Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
|
|
- Χριστόφορος Καραμανλής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο Στατιστική Πιθανότητες-Κατανομές Διδάσκοντες : Χαρά Πετρίδου Δήµος Σαμψωνίδης 28/3/2005 Υπολογ.Φυσική ΣΣ 1
2 28/3/2005 Υπολογ.Φυσική ΣΣ 2 Πιθανότητες Ορισμός 1-Μαθηματικός: P(A) είναι αριθμός που πληρεί τα αξιώματα του Kolmogorov ΔΕΝ δινει πληροφορία ο μαθηματικός ορισμός! 1 ) ( ) ( ) ( ) ( 0 ) ( = + = i A P A P A P A A P A P
3 Πιθανότητες Ορισμός 2 : Κλασσικός ορισμός ΗπιθανότηταP(A) είναι η ιδιότητα ενός αντικειμένου που καθορίζει πόσο συχνά συμβαίνει ένα γεγονός Α. Δίνεται από την συμμετρία για εξίσου πιθανά γεγονότα. Γεγονότα όχι το ίδιο πιθανά τα θεωρουμε εξισου πιθανα Παράδειγμα : ρίχνουμε ένα νομισμα : P(Η) = 1/2 Ρίχνουμε δύο ζάρια : P(8) = 5/36? ή P(8) = 6/36? 28/3/2005 Υπολογ.Φυσική ΣΣ 3
4 Προβήματα με τον κλασσικό ορισμό 1. Ποτε πρόκειται για εξισου πιθανές περιπτώσεις?. Αν ρίξουμε δύο νομίσματα έχουμε 3 ή 4 ίσες δυνατότητες? 2. Τι κανουμε σε περιπτώσεις που έχουμε συνεχείς μεταβλητές?. Πως να χωρίσουμε ένα τρίγωνο σε δύο τυχαία μέρη? Έχουμε λύση Δεν Έχουμε λύση 28/3/2005 Υπολογ.Φυσική ΣΣ 4
5 Πιθανότητες - Συχνότητα Ορισμός 3 -Frequentist ( συχνάζουσα πιθανότητα) ΗπιθανότηταP(A) είναι το όριο του λόγου Ν(Α)/Ν (σε ένα σύνολο Ν με ιδιότητα Α) P( A) N = N ( A) N 28/3/2005 Υπολογ.Φυσική ΣΣ 5
6 Πρόβλημα (περιορισμός) με τον ορισμό της συχνάζουσας πιθανότητας Η P(A) εξαρτάται και απο το Α και απο το σύνολο Ν. Η πιθανότητα που υπολογίζουμε μπορεί να είναι παραπλανητική αν βασιστούμε στην συχνότητα του γεγονότος : 10 στους 30 ανθρώπους σε ένα σύνολο είναι πλούσιοι => P(πλούσιος) = 1/3!!! 28/3/2005 Υπολογ.Φυσική ΣΣ 6
7 Συνέπειες για την Κβαντομηχανική (QM) Στην QM υπολογίζουμε πιθανότητες Λ p Οι πιθανότητες εξαρτώνται απο το είδος των γεγονότων που έχουμε Λ (π.χ. Λ 0 ) και την αλληλεπίδραση PDG: P(pπ )=0.639 P(nπ 0 )=0.358 π n π 0 28/3/2005 Υπολογ.Φυσική ΣΣ 7
8 Το πρόβλημα με τον ορισμό της συχνάζουσας πιθανότητας ΔΕΝ μπορεί να εφαρμοστεί σε μεμονωμένα γεγονότα! ηέκφραση πιθανόν να βρέξει αύριο ΔΕΝ είναι επιστημονική!!! Ενω : η δήλωση πιθανόν να βρέξει αύριο είναι σωστή είναι Η ανακάλυψη ή όχι του Higgs H ανακάλυψη ή όχι σκοτεινής ύλης 28/3/2005 Υπολογ.Φυσική ΣΣ 8
9 Ορισμός της υποκειμενικής πιθανότητας (Βayesian) P(A) είναι η πιθανότητα που δίνουμε στην ιδιότητα Α να υπάρξει. Το Α μπορει να είναι ο,τιδήποτε. Νεα θεωρία, νέο σωματίδιο, δίασπαση σωματιδίου, βροχή, ενα στοίχημα 28/3/2005 Υπολογ.Φυσική ΣΣ 9
