1.SIX SIGMA 1. poboljšanje zadovoljstva korisnika; smanjenje ciklusa vremena ; smanjenje grešaka proizvoda.
|
|
- Δωρίς Ράγκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1.SIX SIGMA 1 Šest sigma je unapređenje poslovanja zasnovano na pronalaženju i eliminisanju grešaka i uzroka pojave grešaka ili defekata u procesima, usredsređivanjem pažnje na izlazne parametre, važne za korisnika. Šest sigma je strategijski prilaz za sve procese, proizvode i kompanije. Ona stavlja kupca korisnika na prvo mesto koristeći sve moguce podatke kako bi se postigao što bolji rezultat i došlo do zadovoljenja zahteva korisnika. Cilj je prilagoditi celu firmu zahtevima korisnika, tržišta i tehnologije ali da od toga imaju opštu korist: radnici, korisnici i deoničari. Six sigma merilo se u principu razvilo da bi pomoglo usredsređivanju merenja na korisnike određene kompanije i da bi se pronasao dosledan način merenja i upoređivanja raznih procesa. Glavna područja na koja se usredsređuje šest sigma su: poboljšanje zadovoljstva korisnika; smanjenje ciklusa vremena ; smanjenje grešaka proizvoda. Ono što razlikuje šest sigmu od drugih programa kvaliteta su to što je six sigma fokusirana na korisnika, predviđa veliki povrat na investiciju i menja način rada menadžmenta. Priznaje da uvek postoji mogućnost za greškama, pa s toga dozvoljava 99,9997% učinka, što pokazuje da su greške skoro pa nevidljive. Ona predstavlja i jako snažan pokret jer je definisana statističkim merenjem, ciljom i sistemom upravljanja. Six sigma odgovaranjem na određena pitanja dolazi do rešavanja aktuelnog problema. STATISTIČKA OSNOVA ŠEST SIGMA Statistički gledano "Šest sigma" predstavlja iznos varijacije prikazane u procesu koji je povezan sa zahtevima korisnika ili njihovim specifikacijama. Kada proces deluje na nivou "Šest sigma", varijacija je tako mala da rezultira tačnošću od 99,9997 % ili pojavom samo 3,4 greške na milion mogućnosti (računato s iskustvenim pomakom od 1,5σ). Sama oznaka za "Šest sigma" je malo grčko slovo σ (sigma) koje u statistici označava veličinu varijacije ili nivo defekata određenog proizvoda. Defekt ili greška se može definirati kao bilo koja funkcija, koja će ili uzrokovati nezadovoljstvo korisnika, ili ne pristaje unutar dozvoljenih odstupanja. "Šest sigma" metodologija je fokusirana na jedan cilj: osigurati da su proizvodi i usluge blizu savršenstva. Da bi se to postiglo koriste se stroge statističke tehnike i metodologije, bazirane na merljivim podacima, kojima je cilj kontrola kvalita. Zbog svega toga metodologija "Šest sigma" je oslonjena na matematiku i statistiku. Za poboljšanje organizacijskog nivoa "Šest sigma" procesa potrebno je smanjiti količinu varijacija koje se pojavljuju. Postojanje manjeg broja varijacija donosi sledeće prednosti: - bolja predvidivost procesa, - eliminacije grešaka na najmanjem mogućem nivou, - smanjenje vremena proizvodnje, - smanjenje troškova proizvodnje, - poboljšanje produktivnosti, 1 Seminarski rad: Nedić Marija MI 8/14; školska godina 2016/
2 - proizvodi i usluge su kvalitetniji i dugotrajniji, - korisnici su zadovoljniji. Metodologijom "Šest sigma" poboljšavamo procese koji su opisani pomoću normalne krive koju je definisao Carl Friedrich Gauss pa se još naziva i Gaussova krivulja. Ona ima oblik zvona te je simetrična y osi, a x osa joj je asimptota koja ide od - do +. Ova je krivulja potpuno nezavisna od granica dopuštenih odstupanja, a njen oblik isključivo zavisi od procesu, opreme, osoblja i ostalih faktora. Funkcija verovatnoće ima oblik : iz čega se vidi: 1 f ( x) = e σ 2π ( x µ ) 1. Funkcija verovatnoće je određena sa dva parametra μ i σ² pa se označava sa N{μ, σ²}. 2. Očekivanje μ zamjenjuje sa x iz empiričkih podataka u praktičnim primenama. 3. Funkcija je definisana na čitavom brojnom pravcu [-, ]. 4. Funkcija je simetrična s obzirom na pravac xx= te na tom mestu ima maksimum koji je pozitivan. Varijacija normalne funkcije iznosi: I iz nje možemo izračunati standardno odstupanje σ (sigma): 2σ 2 2 n 1 σ = ( xi µ ) n i 1 2 n nezavisna opažanja (broj ponovljenih merenja) μ očekivanje (istinita vrednost) x i slučajna varijabla (i-ti rezultat merenja) Funkcija verovatnoće : 2
