 14 Ερωηήζεις Καηανόηζης 1. ύν δηαθνξεηηθέο επζείεο κπνξεί λα έρνπλ θαλέλα θνηλό ζεκείν Έλα θνηλό ζεκείν i ύν θνηλά ζεκεία iλ) Άπεηξα θνηλά ζεκεία ηηηνινγήζηε ηελ απάληεζε
f '(x)g(x)h(x) g'(x)f (x)h(x) h'(x) f (x)g(x)
ΓΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 54 Υλη: Παράγωγοι Γ Λσκείοσ Ον/μο:.. 6--4 Θεη-Τετν. ΘΔΜΑ Α.. Αλ f, g, h ηξεηο παξαγωγίζηκεο ζπλαξηήζεηο ζην λα απνδείμεηε όηη : f () g() h() ' f '()g()h() g'()f ()h() h'() f ()g()
Φςζική Πποζαναηολιζμού Γ Λςκείος. Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο
Φςζική Πποζαναηολιζμού Γ Λςκείος Αζκήζειρ Ταλανηώζειρ 1 ο Φςλλάδιο Επιμέλεια: Αγκανάκηρ Α. Παναγιώηηρ Επωηήζειρ Σωζηό- Λάθορ Να χαπακηηπίζεηε ηιρ παπακάηω πποηάζειρ ωρ ζωζηέρ ή λάθορ: 1. Η ηαιάλησζε είλαη
Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Δξγαζηεξηαθή άζθεζε 8: Μαγλεηηθέο Μεηξήζεηο Ηκεξνκελία δηεμαγσγήο: 26/5/2010
Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Δξγαζηεξηαθή άζθεζε 8: Μαγλεηηθέο Μεηξήζεηο Ηκεξνκελία δηεμαγσγήο: 26/5/2010 ΕΙΑΓΩΓΗ: Τα δηάθνξα πιηθά, αλάινγα κε ηε ζπκπεξηθνξά ηνπο εληόο καγλεηηθνύ πεδίνπ δηαθξίλνληαη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ
H ΜΑΓΕΙΑ ΤΩΝ ΑΡΙΘΜΩΝ Φξεζηκόηεηα καζεκαηηθώλ Αξρή θαηακέηξεζεο Όζα έδσζαλ νη Έιιελεο... Τξίγσλνη αξηζκνί Τεηξάγσλνη αξηζκνί Δπηκήθεηο αξηζκνί Πξώηνη αξηζκνί Αξηζκνί κε μερσξηζηέο ηδηόηεηεο Γίδπκνη πξώηνη
x-1 x (x-1) x 5x 2. Να απινπνηεζνύλ ηα θιάζκαηα, έηζη ώζηε λα κελ ππάξρνπλ ξηδηθά ζηνπο 22, 55, 15, 42, 93, 10 5, 12
ΑΚΖΔΗ ΤΜΝΑΗΟΤ - ΚΤΚΛΟ ΠΡΩΣΟ - - ηα πνηεο ηηκέο ηνπ ηα παξαθάησ θιάζκαηα δελ νξίδνληαη ; (Τπόδεημε : έλα θιάζκα νξίδεηαη αλ ν παξνλνκαζηήο είλαη δηάθνξνο ηνπ κεδελόο) - (-) - (-) - Να απινπνηεζνύλ ηα θιάζκαηα
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ(1) ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΔΤΙΚΗΣ ΚΑΙ ΤΔΦΝΟΛΟΓΙΚΗΣ ΚΑΤΔΥΘΥΝΣΗΣ Β ΛΥΚΔΙΟΥ ΤΔΣΤ() ΣΤΑ ΓΙΑΝΥΣΜΑΤΑ ΘΔΜΑ : Αλ ηζρύεη 3 3, λα δείμεηε όηη ηα ζεκεία Μ, Ν ηαπηίδνληαη. ΘΔΜΑ : Α Β Μ Γ Σην παξαπάλσ ζρήκα είλαη 3. α) Γείμηε όηη
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα 11 Ηουνίου 2018 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ. (Ενδεικηικές Απανηήζεις)
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ Γευηέρα Ηουνίου 08 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α Α. Απόδεημε ζεωξήκαηνο ζει. 99 ζρνιηθνύ βηβιίνπ. Α. α.
1. Η απιή αξκνληθή ηαιάλησζε πνπ εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη πιάηνο Α = 20 cm θαη
ΛΤΜΔΝΔ ΑΚΖΔΗ ΣΖΝ ΔΤΡΔΖ ΑΡΥΗΚΖ ΦΑΖ 1. Η αιή αξκνληθή ηαιάλησζε ν εθηειεί έλα κηθξό ζώκα κάδαο m = 1 kg έρεη ιάηνο Α = cm θαη ζρλόηεηα f = 5 Hz. Τε ρξνληθή ζηηγκή = ην κηθξό ζώκα δηέξρεηαη αό ηε ζέζε ανκάθξλζεο
ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 2017
α: κολάδα β: κολάδες Σειίδα από 8 ΔΝΓΔΙΚΣΙΚΔ ΛΤΔΙ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ 7 ΘΔΜΑ Α Α Έζηω, κε Θα δείμνπκε όηη f ( ) f ( ) Πξάγκαηη, ζην δηάζηεκα [, ] ε f ηθαλνπνηεί ηηο πξνϋπνζέζεηο ηνπ ΘΜΤ Επνκέλωο,
ΔΦΑΡΜΟΜΔΝΑ ΜΑΘΗΜΑΣΙΚΑ ΣΗ ΧΗΜΔΙΑ Ι ΘΔΜΑΣΑ Α επηέκβξηνο 2009. 1. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(x,y) =
ΘΔΜΑΣΑ Α επηέκβξηνο 9. Να ππνινγηζηνύλ νη κεξηθέο παξάγσγνη πξώηεο ηάμεο ηεο ζπλάξηεζεο f(,y) = y.. Να ππνινγηζηνύλ ηα νινθιεξώκαηα: a) ln b) a) 3cos b) e sin 4. Να ππνινγηζηεί ην νινθιήξσκα: S ( y) 3
Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Εξγαζηεξηαθή άζθεζε 2: Δηειεθηξηθή θαζκαηνζθνπία Ηκεξνκελία δηεμαγσγήο: 14/4/2010
Μέζνδνη ραξαθηεξηζκνύ πιηθώλ Εξγαζηεξηαθή άζθεζε 2: Δηειεθηξηθή θαζκαηνζθνπία Ηκεξνκελία δηεμαγσγήο: 14/4/2010 ΕΙΑΓΩΓΗ: Με ηηο ηερληθέο ηεο δηειεθηξηθήο θαζκαηνζθνπίαο κειεηώληαη νη δηειεθηξηθέο ηδηόηεηεο
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ. Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙΜΟ Α ΛΤΚΔΙΟΤ Ημεπομηνία: 10/12/11 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΔΙΝΟΜΔΝΔ ΛΤΔΙ Πρόβλημα 1: α) Να δείμεηε όηη αλ ζεηηθνί πξαγκαηηθνί αξηζκνί ηζρύεη: β) Αλ είλαη
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου ΥΟΛΕΙΟ..