10 A To Θεώρημα του Βayes A B B Ω Υπό όρους πιθανότητα (conditional probability) : P(A B) είναι η πιθανότητα των κοινών σημείων των Α και Β σε σχέσημετοσύνολοβκαιη P(A B) σε σχέση με το Ω P(A B) = P(A B)*P(B) = P(B A)*P(A) => P( B A) P ( A B) = P( A) P( B) Γνωρίζουμε την πιθανότητα να συμβεί B όταν συμβαίνει A και υπολογίζουμε την αντίστροφη πιθανότητα 28/3/2005 Υπολογ.Φυσική ΣΣ 10
11 Εφαρμογή του Θεωρήματος Bayes για την συχνάζουσα πιθανότητα Ταυτοποίηση σωματιδίων -Τύποι σωματιδίων :e, π, μ, Κ, p -Σήματα απο ανιχνευτές: DCH, RICH, TOF, TRD P '( e) = P( e DCH ) = P( DCH e) P( DCH ) P( e) P ( DCH ) = P( DCH e) P( e) + P( DCH µ ) P( µ ) + P( DCH π ) P( π )... Αντίστοιχα υπολογίζουμε την P(e RICH) κλπ (δηλ. σήμα στον ανιχνευτή να οφείλεται σε e) 28/3/2005 Υπολογ.Φυσική ΣΣ 11
12 Παράδειγμα χρήσης του θεωρήματος Βayes με την συχνάζουσα πιθανότητα Δεσμη αποτελείται από π ς & e ς Ν e /N π =10-3 Το σύστημα σκανδαλισμού: ε e =0.98, ε π =0.03 P(e)=10-3 P(π)= P(T e)=0.98, P(T π)=0.03 π, e trigger P(e T)=P(T e)*p(e)/(p(t e)*p(e)+p(t π)p(π)) είναι η πιθανότητα το εισερχόμενο σωμάτιο να είναι ηλεκτρόνιο όταν το σύστημα σκανδαλισμού λέει ναι 28/3/2005 Υπολογ.Φυσική ΣΣ 12 expt
13 Το θεώρημα Bayes και η υποκειμενική πιθανότητα P( Result Theory) P ( Theory Result) = P( Theory) P( Result) Η εκ των προτέρων πίστη σε μια θεωρία αλλάζει με βάση τα πειραματικά αποτελέσματα : Εαν (P(Result Theory) = 0, (η Θεωρία απαγορεύει το πειραματικό αποτέλεσμα) =>η Θεωρία δεν ισχύει Εαν (P(Result Theory) = Μεγάλο, ενισχύεται η πίστη μας στη Θεωρία 28/3/2005 Υπολογ.Φυσική ΣΣ 13
14 Πρόβλημα με την υποκειμενική πιθανότητα Ηπιθανότητα μου P(A) και η πιθανότητα P(A) ενος τρίτου μπορει να διαφέρουν Αλλα οι επιστήμονες θάπρεπε να ειναι αντικειμενικοί! Δικαιολογείται η άγνοια να δηλώνεται με P(A)=flat? (αν το Α παιρνει διακριτές τιμές το ίδιο πιθανές, ναι. Αν συνεχής μεταβλητή, π.χ. Μ higgs διαφορετική υπόθεση θα δώσει άλλα αποτελέσματα) M 28/3/2005 Υπολογ.Φυσική ΣΣ 14 M M
15 Συνάρτηση Πυκνότητας Πιθανότητας- Κατανομές Ορίσαμε τη Πιθανότητα Όταν μετρούμε ένα παρατηρήσιμο μέγεθος πολλές φορές, το απoτέλεσμα x κατανέμεται σύμφωνα με μιά κατανομή πιθανότητας (probability distribution) Tο αποτέλεσμα έχει μια διακύμανση είτε λόγω καποιων παραμέτρων (π.χ. ηλετρονικό θόρυβο) είτε λόγω διακύμανσης του φυσικού φαινομένου (π.χ. διάσπαση ή σκέδαση σωματιδίων) Οι κατανομές πιθανότητας μπορεί να είναι διακριτές ή συνεχείς. 28/3/2005 Υπολογ.Φυσική ΣΣ 15
16 Πιθανότητα vs Στατιστικής Πιθανότητα: απο την θεωρία στα δεδομένα Υπολογίζουμε όλα τα πιθανά αποτελέσματα (συνέπειες) ενός πειράματος για συγκεκριμένο πρόβλημα Στατιστική: απο τα δεδομένα στη θεωρία Λύνουμε το αντίστροφο πρόβλημα: απο τα δεδομένα προσπαθούμε να βρούμε τους κανόνες-νόμους=> ανάλυση των δεδομένων => Υπολογισμός παραμέτρων και του σφάλματος => έλεγχος της υπόθεσης: πιστότητα, συμφωνία 28/3/2005 Υπολογ.Φυσική ΣΣ 16