3 Površina ispod krivulje normalne raspodele odgovara verovatnoći nekog događaja ili pojave određenog rezultata u toku procesa šest sigma. ELEMENTI ŠEST SIGMA Najvažniji elementi šest sigme mogu se podeliti u šest tema: 1. Iskreno fokusiranje na potrošača 2. Menadžment vođen podacima i dokazima skupljanje podataka i analiziranje ključnih promena i odgovaranje na dva ključna pitanja koja podupiru odluke i rešenja doneta na osnovu podataka. * Koji podaci ili informacije nam trebaju? * Kako se mogu najbolje iskoristiti ti podaci? 3. Procesi su mogućnosti postavlja proces kao ključ ka uspehu jer on predstavlja način izgradnje prednosti protiv konkurenata u očima korisnika. 4. Proaktivni menadžment definisati ambiciozne ciljeve, pregledati ih često, postavljati prioritete, usredsrediti se na prevenciju 5. Bezgranična saradnja poboljšanje saradnje kompanija, prodavaca i korisnika. 6. Težnja ka savršenstvu; Tolerancija neuspeha Na putu ka uvođenju six sigme nameću se tri osnovna ulaza, a to su : transformacija biznisa; strateško poboljšanje; rešavanje problema. Svi glavni problemi u okviru šest sigme rešavaju se pomoću metodologije DMAIC (Define - definisanje ili određivanje, Measure - merenje, Analyze - analiziranje, Improve - poboljšanje ili unapređenje i Controle - kontrola ili upravljanje). Ovom metodom mogu se naučiti tehnike: kako prikupiti podatke, koliko ih koristiti i koliko ih često prebrojiti i kako biti fleksibilan. Kroz utvrđivanje problema definiše se cilj I okvir projekta, uz identifikaciju problema koje treba rešiti na putu dostizanja zadatog nivoa odstupanja. Merenje, primenom odgovarajućih metoda i metrike, obezbeđuje se prikupljanje podataka i informacija o tekućem stanju. Na osnovu informacija i podataka ocenjuje se bazni nivo pokazatelja rada i izdvajaju problemi koji zahtevaju najveću pažnju. Kroz analizu identifikuju se osnovni (glavni) uzroci problema obezbeđenja kvaliteta, uz proveru podataka, primenom specijalnih alata analize podataka. Na četvrtoj etapi, unapređenje, uvode se rešenja orijentisana na otklanjanje problema (osnovnih uzroka) utvrđenih tokom analize. Rešenja mogu biti sredstva upravljanja projektima i drugi alati planiranja i upravljanja kvalitetom. Cilj pete etape, kontrola, je ocena i monitoring rezultata prethodnih faza. Na etapi se potkrepljuje (verifikuje) modifikacija sistema stimulacije i stvara skup novih pravila, procedura, instrukcija zaposlenim i drugih normi. Svaka od navedenih etapa pretpostavlja primenu 3
4 specijalnih analitičkih računskih metoda iz širokog spiska metoda preporučenih ne samo za 6 sigma, već i za menadžment kvalitetom. U osnovi DMAIC metode postoje dve etape implementacije metodologije 6σ :» etapa karakterizacije (definisanje, merenje i analiza) i» etapa optimizacije (unapređenje i kontrola). DMAIC ciklus uvođenja šest sigme Svaka tehnika koja pomaže da se bolje razume, vodi i poboljša kompanija ili proces može se nazvati instrumentom (alatom) Šest sigme. Ovi alati podeljeni su u 4 kategorije : ALATI ZA UMNOŽAVANJE IDEJA I ORGANIZACIJU PODATAKA Prikupljanje ideja (Brainstorming) osnovni cilj je napraviti popis mogućih zadataka i rešenja. Dijagram afiniteta predstavlja sakupljanje ideja ili mogućnosti u kategorije. Glasanje ekipe koriste glasanje da bi suzile listu ideja imogućnosti. Dijagram stabla pokazuje karike ili hijerarhiju u razmeni ideja. 4