ΜΑΘΗΜΑΣΙΚΗ ΚΤΣΑΛΟΓΡΟΜΙΑ 2007 ΓΙΑ ΣΟ ΓΤΜΝΑΙΟ Παπασκευή 26 Ιανουαπίου 2007 Σάξη: Α Γυμνασίου έλαξμεο 09.30 ιήμεο 09.45 Σην παξαθάησ ζρήκα θαίλεηαη ηκήκα ελόο πνιενδνκηθνύ ζρεδίνπ κηαο πόιεο. Οη ζθηαζκέλεο
ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/2014
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 204-205 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08/09/204 A ΟΜΑΓΑ Οδηγία: Να γράυεηε ζηο ηεηράδιο ζας ηον αριθμό κάθε μιας από ηις παρακάηφ ερφηήζεις Α.-Α.8 και
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Οξηδόληηα θαη θαηαθόξπθε κεηαηόπηζε παξαβνιήο 1 ε Δξαζηεξηόηεηα Αλνίμηε ην αξρείν «Μεηαηόπηζε παξαβνιήο.ggb». Με ηε καύξε γξακκή παξηζηάλεηαη ε γξαθηθή παξάζηαζε ηεο f(x)=αx 2 πνπ ζα ηελ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΚΑΙ ΣΕΧΝΟΛΟΓΙΑ ΤΛΙΚΩΝ Άδειεσ Χρήςησ -Το παρόν εκπαιδευτικό υλικό υπόκειται ςτην άδεια χρήςησ Creative Commons και ειδικότερα Αναφορά - Μη εμπορική
Κβαντικοί Υπολογισμοί. Πέκπηε Γηάιεμε
Κβαντικοί Υπολογισμοί Πέκπηε Γηάιεμε Kπθισκαηηθό Mνληέιν Έλαο θιαζηθόο ππνινγηζηήο απνηειείηαη από αγσγνύο θαη ινγηθέο πύιεο πνπ απνηεινύλ ηνπο επεμεξγαζηέο. Σηνπο θβαληηθνύο ε πιεξνθνξία βξίζθεηαη κέζα
Σήκαηα Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) ΕΙΣΑΓΨΓΗ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΨΝΙΕΣ
Σήκαηα 1 Β Α Γ Γ Δ Λ Η Σ Ο Ι Κ Ο Ν Ο Μ Ο Υ Γ Ι Α Λ Δ Ξ Η - ( 2 ) Σήκαηα Οξηζκόο ζήκαηνο Ταμηλόκεζε ζεκάησλ Σεηξέο Fourier Μεηαζρεκαηηζκόο Fourier Σπλέιημε Σπζρέηηζε θαη Φαζκαηηθή Ππθλόηεηα 2 Οξηζκόο Σήκαηνο
Δξγαζηεξηαθή άζθεζε 03. Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf
Δξγαζηεξηαθή άζθεζε 03 Σηεξενγξαθηθή πξνβνιή ζην δίθηπν Wulf Ζιίαο Χαηδεζενδσξίδεο Οθηώβξηνο / Ννέκβξηνο 2004 Τη είλαη ην δίθηπν Wulf Δπίπεδν ζην νπνίν κπνξνύκε λα αλαπαξαζηήζνπκε ηξηζδηάζηαηα ζρήκαηα,
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano) ΘΔΜΑ Α
Γ ΣΑΞΖ ΔΝΗΑΗΟΤ ΛΤΚΔΗΟΤ ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΘΔΣΗΚΩΝ ΚΑΗ ΟΗΚΟΝΟΜΗΚΩΝ ΠΟΤΓΩΝ ΤΝΑΡΣΖΔΗ ΟΡΗΑ ΤΝΔΥΔΗΑ (έως Θ.Bolzano). Να δηαηππώζεηε ην Θ.Bolzano. 5 ΘΔΜΑ Α μονάδες A. Να απνδείμεηε όηη γηα θάζε πνιπωλπκηθή
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΔΣΑΙΡΔΙΑ ΠΑΓΚΤΠΡΙΟ ΓΙΑΓΩΝΙ ΜΟ Α ΛΤΚΔΙΟΤ Ζμεπομηνία: 18/12/10 Ώπα εξέτασηρ: 09:30-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤ ΕΙ 1. Δίλεηαη ην πνιπώλπκν Αλ θαη., λα βξείηε ην ηειεπηαίν ςεθίν ηνπ αξηζκνύ έρνπκε:
ΔΕΟ 13. Ποσοτικές Μέθοδοι. θαη λα ππνινγίζεηε ην θόζηνο γηα 10000 παξαγόκελα πξντόληα. Να ζρεδηαζηεί γηα εύξνο πξντόλησλ έσο 30000.