17 Συναρτήσεις Πυκνότητας Πιθανότητας Επανειλημένη μέτρηση -πειραματικά- μιας συνεχούς μεταβλητής x Ορισμός : η πιθανότηταp να μετρήσουμε μια τιμή x στο διάστημα (x, x+dx) δίνεται από την συνάρτηση πυκνότητας πιθανότητας : probability density function f(x) (p.d.f.) : P=f(x) dx Είναιτομέτροτουπόσοσυχνάητιμήx εμφανίζεται σένα δείγμα 28/3/2005 Υπολογ.Φυσική ΣΣ 17
18 Κατανομές-ιδιότητες Αναμενόμενη τιμή =Μέση τιμή Διασπορά -Variance = σ 2 =το τετραγωνο της απόκλισης σ Μετράει την διασπορά του x σε σχέση με την μέση τιμή 28/3/2005 Υπολογ.Φυσική ΣΣ 18
19 Παραδείγματα Οχρόνοςζωήςt σωματιδίου στο σύστημα ηρεμίας του π.χ. Το πιόνιο : μέσοςχρόνοςζωήςτ π = sec 28/3/2005 Υπολογ.Φυσική ΣΣ 19
20 Παραδείγματα Κατανομή της πολικής γωνίας θ του μιονίου στην σκέδαση ee μμ 28/3/2005 Υπολογ.Φυσική ΣΣ 20
21 Κατανομές-Διακριτές κατανομές Διώνυμη κατανομή: η τυχαία μεταβλητή εχει δύο δυνατότητες 0.4 n προσπάθειες και r επιτυχίες p η μεμονωμένη πιθανότητα για επιτυχία r Mean µ=<r>=σrp( r ) P( r ; n, p) n! r!( n = r n r p (1 p ) r)! Variance V σ 2 =<(r- µ ) 2 >=<r 2 >-<r> 2 =np(1-p) = np 1-p p q 28/3/2005 Υπολογ.Φυσική ΣΣ 21
22 Παραδείγματα διώνυμης κατανομής p=0.1 r n= n=20 r r r n=50 n=10 p=0.2 p=0.5 p= r r r r 28/3/2005 Υπολογ.Φυσική ΣΣ 22
23 Κατανομή Poisson λ=2.5 Δίνει την πιθανότητα να συμβούν r γεγονότα όταν ο ρυθμός των γεγονότων κατά μέσον όρο είναι λ ( είναι το όριο της διωνυμικής κατανομής όταν n p 0, np=λ) 0 r P( r; λ) = e λ r λ r! Mean µ=<r>=σrp( r ) = λ Variance V σ 2 =<(r- µ ) 2 >=<r 2 >-<r> 2 =λ 28/3/2005 Υπολογ.Φυσική ΣΣ 23
24 Παραδείγματα κατανομής Poisson λ=0.5 r r λ=1.0 r r λ=2.0 r λ= λ=10 λ= r r 28/3/2005 r Υπολογ.Φυσική ΣΣ 24 0 r
25 Κατανομές Poisson Το πλήθος των ραδιενεργών διασπάσεων σε ορισμένο χρόνο t, μικρό σε σχέση με τον χρόνο διάσπασης Το πλήθος συγκεκριμένου τύπου σωματιδίων σε σκέδαση σωματιδίου-σωματιδίου όταν ο συνολικός αριθμός των γεγονότων είναι πολύ μεγάλος και η συγκεκριμένη διαδικασία σπάνια Η πιθανότητα παρατήρησης n γεγονότων σε χρόνο t, όταν ο μέσος ρυθμός είναι μ : λ=μt. Hμέση τιμή λ- αναμενόμενη τιμή- και η διακύμανση : variance στην κατανομή Poisson είναι ισες!. Απο δώ προκύπτει o τύπος : n± n που χρησιμοποιείται στα στατιστικά σφάλματα όταν μετρούμε σε συγκεκριμένο χρονικό διάστημα 28/3/2005 Υπολογ.Φυσική ΣΣ 25
26 Ομοιόμορφες Κατανομές (Uniform Distributions) H πιθανότητα είναι σταθερή σε ένα διάστημα : πχηκατανομήτων μιονίων κατα την αζιμουθιακή γωνία φ στη σκέδαση : ee μμ μ + μ - Ε : αναμενόμενη τιμή V : variance 28/3/2005 Υπολογ.Φυσική ΣΣ 26