5 Poremećaji popravljeni po danu Primljeni pozivi o greškama po danu Rešeni pozivi o greškama po danu Potrebno vreme za odgovor na poziv Potrebno vreme za popravljanje usluge Potrebno vreme za dolazak rezervnih Potrebno vreme od poziva do ponovnog početka rada Detaljna karta ili dijagram procesa ovaj alat se koristi u fazi definisanja DMAIC procesa i glavna je metoda raspodele poslovnih procesa i mogućih rešenja. Ovim dijagramom pokazuju se glavne aktivnosti ili glavni kostur biznis procesa, sa dobavljačima, ulaganjima, proizvodnjom i korisnicima. Dobavljači Inputi Procesi Outputi Kupci Kreditna agencija Kreditno Pregled kreditnog Ugovor o leasingu Korišćenje opreme Markov ured Odgovor unutar 30 minuta Podaci podudarani s prethodnim radnim danom Predložen tok leasinga Pregled opreme Pripreme za dokumen -taciju Gotov za 5 radnih dana Sve obaveze, uslovi i isplatna pravila Max.dve Isplata Markov ured Kompletna lista poziva za leasing Cene na malo i Plaćanje i izvršavanje Trenutna amortizacija Ekspresna 5
6 Dijagram toka procesa (algoritam procesa) ovaj dijagram pokazuje detalje procesa, uključujući zadatke i procedure, moguće puteve, mesta odluke i petlje. Start Primanje poziva Dolazak drugih poziva Da Zamoliti sagovornika da pričeka Ne Odgovoriti pozdravom Kako vam mogu pomoći? Jasna molba Ne Postavljati pitanja Da Zamoli sagovornika da pričeka Preusmeriti poziv Završetak razgovora 6
7 Dijagram uzroka i posledica (Išikava dijagram, Dijagram riblji kostur) bitan je kao instrument jer koristi sve druge instrumente i pomaže u sakupljanju svih ideja tima o problemu i pomaže članovima u pronalaženju mogućih uzraka korusteći kategorije. Greškom naručeni proizvodi Greške osoblja za primanje Ponovljene stare narudžbine Neproveravanje datuma Pogreške u slanju pošiljke Greške osoba za primanje narudžbina Nepostojeći proizvodi na formularima Nepoznavanje kodova Greške osoblja u skladištu Zakašnjenje plaćanja Greške osoblja u skladištu Krivo unesena kolišina Nečitljiva narudžbina Kašnjenje isporuke Nedostatak radnika Nemogućnost isporuke Nemogućnost isporuke Krivo poslana Greške osoblja za primanje narudžbina Nerazumevanje zahteva Sezona gripa Kasno primljeni proizvodi Površno poslato, nemoguće preko noći Slanje preko noći nije u ponudi Greške osoblja za primanje narudžbina INSTRUMENTI ZA SKUPLJANJE PODATAKA Anketiranje Operativne definicije predstavljaju jasan, detaljan i razumljiv opis kako rastumačiti podatke, a ne pomešati sve i njom se može reći kada tačno treba početi i završiti sa merenjem. Glas korisnika najbitniji faktor six sigme, sve informacije od korisnika se uvažavaju i ti podaci se uvrštavaju u kategorije po važnosti zahteva. Tabele koriste se za skupljanje i prikaz podataka. Merenje sistema analize ova faza pokriva razne metode i tehnike i obezbeđuje da su merenja tačna i verodostojna. Može obuhvatati: utvrđivanje da li su u upotrebi pouzdani podaci, evaluaciju novih mernih instrumenata, poređenje dve različite 7
8 metode merenja, metode merenja za procenu mogućih problema, identifikovanje i rešavanje problema nastalih greškom merenja sistema, itd. INSTRUMENTI ANALIZE PROCESA I PODATAKA Perto dijagram je grafički prikaz koji deli grupe po kategorijama i upoređuje ih od većih prema manjim,koristi se za gledanje najvećih delova problema ili pomaže pronalascima uzroka. 150 Zakasneli postupci ( 4 ili više dana od kad seproblem pojavio Narudžbe Razlike u narudžbi Broj narudžbi Nedostatak Porezna Pogrešno 4.5 podataka pitanja pohranjivanje kupaca 100% 75% 50% 25% 0% Histogram (dijagram učestalosti) pokazuje distribuciju ili varijaciju podataka u dometu : veličine, starosti, troška Dele se podaci po kategorijama. 80 Potrebno vreme pravljenja pizze (svi centri dan 10/12) 70 Napravljene pizze Potrebno vreme za pripremu ( u minutima) 8