ΔΕΟ 13 Ποσοτικές Μέθοδοι Σσνάρηηζη Κόζηοσς C(), μέζο κόζηος C()/. Παράδειγμα 1 Μηα εηαηξεία δαπαλά γηα θάζε πξντόλ Α πνπ παξάγεη 0.0 λ.κ. Τα πάγηα έμνδα ηεο εηαηξείαο είλαη 800 λ.κ. Ζεηείηαη 1) Να πεξηγξάςεηε
ΣΗΜΕΙΩΣΕΙΣ EΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ, ΔΙΟΔΟΣ Χ. Λαμππόποςλορ, Χειμεπινό εξάμηνο 2013-2014
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ηνηρεία Φπζηθήο Ηκηαγσγώλ Η δίνδνο p-n. Ηκηαγσγνί Μπνξνύλ λα άγνπλ ξεύκα πην εύθνια απ όηη νη κνλσηέο, αιιά όρη ηόζν όζν νη αγσγνί. Σν πην δηαδεδνκέλν πιηθό
(Ενδεικηικές Απανηήζεις) ΘΔΜΑ Α. Α1. Βιέπε απόδεημε Σει. 262, ζρνιηθνύ βηβιίνπ. Α2. Βιέπε νξηζκό Σει. 141, ζρνιηθνύ βηβιίνπ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ (ΟΜΑΓΑ Β ) ΣΔΣΑΡΣΖ 18 ΜΑΪΟΤ 16 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΜΑΘΖΜΑΣΗΚΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ (ΝΔΟ ΤΣΖΜΑ) ΚΑΣΔΤΘΤΝΖ (ΠΑΛΑΗΟ ΤΣΖΜΑ) (Ενδεικηικές Απανηήζεις) ΘΔΜΑ
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΜΕ ΑΡΧΙΚΗ ΦΑΗ Αρχική θάζε Οη ζρέζεηο x= Aεκσt π = π max ζπλσt α = - α max εκσt ηζρύνπλ, όηαλ ηε ρξνληθή ζηηγκή t=0 ην ζώκα δηέξρεηαη από ηε ζέζε ηζνξξνπίαο (x=0) θαη θηλείηαη θαηά
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη
Εςθςή ζςζηήμαηα επισειπήζεων και αξιολόγηζη Μάθημα 11 Τμήμα Μάπκεηινγκ και Διοίκηζηρ Λειηοςπγιών Τα δηαγξάκκαηα θαηάζηαζεο (state diagrams) ρξεζηκνπνηνύληαη γηα λα βνεζήζνπλ ηνλ πξνγξακκαηηζηή λα θαηαιάβεη
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα
Πολυεπίπεδα/Διασυμδεδεμέμα Δίκτυα Κοιμωμικά δίκτυα (multiplex network) Έρεηε ινγαξηαζκό ζην Facebook? Έρεηε ινγαξηαζκό ζην LinkedIn? Έρεηε ινγαξηαζκό ζην Twitter? Αεροπορικές γραμμές της Ευρώπης(multiplex
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου
ΚΤΠΡΙΑΚΗ ΜΑΘΗΜΑΣΙΚΗ ΕΣΑΙΡΕΙΑ ΜΑΘΗΜΑΤΙΚΗ ΣΚΥΤΑΛΟΓΡΟΜΙΑ 2015 ΓΙΑ ΤΟ ΓΥΜΝΑΣΙΟ Τεηάπηη 28 Ιανουαπίου 2015 ΛΔΥΚΩΣΙΑ Τάξη: Α Γυμναζίου ΠΡΟΒΛΗΜΑ Σε έλα ηνπξλνπά βόιετ δήισζαλ ζπκκεηνρή νκάδεο Γπκλαζίσλ ηεο Κύπξνπ.
ΛΙΜΝΗ ΤΣΑΝΤ. Σρήκα 1. Σρήκα 2
ΛΙΜΝΗ ΤΣΑΝΤ Τν Σρήκα 1 δείρλεη ηελ αιιαγή ηεο ζηάζκεο ηεο Λίκλεο Τζαλη, ζηε Σαράξα ηεο Βόξεηαο Αθξηθήο. Η Λίκλε Τζαλη εμαθαλίζηεθε ηειείσο γύξσ ζην 20.000 π.χ., θαηά ηε δηάξθεηα ηεο ηειεπηαίαο επνρήο ησλ
Δπηιέγνληαο ην «Πξνεπηινγή» θάζε θνξά πνπ ζα ζπλδέεζηε ζηελ εθαξκνγή ζα βξίζθεζηε ζηε λέα ρξήζε.
ΑΝΟΙΓΜΑ ΝΔΑ ΥΡΗΗ 1. Γεκηνπξγείηε ηε λέα ρξήζε από ηελ επηινγή «Παξάκεηξνη/Παξάκεηξνη Δηαηξίαο/Γηαρείξηζε Δηαηξηώλ». Πιεθηξνινγείηε ηνλ θσδηθό ηεο εηαηξίαο ζαο θαη παηάηε Enter. Σηελ έλδεημε «Υξήζεηο» παηάηε
1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s Β. π 2 = 0.02km/s Γ. π 3 = 36000m/h Γ. π 4 = 144km/h.
ΦΤΙΚΗ A ΛΤΚΔΙΟΤ ΓΙΑΡΚΔΙΑ: 10min ΣΜΗΜΑ:. ONOMA:. ΔΠΩΝΤΜΟ: ΗΜΔΡΟΜΗΝΙΑ: ΜΟΝΑΓΔ ΘΔΜΑ 1 ο ΘΔΜΑ ο ΘΔΜΑ 3 ο ΘΔΜΑ 4 ο ΤΝΟΛΟ ΘΔΜΑ A: 1. Να ζεκεηώζεηε πνηα από ηηο επόκελεο ηαρύηεηεο είλαη κεγαιύηεξε. Α. π 1 = 30m/s
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ
ΣΟ ΤΣΖΜΑ ΔΛΑΣΖΡΗΟ - ΩΜΑ Σε όια ηα πξνβιήκαηα πνπ ζα αληηκεηωπίζνπκε, ην ειαηήξην ζα είλαη αβαξέο θαη ζα ηθαλνπνηεί ην λόκν ηνπ Hooke (ηδαληθό ειαηήξην), δειαδή ε δύλακε πνπ αζθεί έλα ηδαληθό ειαηήξην έρεη
ΟΡΙΜΟ ΕΝΣΡΟΠΙΑ. Ο ινγάξηζκνο εμαζθαιίδεη όηη είλαη εθηαηηθό κέγεζνο. ln 2
ΟΡΙΜΟ ΕΝΣΡΟΠΙΑ S.380 3 J/K Ο ινγάξηζκνο εμαζθαιίδεη όηη S είλαη εθηαηηθό κέγεζνο S S Οξηζκόο ζεξκνθξαζίαο S E V Γηα λα έρνπκε κεγηζηνπνίεζε ηεο εληξνπίαο ζε απνκνλσκέλν ζύζηεκα (θαη εθόζνλ είλαη δηαζέζηκν
Σύνθεζη ηαλανηώζεων. Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο:
Σύνθεζη ηαλανηώζεων Α. Σύλζεζε δύν α.α.η ηεο ίδιας ζστνόηηηας Έζησ έλα ζώκα πνπ εθηειεί ηαπηόρξνλα δύν αξκνληθέο ηαιαληώζεηο ηεο ίδηαο ζπρλόηεηαο πνπ πεξηγξάθνληαη από ηηο παξαθάησ εμηζώζεηο: Η απνκάθξπλζε
ΚΔΦ. 2.4 ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ
ΚΔΦ.. ΡΗΕΔ ΠΡΑΓΜΑΣΗΚΩΝ ΑΡΗΘΜΩΝ Οξηζκόο ηεηξαγσληθήο ξίδαο: Αλ 0 ηόηε νλνκάδνπκε ηεηξαγσληθή ξίδα ηνπ ηελ κε αξλεηηθή ιύζε ηεο εμίζσζεο:. Γειαδή ηεηξαγσληθή ξίδα ηνπ 0 ιέγεηαη ν αξηζκόο 0 πνπ όηαλ πςσζεί
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP
ΑΛΛΑΓΗ ΟΝΟΜΑΣΟ ΚΑΙ ΟΜΑΔΑ ΕΡΓΑΙΑ, ΚΟΙΝΟΥΡΗΣΟΙ ΦΑΚΕΛΟΙ ΚΑΙ ΕΚΣΤΠΩΣΕ ΣΑ WINDOWS XP ηότοι εργαζηηρίοσ ην πιαίζην ηνπ ζπγθεθξηκέλνπ εξγαζηεξίνπ ζα παξνπζηαζηνύλ βαζηθέο ιεηηνπξγίεο ησλ Windows XP πνπ ζρεηίδνληαη
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ: έζησ
ΜΙΓΑΔΙΚΙ ΑΡΙΘΜΙ: έζησ έλαο κηγαδηθόο αξηζκόο. αληίζηξνθνο ηνπ κηγαδηθνύ αξηζκνύ a b είλαη ν αξηζκόο Παπάδειγμα: έζησ.αληίζηξνθνο ηνπ αξηζκνύ : Μέηπο μιγαδικού απιθμού: αλ κέηξν δηαλύζκαηνο OM. b ή απόιπηε
ΠΟΛΤΜΕΡΙΜΟ - ΠΕΣΡΟΥΗΜΙΚΑ
ΠΟΛΤΜΕΡΙΜΟ - ΠΕΣΡΟΥΗΜΙΚΑ ΠΑΡΑΔΕΙΓΜΑΣΑ Ο πολσμεριζμός Πολσμεριζμός είναι η τημική ανηίδραζη καηά ηην οποία πολλά μόρια ίδιων ή διαθορεηικών οργανικών ενώζεων, ποσ ονομάζονηαι μονομερή, ενώνονηαι και ζτημαηίζοσν
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση
Κευάλαιο 8 Μονοπωλιακή Συμπεριφορά- Πολλαπλή Τιμολόγηση Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέρξη ζηηγκήο ην κνλνπώιην έρεη ζεσξεζεί ζαλ κηα επηρείξεζε ε νπνία πσιεί ην πξντόλ ηεο ζε θάζε πειάηε ζηελ
ΑΓΩΜΘΡΘΙΞΘ ΤΩΠΞΘ ΡΘΡ ΛΘΙΠΕΡ ΗΚΘΙΘΕΡ ΛΘΤΑΗΚΘΔΗΡ Τ.
ΑΓΩΜΘΡΘΙΞΘ ΤΩΠΞΘ ΡΘΡ ΛΘΙΠΕΡ ΗΚΘΙΘΕΡ ΟΑIΤΜΘΔΘ ΡΕ ΛΕΓΑΚΞ ΓΗΟΕΔΞ 11V11 ΗΚΘΙΘΑ 6-10 ΤΠΞΜΩΜ ΛΕΘΞΜΕΙΗΛΑΑ ΞΣ ΟΑΘΤΜΘΔΘΞΣ ΡΕ ΛΕΓΑΚΞ ΓΗΟΕΔΞ ΓΘΑ ΟΑΘΙΕΡ ΗΚΘΙΘΑΡ 6-10 ΕΩΜ Η ΔΘΑΔΠΞΛΗ ΑΟΞ Η ΛΘΑ ΕΡΘΑ ΡΗΜ ΑΚΚΗ ΕΘΜΑΘ ΛΕΓΑΚΗ
ΘΔΜΑ 1 ο Μονάδες 5,10,10
ΟΝΟΜΑΣΔΠΩΝΤΜΟ ΗΜΔΡΟΜΗΝΙΑ ΘΔΜΑ 1 ο Μονάδες 5,1,1 ΓΙΑΓΩΝΙΜΑ 1 ου ΜΔΡΟΤ ΣΗ ΑΝΑΛΤΗ Α Γώζηε ηνλ νξηζκό ηεο αληίζηξνθεο ζπλάξηεζεο Β Γείμηε όηη αλ κηα ζπλάξηεζε είλαη αληηζηξέςηκε ηόηε νη γξαθηθέο παξαζηάζεηο
ΕΞΙΣΩΣΕΙΣ. (iv) (ii) (ii) (ii) 5. Γηα ηηο δηάθνξεο ηηκέο ηνπ ι λα ιπζνύλ νη εμηζώζεηο : x 6 3 9x
Να ιπζνύλ νη εμηζώζεηο : ( ) 4 ( ) 7 ( )( ) (ii) 5 7 9 4 (iv) 5 6 4 9 6 0 9 6 8 Να ιπζνύλ νη εμηζώζεηο : 7 5 8 (ii) 4 6 8 5 8 ( 6) 4 4 5 (iv) 7 5 4 7 0 7 ( ) 4 8 4 5 8 Να ιπζνύλ νη εμηζώζεηο : ( ) 0 5
Εξγαζηεξηαθή άζθεζε ζηελ Ππξεληθή Φπζηθή: 1 Σθέδαζε Compton Ηκεξνκελία δηεμαγσγήο: 16/1/2012
Εξγαζηεξηαθή άζθεζε ζηελ Ππξεληθή Φπζηθή: Σθέδαζε Compton Ηκεξνκελία δηεμαγσγήο: 6//0 ΕΙΑΓΩΓΗ ΚΑΙ ΣΟΙΥΕΙΑ ΘΕΩΡΙΑ Σθνπόο ηεο άζθεζεο είλαη ε κέηξεζε ηεο κάδαο εξεκίαο ηνπ ειεθηξνλίνπ θαη ε κεηαβνιή ηεο
Άσκηση 1 - Μοπυοποίηση Κειμένου
Άσκηση 1 - Μοπυοποίηση Κειμένου Σηηο παξαθάησ γξακκέο εθαξκόζηε ηε κνξθνπνίεζε πνπ πεξηγξάθνπλ Γξακκή κε έληνλε γξαθή Γξακκή κε πιάγηα γξαθή Γξακκή κε ππνγξακκηζκέλε γξαθή Γξακκή κε Arial Font κεγέζνπο
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙ - ΦΥΕ 0 7 Ινπλίνπ 009 Απαντήσειρ στιρ ασκήσειρ τηρ τελικήρ εξέτασηρ στιρ Σςνήθειρ Διαυοπικέρ Εξισώσειρ Αγαπηηέ θοιηηηή/ηπια,
Τηλζφωνο: 99543321 Ε-mail: savvas_email@yahoo.com Ώρες διδασκαλίας: 16:00 19:15 μμ
ΠΑΙΓΑΓΩΓΙΚΟ ΙΝΣΙΣΟΤΣΟ ΚΤΠΡΟΤ Πξόγξακκα Δπηκόξθσζεο Τπνςεθίσλ Καζεγεηώλ Σερλνινγίαο Γελάξεο 2011 ΗΛΔΚΣΡΟΝΙΚΑ Ι (Ύιε Γπκλαζίνπ) Διδάσκων: Σαββίδης Σάββας Τηλζφωνο: 99543321 Ε-mail: savvas_email@yahoo.com
ΓΔΧΜΔΣΡΙΑ ΓΙΑ ΟΛΤΜΠΙΑΓΔ
ΒΑΓΓΔΛΗ ΦΤΥΑ 2009 ελίδα 2 από 9 ΔΤΘΔΙΔ SIMSON 1 ΒΑΙΚΔ ΠΡΟΣΑΔΙ 1.1 ΔΤΘΔΙΑ SIMSON Γίλεηαη ηξίγσλν AB θαη ηπρόλ ζεκείν ηνπ πεξηγεγξακκέλνπ θύθινπ ηνπ. Αλ 1, 1 θαη 1 είλαη νη πξνβνιέο ηνπ ζηηο επζείεο πνπ
Ηκηαγσγνί-Δίνδνη. Ν. Πεηξέιιεο Επ. Καζ. ΣΕΙ Λάξηζαο
Ηκηαγσγνί-Δίνδνη Ν. Πεηξέιιεο Επ. Καζ. ΣΕΙ Λάξηζαο Ηκηαγσγνί Οη αγσγνί είλαη πιηθά πνπ παξνπζηάδνπλ πνιύ κηθξή αληίζηαζε ζην ειεθηξηθό ξεύκα, εηδηθή αληίζηαζε: 10-8 Ωm Οη κνλσηέο είλαη πιηθά πνπ παξνπζηάδνπλ
ΕΞΙΣΩΣΕΙΣ. Α. Πρωτοβάθμιεσ Εξιςώςεισ. Β. Διερεφνηςη Εξιςώςεων. 1x είναι αδφνατθ. x 1 x 1. Άλγεβρα Α Λυκείου
ΕΞΙΣΩΣΕΙΣ Α. Πρωτοβάθμιεσ Εξιςώςεισ. 1. Να λυκεί θ εξίςωςθ (x - 4) (x +5) x -5 5(x +1) - - = - - x 4 6. Να λυκεί θ εξίςωςθ x (x+1)+x(x+1)+x+1=0. Να λυκεί θ εξίςωςθ x(x -4)-x +x =0 4. Να λυκεί θ εξίςωςθ
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ
ΜΕΛΕΣΗ E.O.K. ΜΕ ΑΙΘΗΣΗΡΑ ΘΕΗ ΦΤΛΛΟ ΕΡΓΑΙΑ (Θεοδώρα Γιώηη, Νικόλας Καραηάζιος- Τπεύθσνη εκ/κος Λ. Παπαηζίμπα) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:.., ΗΜΕΡΟΜΗΝΙΑ:.// Σε ακαμίδην πνπ κπνξεί λα θηλείηαη ρσξίο ηξηβέο πάλσ
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ..
ΗΜΔΡΟΜΗΝΙΑ. ΟΝΟΜΑΣΔΠΩΝΤΜΟ.. ΒΑΘΜΟΛΟΓΙΑ.. ΘΔΜΑ Α Σηηο εκηηειείο πξνηάζεηο Α.1 Α.4 λα γξάςεηε ζην ηεηξάδην ζαο ηνλ αξηζκό ηεο πξόηαζεο θαη, δίπια, ην γξάκκα πνπ αληηζηνηρεί ζηε θξάζε ε νπνία ηε ζπκπιεξώλεη
Constructors and Destructors in C++
Constructors and Destructors in C++ Σύνθεζη Πνιύ ζπρλά ζηε C++ κία θιάζε κπνξεί λα πεξηέρεη ζαλ κέιεδεδνκέλα αληηθείκελα άιισλ θιάζεσλ. Πνηα είλαη ε ζεηξά κε ηελ νπνία δεκηνπξγνύληαη θαη θαηαζηξέθνληαη
Εξγαζηεξηαθή άζθεζε 30: Μέηξεζε ηνπ ζπληειεζηή ζεξκηθήο αγσγηκόηεηαο πιηθώλ Ηκεξνκελία δηεμαγσγήο: 25/11/2005
Εξγαζηεξηαθή άζθεζε 30: Μέηξεζε ηνπ ζπληειεζηή ζεξκηθήο αγσγηκόηεηαο πιηθώλ Ηκεξνκελία δηεμαγσγήο: 5/11/005 ΕΙΑΓΩΓΗ Η ζεξκηθή αγσγηκόηεηα είλαη έλα θαηλόκελν κεηαθνξάο πνπ εθδειώλεηαη όηαλ ε ζεξκνθξαζία
Κατοίκον Εργασία Σε ειεύζεξν ρώξν, ην Ε= 20 cos (σt 50x)a y V/m. Να ππνινγίζεηε (α) ην J d (β) ην Η (γ) ην σ. (sd p.e 9.4 p425) e jx.
Κατοίκον Εργασία 4 1. Έλαο καγλεηηθόο ππξήλαο (magnetic core) πνπ έρεη δηαηνκή 4 cm 2 είλαη ελσκέλνο ζε γελλήηξηα ησλ 120 V θαη 60 Hz όπσο θαίλεηαη ζην πην θάησ ζρήκα. Να ππνινγίζεηε ην emf V 2, πνπ δεκηνπξγήζεθε
Α. Εηζαγσγή ηεο έλλνηαο ηεο ηξηγσλνκεηξηθήο εμίζσζεο κε αξρηθό παξάδεηγκα ηελ εκx = 2
ΣΡΙΓΩΝΟΜΔΣΡΙΚΔ EΞΙΩΔΙ Πνηα παξαδείγκαηα εμηζώζεσλ ή θαη πξνβιεκάησλ πηζηεύεηαη όηη είλαη θαηάιιεια γηα ηελ επίιπζε ηνπο θαηά ηελ δηάξθεηα ηεο δηδαθηηθήο δηαδηθαζίαο κέζα ζηελ ηάμε; 1 ε ΓΙΓΑΚΣΙΚΗ ΩΡΑ Α.
Ασκήσεις Οπτική και Κύματα
Παλεπηζηήκην Κξήηεο Τκήκα Επηζηήκεο θαη Τερλνινγίαο Υιηθώλ Ασκήσεις Οπτική και Κύματα Δηδάζθσλ: Δεκήηξεο Παπάδνγινπ Email: dpapa@materials.uc.gr Άλυτες Ασκήσεις: 1. Να πξνζδηνξίζεηε αλ νη αθόινπζεο ζπλαξηήζεηο
Γιπθόδε + Ομπγόλν Δηνμείδην ηνπ άλζξαθα + Νεξό + Ελέξγεηα
4. ΑΝΑΠΝΟΗ Η δηάζπαζε ηεο γιπθόδεο γίλεηαη κέζα ζηα θύηηαξα, νλνκάδεηαη θπηηαξηθή αλαπλνή θαη εμαζθαιίδεη ηελ ελέξγεηα πνπ είλαη απαξαίηεηε ζην θύηηαξν. Η δηάζπαζε γίλεηαη κε ηελ παξνπζία νμπγόλνπ θαη
Να ζρεδηάζεηο ηξόπνπο ζύλδεζεο κηαο κπαηαξίαο θαη ελόο ιακπηήξα ώζηε ν ιακπηήξαο λα θσηνβνιεί.
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: Απλό ηλεκτπικό κύκλυμα Η δηδαζθαιία ηνπ απινύ ειεθηξηθνύ θπθιώκαηνο ππάξρεη ζην κάζεκα «Φπζηθά» ηεο Ε ηάμεο ηνπ δεκνηηθνύ θαη επαλαιακβάλεηαη ζην κάζεκα ηεο Φπζηθήο ζηε Γ ηάμε ηνπ Γπκλαζίνπ.
3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ
3 ΑΠΙΔ ΑΘΖΔΗ ΘΟΚΟΙΟΓΗΑ ΠΟΤ ΑΛΣΗΚΔΣΩΠΗΕΟΛΣΑΗ ΚΔ ΦΤΗΘΖ ΘΑΗ ΚΑΘΖΚΑΣΗΘΑ ΙΤΘΔΗΟΤ ΘΔΩΡΖΣΗΘΟ ΤΠΟΒΑΘΡΟ: Γηα ηελ ιύζε ηωλ αζθζεωλ πνπ αθνινπζνύλ ζα ρξεηαζζνύκε: 1. Σελ (δηάζεκε) εμίζωζε ηνπ ΔΗΛΣΔΗΛ: E c. Σνλ λόκν
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ
ΠΑΝΔΛΛΑΓΗΚΔ ΔΞΔΣΑΔΗ Γ ΣΑΞΖ ΖΜΔΡΖΗΟΤ ΓΔΝΗΚΟΤ ΛΤΚΔΗΟΤ ΚΑΗ ΔΠΑΛ ΣΔΣΑΡΣΖ 25 ΜΑΨΟΤ 2016 ΔΞΔΣΑΕΟΜΔΝΟ ΜΑΘΖΜΑ: ΑΡΥΔ ΟΗΚΟΝΟΜΗΚΖ ΘΔΧΡΗΑ ΠΡΟΑΝΑΣΟΛΗΜΟΤ - ΔΠΗΛΟΓΖ (Δλδεηθηηθέο Απαληήζεηο) ΘΔΜΑ Α Α1. α. Σωζηό β. Λάζνο
ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών
τοιχεία του μαθήματοσ (ημζρα εβδομάδασ, ώρεσ, ζτοσ): ΣΕΙ Δυτικήσ Μακεδονίασ, Παράρτημα Καςτοριάσ Τμήμα Πληροφορικήσ και Τεχνολογίασ Υπολογιςτών Εργαςτηριακή ομάδα αςκήςεων 2 για το μάθημα «ΑΡΧΙΣΕΚΣΟΝΙΚΗ
Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ
Αιγόξηζκνη 2.2.7.4 Γοκή επαλάιευες Δληοιές Όζο & Μέτρης_όηοσ Εηζαγσγή ζηηο Αξρέο ηεο Επηζηήκεο ησλ Η/Υ 1 Άζθεζε 34 ζει 53 Έλα ςεθηαθό θσηνγξαθηθό άικπνπκ έρεη απνζεθεπηηθό ρώξν N Mbytes. Να αλαπηύμεηε
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β )
ΠΑΝΕΛΛΑΔΙΚΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ & ΠΑΝΕΛΛΗΝΙΕ ΕΞΕΣΑΕΙ Γ ΣΑΞΗ ΗΜΕΡΗΙΟΤ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: /0/03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΔΜΑ Α ΠΡΟΣΕΙΝΟΜΕΝΕ ΑΠΑΝΣΗΕΙ ΘΕΜΑΣΩΝ Α.
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training. Dipl.Biol.cand.med. Stylianos Kalaitzis
Αζθήζεηο 5 νπ θεθαιαίνπ Crash course Step by step training Dipl.Biol.cand.med. Stylianos Kalaitzis Stylianos Kalaitzis Μνλνϋβξηδηζκνο 1 Γπν γνλείο, εηεξόδπγνη γηα ηνλ αιθηζκό θάλνπλ παηδηά. Πνία ε πηζαλόηεηα
ΘΔΜΑΤΑ ΤΔΛΙΚΩΝ ΔΞΔΤΑΣΔΩΝ ΣΤΗ ΦΥΣΙΚΟΦΗΜΔΙΑ - ΘΔΩΡΙΑ ΦΡΟΝΙΚΗ ΓΙΑΡΚΔΙΑ: 1 ώρα (14:00-15:00) Α. Φημική Θερμοδσναμική
ΘΔΜΑΤΑ ΤΔΛΙΚΩΝ ΔΞΔΤΑΣΔΩΝ ΣΤΗ ΦΥΣΙΚΟΦΗΜΔΙΑ - ΘΔΩΡΙΑ 2011-12 ΦΡΟΝΙΚΗ ΓΙΑΡΚΔΙΑ: 1 ώρα (14:00-15:00) Α. Φημική Θερμοδσναμική Βξείηε κηα εθθξαζε γηα ηνλ παξάγνληα ζπκπηεζηόηεηαο ελόο αεξίνπ πνπ αθνινπζεί ηελ
ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ
1 Σ. Δ. Ι. ΓΤ Σ Ι Κ Η Μ Α Κ Δ Γ Ο Ν Ι Α ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΚΩΝ ΔΦΑΡΜΟΓΩΝ Σ Μ Η Μ Α Μ Η Υ Α Ν ΟΛΟ Γ Ι Α Δξγαζηήξην Μεραλνπξγηθώλ Καηεξγαζηώλ & CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΔΓΙΟ ΙΙ ΜΑΘΗΜΑ 2: Πνηόηεηα Δπηθάλεηαο Γξ. Βαξύηεο
A. Αιιάδνληαο ηε θνξά ηνπ ξεύκαηνο πνπ δηαξξέεη ηνλ αγωγό.
ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΛΔΤΚΩΙΑ ΦΤΛΛΟ ΔΡΓΑΙΑ Μειέηε ηωλ παξαγόληωλ από ηνπο νπνίνπο εμαξηάηαη ε ειεθηξνκαγλεηηθή δύλακε. Τιηθά - πζθεπέο: Ηιεθηξνληθή δπγαξηά, ηξνθνδνηηθό ηάζεο, ξννζηάηεο, ακπεξόκεηξν,
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ
ΥΡΙΣΟΤΓΔΝΝΙΑΣΙΚΔ ΚΑΣΑΚΔΤΔ 1) Υξηζηνπγελληάηηθα ειαηάθηα θάξηα ή θαδξάθη θάξηα ή θαδξάθη Τιηθά πνπ ζα ρξεηαζηνύκε: Υαξηί θάλζνλ καύξν γηα ην θόλην, πξάζηλν γηα ηα ειαηάθηα, θόθθηλν γηα ηα αζηεξάθηα Απιό
Άμεσοι Αλγόριθμοι: Προσπέλαση Λίστας (list access)
Έρνπκε απνζεθεύζεη κηα ζπιινγή αξρείσλ ζε κηα ζπλδεδεκέλε ιίζηα, όπνπ θάζε αξρείν έρεη κηα εηηθέηα ηαπηνπνίεζεο. Μηα εθαξκνγή παξάγεη κηα αθνινπζία από αηηήκαηα πξόζβαζεο ζηα αξρεία ηεο ιίζηαο. Γηα λα
ΣΡΑΠΕΖΑ ΘΕΜΑΣΩΝ Α ΛΤΚΕΙΟΤ
Α/Α : 0_3207/391 1. Τελ άιιε κέξα νη Τξηάθνληα, πνιύ ηαπεηλσκέλνη θαη ληώζνληαο εγθαηαιειεηκκέλνη, ζπγθεληξώζεθαλ ζην ρώξν ησλ ζπλεδξηάζεσλ παξάιιεια, νη «ηξεηο ρηιηάδεο», ζε όια ηα ζεκεία όπνπ είραλ ηνπνζεηεζεί,
Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα!
Cpyright 2013 Λόγος & Επικοινωνία // All rights Reserved Παιχνίδι γλωζζικής καηανόηζης με ζχήμαηα! Αυηό ηο παιχνίδι έχει ζηόχους: 1. ηελ εθγύκλαζε ηεο αθνπζηηθήο κλήκεο ησλ παηδηώλ 2. ηελ εμάζθεζε ζηελ
Επωηήζειρ Σωζηού Λάθοςρ ηων πανελλαδικών εξεηάζεων Σςναπηήζειρ
Επωηήζειρ Σωζηού Λάθοςρ ηων πνελλδικών εξεηάζεων 2-27 Σςνπηήζειρ Η γξθηθή πξάζηζε ηεο ζπλάξηεζεο f είλη ζπκκεηξηθή, σο πξνο ηνλ άμνλ, ηεο γξθηθήο πξάζηζεο ηεο f 2 Αλ f, g είλη δύν ζπλξηήζεηο κε πεδί νξηζκνύ
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ 61 Ον/μο:.. Β Λσκείοσ Ύλη: Ηλεκηρικό ρεύμα Το Φως Γενικής Παιδείας 22-3-2015 Θέμα 1 ο : 1. Μία ειεθηξηθή ζπζθεπή ιεηηνπξγεί γηα ρξνληθή δηάξθεηα 0,5h θαη θαηαλαιώλεη 2kWh ειεθηξηθήο
Κεθάλαιο 7. Πξνζθνξά ηνπ θιάδνπ Μ. ΨΥΛΛΑΚΗ
Κεθάλαιο 7 Πξνζθνξά ηνπ θιάδνπ 1 Προζθορά ανηαγωνιζηικού κλάδοσ Πώο πξέπεη λα ζπλδπαζηνύλ νη απνθάζεηο πξνζθνξάο ησλ πνιιώλ επηκέξνπο επηρεηξήζεσλ ελόο αληαγσληζηηθνύ θιάδνπ γηα λα βξνύκε ηελ θακπύιε πξνζθνξάο
Αιγόξηζκνη Γνκή επηινγήο. Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο. Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ. introcsprinciples.wordpress.
Αιγόξηζκνη 2.2.7.3 Γνκή επηινγήο Πνιιαπιή Δπηινγή Δκθωιεπκέλεο Δπηινγέο Δηζαγωγή ζηηο Αξρέο ηεο Δπηζηήκεο ηωλ Η/Υ 1 Πνιιαπιή Δληνιή Δπηινγήο Αν ζπλζήθε_1 ηόηε εληνιέο_1 αλλιώς_αν ζπλζήθε_2 ηόηε εληνιέο_2...
Ονοματεπώνυμο:.. Ημερομηνία:. ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ 1 ου ΚΑΙ 3 ου ΚΔΦΑΛΑΙΟ Γ ΛΥΚΔΙΟΥ
Ονοματεπώνυμο: Ημερομηνία: Γάθηζεο Δκκαλνπήι ΔΠΑΝΑΛΗΠΤΙΚΟ ΓΙΑΓΩΝΙΣΜΑ 1 ου ΚΑΙ 3 ου ΚΔΦΑΛΑΙΟ Γ ΛΥΚΔΙΟΥ ΘΔΜΑ 1 ο Α Να επηιέμεηε ηε ζσζηή απάληεζε 11 Πνην από ηα παξαθάησ άηνκα ή ηόληα έρεη δηαθνξεηηθό αξηζκό
=90º ) κε πιεπξέο α, β, γ. Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη (ii) 4α, 4β, 3γ.
ΣΗΜΕΙΩΣΕΙΣ ΕΥΚΛΕΙΔΕΙΑΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ - 1 ΓΔΝΗΚΔ ΔΠΑΝΑΛΖΠΣΗΚΔ ΑΚΖΔΗ 1 Γίλεηαη νξζνγώλην ηξίγσλν ΑΒΓ ( =90º ) κε πιεπξέο α, β, γ Να βξεζεί ην είδνο ηνπ ηξηγώλνπ πνπ έρεη πιεπξέο (i) θα, θβ, θγ θαη
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων
ΓΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Γςνάμειρ μεταξύ ηλεκτπικών φοπτίων Είμαζηε ηυχεροί που είμαζηε δάζκαλοι 58 Β Λςκείος Γεν. Παιδείαρ 9-11-2014 Θέμα 1 ο : 1. Γύν ζεηηθά θνξηία πνπ βξίζθνληαη ζε απόζηαζε
Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε:
1 ΟΡΙΜΟΙ MONOTONIA AKΡOTATA Μηα ζπλάξηεζε κε πεδίν νξηζκνύ ην Α, ζα ιέκε όηη παξνπζηάδεη ηοπικό μέγιζηο ζην, αλ ππάξρεη δ>0, ηέηνην ώζηε: Σν ιέγεηαη ζέζε ή ζεκείν ηνπ ηνπηθνύ κεγίζηνπ θαη ην ( ηνπηθό κέγηζην.
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. καινούργιο σχολ. σελ 35 / παλιό σχολ. 53 Α. Ψευδής, σελ.99 / παλιό σχολ. σελ. 7 αντιπαράδειγμά, f ( ) Α3. σελ 73, παλιό σχολ. σελ. 9 Α. α) Λάθος β)
1.1 Εςθύγπαμμη κίνηζη
. Εςθύγπαμμη κίνηζη.. Ύλη και κίνηζη Η ύιε βξίζθεηαη ζε κία δηαξθή θίλεζε. Η θίλεζε είλαη ζρεηηθή, δελ ππάξρεη ηίπνηε ζην ζύκπαλ ην νπνίν λα είλαη αθίλεην. Οξίδεηαη ωο ηξνρηά νη δηαδνρηθέο ζέζεηο πνπ παίξλεη
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 27 ΜΑΪΟΥ 2013
ΔΝΓΔΙΚΤΙΚΔΣ ΛΥΣΔΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΔΥΘΥΝΣΗΣ Γ ΛΥΚΔΙΟΥ ΓΔΥΤΔΡΑ 7 ΜΑΪΟΥ 13 ΘΔΜΑ Α : (Α1) Σρνιηθό βηβιίν ζειίδα 33-335 (Α) Σρνιηθό βηβιίν ζειίδα 6 (Α3) Σρνιηθό βηβιίν ζειίδα (Α) α) Λάζνο β) Σωζηό γ) Σωζηό
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ 1. ρεδίαζε πλδπαζηηθνύ Κπθιώκαηνο Έλα ζπλδπαζηηθό θύθισκα (Κ) έρεη ηξεηο εηζόδνπο A, B θαη C θαη κία έμνδν Y Y=A B+AC Να θαηαζθεπάζεηε ην ράξηε Karnaugh. B 0