27 Κατανομή Gauss ή Νοrmal Πυκνότητα πιθανότητας P( x; µ, σ ) = σ 1 2π e ( x µ ) 2 / 2 σ 2 Mean µ=<x>= xp( x ) dx =µ Variance V σ 2 =<(x- µ ) 2 >=<x 2 >-<x> 2 =σ 2 28/3/2005 Υπολογ.Φυσική ΣΣ 27
28 Central Limit Theorem (CLT) Το άθροισμα y, n τυχαίων, ανεξάρτητων αριθμών x i είναι gaussian (n ) όποια κι αν είναι η κατανομή των x i Convolute uniform distribution με τον εαυτό της Series /3/2005 Υπολογ.Φυσική ΣΣ 28
29 Σχέσεις μεταξύ κατανομών Διώνυμη : Ν=το πλήθος των δοκιμών, p=η πιθανότητα επιτυχίας σε κάθε δοκιμή 28/3/2005 Υπολογ.Φυσική ΣΣ 29
30 Μια μόνο κατανομή υπαρχει! Τύποι κατανομών Gauss 68.27% within 1σ 95.45% within 2σ 99.73% within 3σ 90% within σ 95% within σ 99% within σ 99.9% within 3.290σ Normalisati on (if required) Location change µ Width scaling factor Falls to 1/e of peak at x=µ±σ 28/3/2005 Υπολογ.Φυσική ΣΣ 30
31 z = χ 2 = n i=1 Κατανομή Chi-Squared (χ 2 ) 2 x i µ i σ i x i : ανεξαρτητες μεταβλητές με κατανομή Gauss Το πλήθος των βαθμών ελευθερίας Γ(x) = e Cx 1 + e x / n 28/3/2005 Υπολογ.Φυσική ΣΣ 31 x Π n=1 1+ x /n C = lim n n ln(n)
32 Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο Ιστογράμματα (Histograms) Διδάσκοντες : Χαρά Πετρίδου Δήµος Σαμψωνίδης 28/3/2005 Υπολογ.Φυσική ΣΣ 32
33 Ιστογράμματα Συνήθως οι μεταβλητές που χρησιμοποιούμε είναι διακριτές μεταβλητές x 1, x 2, x n που προέρχονται από πειραματικές μετρήσεις Παράδειγμα: κατανομή πολικής γωνίας θ Σύγκριση των δεδομένων με ομαλή κατανομή 28/3/2005 Υπολογ.Φυσική ΣΣ 33
34 Iστογράμματα Entries, normalization, Bin width(s) (στο παράδειγμα ισαπέχουσες bins) Πλήθος των bins Περιοχή (Range) 28/3/2005 Υπολογ.Φυσική ΣΣ 34
35 Ιστογράμματα Εαν Ν (entries) μεγάλος αριθμός το ιστόγραμμα αντιπροσωπεύει κατανομή πιθανότητας (pdf) Ενδιαφέρει το πλήθος των γεγονότων σε κάθε bin και το σφάλμα H κανονικοποίηση του ιστογράμματος Ημέσητιμήτουιστογράμματος 28/3/2005 Υπολογ.Φυσική ΣΣ 35
36 Σφάλματα στο Ιστόγραμμα 28/3/2005 Υπολογ.Φυσική ΣΣ 36
37 Σφάλματα στο Ιστόγραμμα Προσθέτουμε error bars στο ιστόγραμμα 28/3/2005 Υπολογ.Φυσική ΣΣ 37
38 Σφάλματα στο Ιστόγραμμα Προσοχή!Περίπτωση μικρού πλήθους γεγονότων 28/3/2005 Υπολογ.Φυσική ΣΣ 38
39 Poisson vs Gaussian 28/3/2005 Υπολογ.Φυσική ΣΣ 39
40 Σφάλματα στο Ιστόγραμμα 28/3/2005 Υπολογ.Φυσική ΣΣ 40
41 Ιστογράμματα Τι θα πρέπει να προσέχουμε? Το μέγεθος του bin (bin size) Γεγονότα εκτός των ορίων του ιστογράμματος (underflows, overflows) Κατανομές με γρήγορες μεταβολές (steeply falling/fast varying functions) 28/3/2005 Υπολογ.Φυσική ΣΣ 41
42 Επιλογή του bin width Επιλέγουμε την υποδιαίρεση της κλίμακας (bin width) έτσι ώστε το πλήθος των γεγονότων ανά υποδιαίρεση να είναι λογικό 28/3/2005 Υπολογ.Φυσική ΣΣ 42
43 Επιλογή του bin width Ο αριθμός των γεγονότων που μετατοπίζονται εντός και εκτός της υποδιαίρεσης πρέπει να είναι παρόμοιος (bin migration-σταθερότητα και καθαρότητα του δείγματος) Το bin width πρέπει να ταιριάζει με την πειραματική διακριτική ικανότητα στην συγκεκριμένη μεταβλητή (experimental resolution) Να υπάρχει αρκετή στατιστική για κάθε υποδιαίρεση (bin statistics) 28/3/2005 Υπολογ.Φυσική ΣΣ 43
44 Επιλογή του bin width Σημαντικό για συναρτήσεις με απότομη κλίση Παράδειγμα: η κατανομή της ορμής του σωματιδίουσυντονισμού ρ 28/3/2005 Υπολογ.Φυσική ΣΣ 44
45 Επιλογή της κλίμακας (Histogram range) Κακή επιλογή κλίμακας μπορεί να οδηγήσει σε παραπλανητικά συμπεράσματα =>Πρέπει να ελέγχουμε να μην υπάρχουν overflows και underflows Η κλίμακα είναι σημαντική και στην περίπτωση κανονικοποίησης 28/3/2005 Υπολογ.Φυσική ΣΣ 45
46 Σύγκριση ιστογράμματος με ομαλή συνάρτηση Προσοχή στις συναρτήσεις με απότομες ή γρήγορες μεταβολές 28/3/2005 Υπολογ.Φυσική ΣΣ 46
47 Ιστογράμματα 2- διαστάσεων (scaterplots) =>Χρήσιμο εργαλείο για να μελετήσουμε συσχετισμούς δύο μεταβλητών (correlations) Συσχετίσεις-Συμμεταβολή (correlations-covariance) 28/3/2005 Υπολογ.Φυσική ΣΣ 47
48 Ιδιότητες-Συσχετισμοί (correlations) Για συναρτήσεις με διάφορες μεταβλητές μπορεί να υπάρχουν συσχετίσεις μεταξύ των μεταβλητών Παράδειγμα : για συναρτήσεις δύο τυχαίων μεταβλητών x, y η συμμεταβολή (covariance) V(x,y) (ή cov(x,y)) -error matrix- ορίζεται ως: Ο παράγοντας συσχέτησης ορίζεται ως: ρ=1 για y=ax+b 28/3/2005 Υπολογ.Φυσική ΣΣ 48
49 28/3/2005 Υπολογ.Φυσική ΣΣ 49
50 Ιδιότητες-Συσχετισμοί (correlations) Υπολογισμός του σφάλματος για συναρτήσεις με συσχετιζόμενες μεταβλητές: παίρνουμε υπ όψη την συσχέτηση 28/3/2005 Υπολογ.Φυσική ΣΣ 50
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης
27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την
Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών
ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Πιθανότητες - Κατανομές ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων ΑΓΡΙΝΙΟ ΣΤΑΤΙΣΤΙΚΗ Φραγκίσκος Κουτελιέρης Αναπληρωτής
ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ
ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων 4ο Εξάμηνο2004-2005 Διακριτική ικανότητα ανιχνευτή-υπόβαθρο- Υπολογισμός του σήματος Διδάσκοντες : Χαρά Πετρίδου Δημήτριος Σαμψωνίδης 18/4/2005 Υπολογ.Φυσική
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b
Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος
Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού
Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
Τυχαία Μεταβλητή (Random variable-variable aléatoire)
Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Θεωρητικές Κατανομές Πιθανότητας
Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες
Στατιστική Περιγραφή Φυσικού Μεγέθους - Πιθανότητες Είπαμε ότι γενικά τα συστηματικά σφάλματα που υπεισέρχονται σε μια μέτρηση ενός φυσικού μεγέθους είναι γενικά δύσκολο να επισημανθούν και να διορθωθούν.
Πανεπιστήμιο Πελοποννήσου
Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13
ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής
Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,
Περιγραφική Ανάλυση ποσοτικών μεταβλητών
Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Εισαγωγή στην Εργαστηριακή Φυσική ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Δημήτριος Ν.Νικολόπουλος Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Μέτρηση Η σύγκριση ενός μεγέθους
Ολοκλήρωση - Μέθοδος Monte Carlo
ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Εισαγωγή στην κανονική κατανομή και την χρήση της στην Υδρολογία Σ.Η.Καραλής
Βασική στατιστική Υδρολογία Εισαγωγή στην κανονική κατανομή και την χρήση της στην Υδρολογία Σ.Η.Καραλής 1. Ορολογία 2. Ιστογράμματα συχνοτήτων 3. Ιδιότητες κανονικής κατανομής 4. Πίνακες τυποποιημένης
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ
ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Σε αντίθεση με την διακριτή τυχαία μεταβλητή, μία συνεχής τυχαία μεταβλητή παίρνει μη-αριθμήσιμο (συνεχές) πλήθος τιμών. Δεν μπορούμε να καταγράψουμε το σύνολο των τιμών
Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 6 Σχέσεις μεταξύ μεταβλητών ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική
Στατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #: Επαγωγική Στατιστική - Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 11 Ιανουαρίου 21 Η δεσµευµένη µέση τιµή µιας τυχαίας µεταβλητής Y σε δεδοµένο σηµείο µιας άλλης τυχαίας µεταϐλητής X = x, συµϐολιϲόµενη
Πειραµατική Θεµελείωση της Φυσικής
Πειραµατική Θεµελείωση της Φυσικής Στοιχειωδών Σωματιδίων (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 23 Μαρτίου 2017
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων
Κεφάλαιο 4 Εισαγωγή στη στατιστική ανάλυση μετρήσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι βασικές έννοιες της στατιστικής ανάλυσης των μετρήσεων που υπόκεινται σε τυχαία σφάλματα. Παρουσιάζεται μέσω
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ
ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΙΑ ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Στο Σετ αυτό περιλαμβάνονται θέματα Πιθανοτήτων που έχουν δοθεί σε εξετάσεις παρελθόντων ετών στα Τμήματα Γεωλογικό
03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.
2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ
1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα
Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά
Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό
Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )
Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με
Στατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Σημειώσεις Στατιστική & Πιθανότητες
Σημειώσεις Στατιστική & Πιθανότητες https://github.com/kongr45gpen/ece-notes 26, Εαρινό εξάμηνο Περιεχόμενα I Πιθανότητες 2 2. Πείραμα τύχης.......................................... 2.. Πράξεις..........................................
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 05 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο R, να αποδείξετε ότι: f + g ' = f ' + g ', R Μονάδες 7 Α. Πότε λέµε ότι µια συνάρτηση
Δειγματικές Κατανομές
Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Εισαγωγή Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Στατιστική Ι-Θεωρητικές Κατανομές Ι
Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών
. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)
Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω
Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
55/377. 2E A 2E 1 (2π) 3 d 3 p n. p f
55/377 Ο ρυθμός διάσπασης ως συνάρτηση του M Για διασπάσεις της μορφής A 1 + 2 + 3 +... + n ακολουθούμε την ίδια μέθοδο dγ = 1 M 2 d 3 p 1 2E A 2E 1 (2π) 3 d 3 p n 2E n (2π) 3 (2π)4 δ 4 (p A p 1 p 2...
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 3
(ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών
3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών Βασικά χαρακτηριστικά τυχαίας μεταβλητής: Μέση Τιμή (Me Vlue) Διακύμανση (Vrice) Γενικά χαρακτηριστικά: Ροπές μεταβλητών / Ροπογεννήτριες Χαρακτηριστικές συναρτήσεις
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Τυχαίες μεταβλητές Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η ΕΝΝΟΙΑ ΤΗΣ ΤΥΧΑΙΑΣ ΜΕΤΑΒΛΗΤΗΣ Η απεικόνιση των εκβάσεων ενός πειράματος
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό
Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας. Βιολογικές επιδράσεις. Ακτινοπροστασία
Ιατρική Φυσική: Δοσιμετρία Ιοντίζουσας Ακτινοβολίας Βιολογικές επιδράσεις Ακτινοπροστασία Π. Παπαγιάννης Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr PHYS215
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση
07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)
07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα
Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ
12 Λειτουργία και Απόδοση του Πρότυπου Ανιχνευτή ΝΕΣΤΩΡ Εισαγωγή Στο παρόν Κεφάλαιο περιγράφεται η λειτουργία και απόδοση του πρότυπου ανιχνευτή ΝΕΣΤΩΡ κατά τη λειτουργία του στη βαθιά θάλασσα. Συγκεκριμένα
Γ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου. Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου Μάθημα 4: Σκέδαση αδρονίων και O Xρυσός Kανόνας του Fermi Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 19 Μαρτίου 2015 Σκέδαση, ενεργός διατομή
Είδη Μεταβλητών. κλίµακα µέτρησης
ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: PHYS215 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: PHYS215 Π. Παπαγιάννης Αν. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Έμμεσα ιοντίζουσα ακτινοβολία: Πότε ισούται το
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 18 Νοεµβρίου 2009 ΑΣΚΗΣΕΙΣ 2.16. Εστω ότι το ετήσιο εισόδηµα X ενός µισθωτού µπορεί να ϑεωρηθεί ως µία συνεχής τυχαία µεταβλητή
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα
3. Βασική Θεωρία Πιθανοτήτων
Περίληψη 3. Βασική Θεωρία Πιθανοτήτων Η στατιστική μηχανική βασίζεται στη θεωρία πιθανοτήτων για την παραγωγή μακροσκοπικών ιδιοτήτων στην ισορροπία. Οι θερμοδυναμικές μεταβλητές εμφανίζονται ως μέσοι