9 Dijagram trenda (tendencija) pokazuje kako se stvari sa vremenom menjaju. Korelacioni dijagram (dijagram rasipanja) ovim dijagramom traži se direktna veza između dva faktora u procesu, kako bi se videlo da li se oni koreliraju tj. da li oni uslovljavaju jedan drugom. Zakasnelo vreme isporuke (u minutima ) 9
10 INSTRUMENTI STATISTIČKE ANALIZE Načini statističke metode : Test statističke važnosti on traži razlike u skupu podataka da vidi da li su značajni. Korelacija i regresija ovi instrumenti istražuju prisutnost, snagu i prirodu veze među ciframa u procesu ili proizvodu. Dizajn eksperimenata predstavlja skup metoda za razvoj i vođenje kontrolisanih pokušaja u radu procesa. Svi ovi instrumenti razvijeni su u cilju dovođenja do boljih odluka, lakših rešenja problema i preuzimanja inicijative za promene. Korišćenjem instrumenata treba dobiti što jednostavniji proces razumljiv članovima tima. 2. ZAKLJUČAK Šest sigma ne može uspeti da transformiše kompaniju niti da postigne ikakve rezultate bez dobrog tima menadžera koji će predvoditi ceo proces. Ona daje mogućnost razvijanja bolje komunikacije među svim članovima kompanije jer pokazuje krajnji cilj celog procesa i njegove osnovne prednosti. Doprinosi promeni načina donošenja odluka, rešavanja problema i ocenjivanja ljudi. Daje nova iskustva i otvara nove vidike za bolji rad kompanije. I na kraju, sposobnosti koje trebamo razviti da bi ovladali six sigmom odnose se na : -razumevanje procesa od početka do kraja i viđenja šire slike procesa sposobnosti skupljanja podataka sposobnosti rušenja starih predrasuda sposobnost sarađivanja članova ekipe kao ičlanova kompanije u celosti sposobnost iskorišćavanja promene koja se odnosi na sve aspekte. Objedinjavanjem svih ovihe elemenata i njihovom primenom ovladavamo six sigmom. 10
11 3. LITERATURA [1] Pete Pande, Larry Holpp, Što je to šest sigma?, Škola ekonomije i menadžmenta, Zagreb, [2] Dr. Miodrag Lazić, Šest sigma Metodologija unapređenja kvaliteta, Kragujevac [3] Diplomski rad: Mario Valjak, Metodologija poboljšanja kvaliteta - six sigma 11
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Korektivno održavanje
Održavanje mreže Korektivno održavanje Uzroci otkaza mogu biti: loši radni uslovi (temperatura, loše održavanje čistoće...), operativne promene (promene konfiguracije, neadekvatno manipulisanje...) i nedostaci
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Izbor statističkih testova Ana-Maria Šimundić
Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
UPRAVLJANJE KVALITETOM TAGUCHI METODA
UPRAVLJANJE KVALITETOM Tema: TAGUCHI METODA I SIX SIGMA TAGUCHI METODA Područje primjene Taguči metoda se koristi pri projektovanju proizvoda, procesa rada, poboljšanju kvaliteta i smanjenju troškova.
Testiranje statistiqkih hipoteza
Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
1. a) Dijagram tokova materijala i informacija za program proizvodnje
. a) Dijagram tokova materijala i informacija za program proizvodnje SKLADIŠTENJE MATERIJALA PRIJEMNA KONTROLA ULAZ P I P II N V N VI 0 0 0 0 70 70 70 70 590 59 59 59 59 59 5970 MONTAŽA PROIZVODA UPRAVLJANJE
Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:
Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
OSNOVI ELEKTRONIKE VEŽBA BROJ 2 DIODA I TRANZISTOR
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE ODSEK ZA SOFTVERSKO INŽENJERSTVO LABORATORIJSKE VEŽBE VEŽBA BROJ 2 DIODA I TRANZISTOR 1. 2. IME I PREZIME BR. INDEKSA GRUPA
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Analiza varijanse sa jednim Posmatra se samo jedna promenljiva
ANOVA Analiza varijanse (ANOVA) Analiza varijanse sa jednim faktorom Proširena ANOVA tabela 2 Tehnike za analizu podataka Analiza varijanse sa jednim faktorom Posmatra se samo jedna promenljiva Posmatra
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike