Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ windowslive. com.

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com."

Transcript

1 Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική και γεωμετρική ερμηνεία του Θ. Rolle. Γ. Ομάδες προβλημάτων στο Θ. Rolle. 0 o θεώρημα : Απροςδιοριςτία μορφήσ 0 Αν για τισ παραγωγίςιμεσ ςυναρτήςεισ f, g ιςχύουν: 0 f = 0 g = 0 και Υπάρχει το 0 f g, τότε: 0 f g = 0 f g 2o θεώρημα : Απροςδιοριςτία μορφήσ Αν για τισ παραγωγίςιμεσ ςυναρτήςεισ f, g ιςχύουν: 0 f = 0 g = + και Υπάρχει το 0 f g τότε: 0 f g = 0 f g Θεώρημα Rolle εφαρμογέσ Είναι ςυνεχήσ ςτο κλειςτό διάςτημα α. β

2 . Ο αριθμόσ 0 R, Το 2ο Θεώρημα ιςχύει και όταν έχουμε:, +, + 3. Τα παραπάνω θεωρήματα ιςχύουν και για τισ περιπτώςεισ που έχουμε πλευρικά όρια. 4. Πάντοτε ελέγχουμε τισ προώποθέςεισ των κανόνων όταν πρόκειται να τουσ εφαρμόςουμε. η Ομάδα Οι κανόνεσ De L Hospital ιςχύουν θετικά: Δηλαδή μόνο όταν υπάρχει το όριο: 0 f g. Να υπολογίςετε το όριο: 0 2 ημ ln + Ιςχύουν: 0 2 ημ = 0 με το κριτήριο παρεμβολήσ και 0 ln + = 0. Είναι δηλαδή περίπτωςη ημ ln + = 2 ημ ςυν () 0 / + 2 Μαθηματικά Γ Λυκείου - Ανάλυςη, αλλά έχουμε:

3 Δεν υπάρχει το όριο 0 ςυν, διότι: 0 =, αν < 0 +, αν > 0 Επομένωσ δεν υπολογίζεται το παραπάνω όριο με τον κανόνα De L Hospital, αλλά με τον εξήσ τρόπο: Διαιρούμε τουσ όρουσ του κλάςματοσ 2 ημ ln +, με 0 και παίρνουμε το κλάςμα: ημ ln + (2) Με το κριτήριο παρεμβολήσ είναι: 0 ημ = 0, και ln + 0 Επομένωσ είναι: De ln + L Hospital = 0 = 0 + =. 2 ημ ln + = 0 = 0 2 η Ομάδα Οι κανόνεσ De L Hospital εφαρμόζονται περιςςότερεσ από μια φορέσ ςτο ίδιο όριο, αρκεί να πληρούνται οι υποθέςεισ. Να υπολογίςετε το όριο: 0 3 e e De 3 2 L = 0 e De L = = 0. e 0 6 Θεώρημα Rolle εφαρμογέσ 3

4 3 η Ομάδα Δεν εφαρμόζουμε οι κανόνεσ ςε περιπτώςεισ που έχουμε ριζικά και ±, διότι με τη παραγώγιςη προκύπτουν πιο δύςκολα όρια. Εφαρμόζονται όταν έχουμε ριζικά και 0 με 0 R. Να υπολογίςετε το όριο: Αν επιχειρήςουμε με τον κανόνα De L Hospital, διαπιςτώνουμε τη δυςκολία με τη παράγωγο. Επομένωσ υπολογίζεται ωσ εξήσ: Διαιρούμε τουσ όρουσ του κλάςματοσ με τον 2 0, και έχουμε: = + = = Να υπολογίςετε το όριο: = = = = 3 4 = 4 Μαθηματικά Γ Λυκείου - Ανάλυςη

5 4 η Ομάδα Όταν έχουμε τισ μορφέσ: 0. ± ή μετατρέπουμε ςτισ: 0 0 ή ± ± + +, τότε τισ, και μετά με τουσ κανόνεσ. Να υπολογίςετε τα όρια : α. ( ln ) + 0 β. ( + 2 e ) α. 0 + ln = 0 + β. + 2 e ln = + e + και με τον De L H παίρνουμε De L Hospital = + 2 e = e + De L Hospital = + 2 e = 0. Να υπολογίςετε το όριο: ln Το όριο τησ διαφοράσ: ln, δίνει περίπτωςη 0 0. Επομένωσ μετατρέπουμε τη διαφορά ςε πηλίκο και έχουμε: ln = 2 ln ln () Θεώρημα Rolle εφαρμογέσ 5

6 5 η Ομάδα Έςτω: f = α ν + β lnp ή f = α ν P + β e όπου α, β R, ν N και P πολυώνυμο. Αν το f παρουςιάζει απροςδιοριςτία, τότε: ± Διαιρούμε με ν ή e P και εφαρμόζουμε τουσ κανόνεσ De L Hospital, ςτα όρια που ικανοποιούν τισ υποθέςεισ. α. + e2 2 + β. + ln2 + 2 ημ α. Έχουμε περίπτωςη: +, οπότε παραγοντοποιούμε τον τύπο, διαιρώντασ με 2 και έχουμε: + e2 2 + = + 2 e () β. ln ημ = ln ημ + ln2 Ιςχύουν: + + +, De L = + ln2 = + = 0 και + + ημ ημ = + 6 Μαθηματικά Γ Λυκείου - Ανάλυςη = u 0 = u 0 ημu u =, οπότε: ln2 + 2 ημ + = =.

7 6 η Ομάδα Τα όρια τησ μορφήσ f g, παρουςιάζουν τισ 0 απροςδιοριςτίεσ: 0 0, ±, ± 0. Για τισ απροςδιοριςτίεσ αυτέσ εργαζόμαςτε ωσ εξήσ: Γράφουμε τη ςυνάρτηςη y f g ωσ εκθετική: y e g.lnf, με f > 0 Θέτουμε u = g. lnf και βρίςκουμε το όριο: u = κ R, +. 0 Το τελικό όριο τότε θα είναι: l = u κ e u. α. 0 + β. + + γ α. Έχουμε: 0 + περίπτωςη 0 0 = 0 +e ln () Όμωσ είναι: = 0 + ln ln 0. = 0 + +, De L = = 0, άρα από την : 0 + = e 0 =. Θεώρημα Rolle εφαρμογέσ 7

8 Δίνεται μια ςυνάρτηςη f οριςμένη ςε δ ι ά ς τ η μ α Δ. Ονομάζουμε αρχική ςυνάρτηςη ή παράγουςα τησ f ςτο Δ, κάθε παραγωγίςιμη ςυνάρτηςη F ςτο Δ, για την οποία ιςχύει: F = f, για κάθε Δ.. Η αρχική ςυνάρτηςη έχει νόημα ςε δ ι ά ς τ η μ α και όχι ςε ένωςη διαςτημάτων! 2. Η έκφραςη «η ςυνάρτηςη f έχει αρχική την F ςτο ςύνολο Α» έχει νόημα μόνο αν το Α είναι δ ι ά ς τ η μ α. Έςτω οι ςυναρτήςεισ f = 2 και F = που έχουν πεδίο οριςμού Α =, 0 0, + και ιςχύει F = f με A. Είναι λάθοσ να λέμε: Αφού ιςχύει ότι: F = f για κάθε A, η F είναι αρχική τησ f ςτο Α, γιατί το Α δεν είναι διάςτημα. Το ςωςτό είναι να λέμε: Η F είναι αρχική τησ f ςτο διάςτημα, 0 ή ςτο 0, Αποδεικνύεται ότι: Αν μια ςυνάρτηςη f είναι ς υ ν ε χ ή σ ςε διάςτημα Δ, τότε πάντοτε έχει αρχική ςυνάρτηςη. 8 Μαθηματικά Γ Λυκείου - Ανάλυςη

9 Ο επόμενοσ πίνακασ των αρχικών ςυναρτήςεων είναι χρήςιμοσ ςτα επόμενα προβλήματα του διαφορικού λογιςμού. Οι ςυναρτήςεισ του πίνακα πρέπει να είναι καλώσ οριςμένεσ. 0 c α 5 6 ln α+ α +, α f () f() f α f () 2, 0 f () f 2 2 f () 2 f () ln f() f α+ α + f () f () 7 ςυν ημ f ()ςυνf () ημf () 8 ημ ςυν f ()ημf () ςυνf () 9 0 ςυν 2 ημ 2 εφ ςφ f () ςυν 2 f () f () ημ 2 f () εφf ( ςφf () e e f ()e f () e f () 2 α α lnα f ()α f () lnα α f () lnα Θεώρημα Rolle εφαρμογέσ 9

10 Το θεώρημα γεωμετρικά με τη βοήθεια του ςχήματοσ ςημαίνει ότι: Υπάρχει ένασ τουλάχιςτον αριθμόσ ξ α, β ώςτε η εφαπτομένη ευθεία ε τησ τησ C f ςτο ςημείο Μ(ξ, f ξ ) να είναι παράλληλη ςτον άξονα των τετμημένων. y O Μ(ξ,f(ξ)) (ε) C f Β(β,f(β)) Α(α,f(α)) (ε) α ξ ξ β Το θεώρημα Rolle αλγεβρικά ςημαίνει ότι η εξίςωςη: f = 0, έχει μια τουλάχιςτον ρίζα ςτο διάςτημα α, β. Η γραφική παράςταςη τησ παραγώγου, τέμνει τον άξονα ςε ένα τουλάχιςτον ςημείο με τετμημένη ξ α, β. Αν η γραφική παράςταςη τησ f τέμνει τον άξονα ςε δύο ςημεία, 2 < 2, τότε η γραφική παράςταςη τησ f τέμνει τον άξονα, τουλάχιςτον μια φορά ςε ςημείο ρ που βρίςκεται μεταξύ των ςημείων, 2. 0 Μαθηματικά Γ Λυκείου - Ανάλυςη

11 Μεταξύ δύο διαδοχικών ριζών, 2 τησ εξίςωςησ f = 0, υπάρχει μια τουλάχιςτον ρίζα ρ τησ εξίςωςησ: f = 0. Μεταξύ δύο διαδοχικών ριζών ρ, ρ 2, τησ f = 0, υπάρχει μια το πολύ ρίζα 0, τησ εξίςωςησ: f = 0. Αν η ςυνάρτηςη f είναι δύο φορέσ παραγωγίςιμη και η f έχει έχει τρείσ ρίζεσ, 2, 3, τότε η f έχει δύο τουλάχιςτον ρίζεσ ρ, ρ 2 και η f μια τουλάχιςτον ρίζα ρ. Γενίκευςη: Αν η ςυνάρτηςη f είναι κ φορέσ παραγωγίςιμη και έχει κ + ρίζεσ, τότε η f κ έχει μια τουλάχιςτον ρίζα ρ. Αν f 0, για κάθε R, τότε η f = 0, έχει μια το πολύ πραγματική ρίζα. Αν f 0 για κάθε R, τότε η ςυνάρτηςη f είναι. Με άτοπο και Rolle) Στισ λυμένεσ αςκήςεισ που ακολουθούν έγινε ομαδοποίηςη ςε αρκετά μεγάλο ποςοςτό. Δεν θα πρέπει όμωσ αυτό να επιδιώκεται ςτη τάξη, διότι τότε Αφαιρείται η πρωτοβουλία και η δημιουργικότητα του μαθητή. Θεώρημα Rolle εφαρμογέσ

12 Λυμένα Θέματα ςτο θεώρημα του Rolle Έςτω η ςυνάρτηςη: f = α ημ +, 2 + β. ln + + γ, 0 > 0 Να βρείτε τα α, β, γ R, ώςτε να ιςχύει το θεώρημα του Rolle για την f, ςτο διάςτημα: D =,. Η ςυνάρτηςη f είναι ςυνεχήσ ςτα ςύνολα,0), (0,, διότι οι f = α ημ + και Εφαρμογή του Θ. Rolle για f 2 = 2 + β ln + + γ την εύρεςη των παραμέτρων είναι ςυνεχείσ, ωσ άθροιςμα ςυνεχών ςυναρτήςεων. Πρέπει η f να είναι ςυνεχήσ και ςτο ςημείο = 0, δηλαδή: 0 f = f = f 0 = γ. () + 0 Οι τιμέσ ςτα άκρα του διαςτήματοσ,, να είναι ίςεσ: f = f α + = + γ α = γ, οπότε είναι: α = γ = (2) Τέλοσ πρέπει να είναι παραγωγίςιμη ςτο διάςτημα,. Είναι: f = 2α + 3ημ ςυν, για,0 και 2 Μαθηματικά Γ Λυκείου - Ανάλυςη

13 f = 2 + β. ln + + β +, για 0,. Πρέπει να παραγωγίζεται και ςτο = 0, δηλαδή πρέπει: f f = 0 + f f 0 0 f f = Είναι: 0 f α ημ = = 0 0 ημ α = 0 α ημ + 0 = 3. Οπότε είναι: f = 3 (3) 0 Επίςησ είναι: f 2 + β ln + = = β 0 + ln = 0 + β.. = β (4) Tο όριο 0 + ln +, υπολογίςτηκε με τον κανόνα De L Hosp. ln Περίπτωςη 0 0 = ln + = =. Επομένωσ από τισ 3 και 4 έχουμε: β = 3 β = 3. Άρα είναι: α = γ = και β = 3. Θεώρημα Rolle εφαρμογέσ 3

14 Έςτω η ςυνεχήσ ςυνάρτηςη: f: α, β R με α < β < 0 και α + β = 2. Αν υπάρχει η f ςτο α, β και f α = f β = 0, τότε: α. Να βρείτε την τιμή του λ R ώςτε η ςυνάρτηςη g με τύπο: g = f f λ 2, να ικανοποιεί τισ ςυνθήκεσ του θεωρήματοσ του Rolle ςτο α, β. β. Να δείξετε ότι υπάρχει ξ α, β τέτοιο ώςτε: f ξ = f β f α β α α. Η ςυνάρτηςη g είναι ςυνεχήσ ςτο διάςτημα α, β και είναι: g = f f f 2λ = g = f 2λ. () Πρέπει να ιςχύει: g α = g β από την οποία παίρνουμε: f α αf α λα 2 = f β βf β λβ 2 f α λα 2 = f β λβ 2 και από αυτή προκύπτει: λ = f β f α β 2 α 2 β. Από το α. με το Θ.R. υπάρχει ξ α, β ώςτε: g ξ = 0 ξ 0 f β f α ξf ξ 2λξ = 0 f ξ = 2λ = α + β. β 2 α 2 4 Μαθηματικά Γ Λυκείου - Ανάλυςη f ξ = f β f α β α

15 Α' Oμάδα Ύπαρξη μιασ τουλάχιςτον ρίζασ τησ εξίςωςησ f()=0 Ανάλογα με το πρόβλημα, χρηςιμοποιείται μια από τισ μεθόδουσ: Με το θεώρημα του Bolzano ςε διάςτημα α, β Με το θεώρημα του Rolle για μια αρχική τησ f ςε α, β Με άτοπο απαγωγή και το θεώρημα του Rolle ςε α, β Έςτω f, g οι παραγωγίςιμεσ ςτο R ςυναρτήςεισ και, 2 με < 2, είναι οι ρίζεσ τησ εξίςωςησ f = 0. Να δείξετε ότι: Η εξίςωςη f + f g = 0, έχει μια τουλάχιςτον ρίζα ςτο διάςτημα, 2. Έχουμε: f = 0 και f 2 = 0. () Πολλαπλαςιάζουμε την εξίςωςη με e g και παίρνουμε: f e g + f g e g = 0 f e g = 0. Θεωρούμε τη ςυνάρτηςη: h = f e g, με, 2. Προφανώσ η h ικανοποιεί τισ προώποθέςεισ του Θ.R, άρα. Θεώρημα Rolle εφαρμογέσ 5

16 Μια εφαρμογή του παραπάνω θέματοσ έχουμε αν θεωρήςουμε: f = 2, g =. y Ιςχύει: f = 0 =, =. Η εξίςωςη f + f g = 0, παίρνει τη μορφή: = 0 Η ςυνάρτηςη h = f e g είναι η h = 2 e. 2 f( ) y h'( ) 2 h( ) e ( ) ρ O Δίνεται η ςυνάρτηςη f η οποία είναι παραγωγίςιμη ςτο 0, π και ιςχύει: f συν f ημ () για κάθε 0, π. Να αποδείξετε ότι: α. f 0. f π 0 β. Η f έχει μια τουλάχιςτον ρίζα ςτο 0, π. α. Για = 0 από την παίρνουμε: f 0 ςυν0 f 0 ημ0, από την οποία έχουμε: f 0 0 και για = π είναι: f π 0 οπότε πράγματι ιςχύει: f 0. f π 0. β. Έςτω ότι η f δεν έχει ρίζα ςτο 0, π δηλαδή είναι: f 0 ςτο 0, π. Λόγω του α. έχουμε: f 0 για κάθε 0, π. () 6 Μαθηματικά Γ Λυκείου - Ανάλυςη

17 Για κάθε 0, π από την υπόθεςη έχουμε: f ςυν f ημ 0 f ςυν f ημ f 2 0 f ( ημ) f ημ f 2 Αν g = ημ f 0 ημ f Β' Oμάδα Ύπαρξη μιασ το πολύ ρίζασ τησ εξίςωςησ f() 0 0 (2), 0, π τότε από τη 2 είναι: g 0. Για τη g ιςχύουν οι προώποθέςεισ του Θ. Rolle ςτο 0, π, διότι: Είναι ςυνεχήσ ωσ πηλίκο ςυνεχών ςυναρτήςεων. Είναι παραγωγίςιμη ςτο 0, π και g 0 = g π = 0. Άρα η εξίςωςη g = 0 έχει μια τουλάχιςτον ρίζα ςτο 0, π, πράγμα άτοπο λόγω τησ ςχέςησ (2). Αποδεικνύουμε δηλαδή ότι η εξίςωςη f = 0, έχει μια ή καμία ρίζα, πράγμα που ςημαίνει ότι η C f τέμνει τον άξονα ςε ένα ςημείο ή δεν τον τέμνει. Χρηςιμοποιείται μια από τισ μεθόδουσ: Αποδεικνύουμε ότι η f είναι γνηςίωσ μονότονη. Με άτοπο απαγωγή: Υποθέτουμε ότι η εξίςωςη f = 0 έχει δυο διαφορετικέσ ρίζεσ, 2 και εφαρμόζουμε το θεώρημα Rolle ςτο διάςτημα, 2 για < 2. Θεώρημα Rolle εφαρμογέσ 7

18 Γ' Oμάδα Ύπαρξη μοναδικήσ ρίζασ τησ εξίςωςησ f() 0 Η ύπαρξη τησ ρίζασ : Ελέγχουμε αν η εξίςωςη έχει προφανή ρίζα. Εξετάζουμε αν εφαρμόζεται το θεώρημα Bolzano για την f. Εξετάζουμε αν ιςχύει το θεώρημα Rolle για την F, μια αρχική τησ f. Η μοναδικότητα τησ ρίζασ: Με τη μονοτονία τησ f. Με άτοπο απαγωγή και εφαρμογή του θεωρήματοσ Rolle. Δίνονται οι ςυναρτήςεισ : f = e και g = 2 + e +. Να αποδείξετε ότι: y α. Τα ςημεία Α 0,, Β, e ανήκουν ςτισ C f και C g. e B(, e) β. Τα Α, Β είναι τα μοναδικά κοινά ςημεία των C f, C g. C f Α(0,) O C g α. Ιςχύουν: f 0 = e 0 = και g 0 = e. 0 + =. Άρα το Α είναι κοινό ςημείο των C f, C g. Επίςησ είναι: f = e και g =. Άρα και το ςημείο Β είναι κοινό ςημείο των C f, C g. 8 Μαθηματικά Γ Λυκείου - Ανάλυςη

19 β. Από το α. ερώτημα έχουμε: f 0 = g 0 και f = g που ςημαίνει ότι η εξίςωςη: f = g f g = 0, έχει δύο ρίζεσ τουσ αριθμούσ 0 και. Θα αποδείξουμε ότι η εξίςωςη: h = f g = 0, δεν έχει άλλεσ πραγματικέσ ρίζεσ. Άτοποσ απαγωγή: Έςτω ότι η ςυνάρτηςη: h = f g = e + 2 e, έχεικαι άλλη ρίζα ρ 0, ρ, π. χ. 0 < < ρ. Στα διαςτήματα 0,,, ρ, η h ικανοποιεί τισ προώποθέςεισ του θεωρήματοσ Rolle, άρα υπάρχει ένασ τουλάχιςτον αριθμόσ α 0, ώςτε: h α = 0 και ένασ τουλάχιςτον αριθμόσ β, ρ ώςτε: h β = 0. Για την h = e + 2 e, ιςχύει το θεώρημα Rolle ςτο α, β : Είναι ςυνεχήσ ςτο α, β. h = e + 2, για κάθε α, β και h α = h β. Άρα υπάρχει ένασ τουλάχιςτον αριθμόσ ξ α, β, ώςτε: h ξ = 0 δηλαδή ότι: e ξ + 2 = 0, πράγμα αδύνατο. Άρα η h έχει δύο μόνο ρίζεσ που ςημαίνει ότι οι γραφικέσ παραςτάςεισ των f και g έχουν μοναδικά κοινά ςημεία τα Α και Β. Θεώρημα Rolle εφαρμογέσ 9

20 Δ' Oμάδα Ύπαρξη ςημείου ξ α,β ώςτε η εφαπτομένη ε τησ ςτο Μ ξ,f(ξ, να διέρχεται από ένα ςημείο Α. C f Έςτω η παραγωγίςιμη ςυνάρτηςη f ςτο διάςτημα, 2, με f = 2 και f 2 = 4. Να δείξετε ότι υπάρχει ένα τουλάχιςτον ξ, 2 ώςτε η εφαπτομένη ε τησ C f ςτο ςημείο Μ ξ, f(ξ) να διέρχεται από την αρχή Ο των αξόνων. Αρκεί να αποδείξουμε ότι υπάρχει ξ,2 ώςτε η εφαπτομένη ε: y f ξ = f ξ ξ ςτο Μ ξ, f(ξ) να διέρχεται από το Ο 0,0. Αυτό ςημαίνει ότι θα υπάρχει ξ ώςτε: 0 f ξ = f ξ 0 ξ f ξ = ξ f ξ y y f( ) ε ξ f ξ f ξ = 0 ξf ξ f ξ ξ 2 = 0. 2 Μ y g( ) Άρα η εξίςωςη: f f f 2 = 0, ή = 0, να έχει ρίζα ξ,2. O ξ 2 H ςυνάρτηςη: g = f,,2 ικανοποιεί τισ υποθέςεισ του του θεωρήματοσ Rolle, ςτο διάςτημα,2, διότι είναι ςυνεχήσ ςτο 20 Μαθηματικά Γ Λυκείου - Ανάλυςη

21 ,2, παραγωγίςιμη ςτο,2, και g = 2 = g 2. Άρα η εξίςωςη g = 0 έχει μία τουλάχιςτον ρίζα ςτο,2. Έςτω ςυνάρτηςη f που είναι δύο φορέσ παραγωγίςιμη ςτο R και μια ευθεία ε. Να αποδείξετε ότι: α. Αν η ε τέμνει τη C f ςε τρία διαφορετικά ςημεία, τότε η εξίςωςη: f = 0 έχει μια τουλάχιςτον ρίζα ςτο R. β. Αν f = e , τότε η C f δεν έχει 3 κοινά ςημεία με ευθεία ε. α. Έςτω Α α, f α, Β β, f β και Γ γ, f γ τα τρία κοινά ςημεία των C f και ε και έςτω ότι είναι: α < β < γ. Η ςυνάρτηςη f ικανοποιεί y ςτα διαςτήματα α, β, β, γ, τισ προώποθέςεισ του Θ.Μ.Τ. Α(α,f(α)) Β(β,f(β)) C f (ε) Γ(γ,f(γ)) Επομένωσ υπάρχουν αριθμοί ξ α, β, ξ 2 β, γ ώςτε: O α β γ f ξ = f β f α β α = λ ΑΒ και f ξ 2 = f γ f β γ β = λ ΒΓ Επειδή τα τρία ςημεία Α, Β, Γ είναι ςυνευθειακά, ιςχύει: λ ΑΒ = λ ΒΓ Θεώρημα Rolle εφαρμογέσ 2

22 οπότε ιςχύει: f ξ = f ξ 2. () Για τη ςυνάρτηςη f ιςχύει το θεώρημα του Rolle ςτο διάςτημα ξ, ξ 2 επειδή υπάρχει η f και από την είναι f ξ = f ξ 2. Άρα υπάρχει ένασ τουλάχιςτον ξ ξ, ξ 2 ώςτε: f ξ = 0. Έςτω η ςυνεχήσ ςυνάρτηςη f ςτο διάςτημα 0, 2, που είναι δύο φορέσ παραγωγίςιμη ςτο 0, 2 για την οποία: f 0 = 0, f 2 = 2. α. Να δείξετε ότι υπάρχει ένασ τουλάχιςτον ξ 0, 2, τέτοιοσ ώςτε: ξ. f ξ = 2 ξ β. Να αποδείξετε ότι υπάρχουν δύο αριθμοί κ, λ 0, 2 ώςτε: f κ. f λ = 3ξ 2 ξ 3 γ. Να βρείτε την τιμή του ξ 0, 2, ώςτε να ιςχύει για την f το θεώρημα του Rolle ςτο διάςτημα κ, λ. α. Αρκεί να δείξουμε ότι το ξ να είναι ρίζα τησ f + 2 = 0. Θεωρούμε τη ςυνάρτηςη: g = f + 2, 0,2. Είναι ςυνεχήσ ςτο 0,2, ωσ διαφορά ςυνεχών ςυναρτήςεων. Ιςχύουν: g 0 = f 0 2 = 2 < 0 και g 2 = 2f 2 = 4 > 0. Επομένωσ είναι: g 0. g 2 < 0, οπότε ςύμφωνα με το θεώρημα 22 Μαθηματικά Γ Λυκείου - Ανάλυςη

23 του Bolzano, υπάρχει ένα τουλάχιςτον ξ 0,2, ώςτε: g ξ = 0, ή ξ f ξ + ξ 2 = 0 f ξ = 2 ξ ξ 0 κ ξ λ 2 β. Για τη ςυνάρτηςη f ιςχύει το Θ.Μ.Τ. ςτα διαςτήματα 0, ξ και ξ, 2. Επομένωσ υπάρχουν αριθμοί: κ 0, ξ και λ ξ, 2 ώςτε: f κ = f ξ f 0 ξ 0 = 2 ξ ξ ξ = 2 ξ ξ 2 () f λ = f 2 f ξ 2 ξ = 2 2 ξ ξ 2 ξ = 3ξ 2 ξ 2 ξ (2) Άρα από τισ, 2 εχουμε: f κ. f λ = 2 ξ ξ 2 3ξ 2 ξ 2 ξ = 3ξ 2 ξ 3 γ. Η ςυνάρτηςη f είναι ςυνεχήσ διότι υπάρχει η f. Άρα για να ιςχύει το θεώρημα Rolle για την f ςτο διάςτημα κ, λ, πρέπει: f κ = f λ 2 ξ ξ 2 = 3ξ 2 ξ 2 ξ ξ 0,2 2 ξ 2 = ξ 3ξ 2 ξ 2 4ξ + 4 = 3ξ 2 2ξ 2ξ 2 + 2ξ 4 = 0 ξ 2 + ξ 2 = 0. Έχει Δ = 9 και ρίζεσ: ξ,2 = ± 3 2 = 2 Δεκτή είναι η τιμή ξ =, διότι: ξ 0,2. Θεώρημα Rolle εφαρμογέσ 23

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.)

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση. ΘΕΜΑ Β Δίνεται

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

1. Θεωρήματα Διαφορικού Λογισμού

1. Θεωρήματα Διαφορικού Λογισμού Θεωρήματα Διαφορικού Λογισμού α Θεώρημα Rolle Αν μία συνάρτηση f είναι: Συνεχής στο κλειστό διάστημα [ αα ] παραγωγίσιμη στο ανοικτό διάστημα ( αα ) και f( α) = f( ) τότε υπάρχει τουλάχιστον ένα ( α )

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων

ΘΕΩΡΗΜΑ ROLLE. τέτοιο ώστε. στο οποίο η εφαπτομένη είναι παράλληλη στον άξονα χχ. της γραφικής παράστασης της f x με. Κατηγορίες Ασκήσεων Διατύπωση: Εάν για μια συνάρτηση ΘΕΩΡΗΜΑ ROLLE x ισχύουν Η x συνεχής στο [α,β] Η x παραγωγίσιμη στο (α, β) a τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ' 0 Γεωμετρική Ερμηνεία : Γεωμετρικά το θεώρημα ROLLE

Διαβάστε περισσότερα

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση 1. Να δείξετε ότι η εξίσωση 7 3 + + + 3= (1) έχει ακριβώς μία πραγματική

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

[ α π ο δ ε ί ξ ε ι ς ]

[ α π ο δ ε ί ξ ε ι ς ] Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...

Διαβάστε περισσότερα

x είναι f 1 f 0 f κ λ

x είναι f 1 f 0 f κ λ 3 Ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ [Κεφάλαια, Μέρος Β' του σχολικού βιβλίου] ΘΕΜΑ Α.Βλέπε σχολικό βιβλίο, σελίδα 4.. Βλέπε σχολικό βιβλίο, σελίδα 88, 89. 3. α) ΣΩΣΤΟ, διότι αν η f παραγωγίσιμη στο χ

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

Λύσεις του διαγωνίσματος στις παραγώγους

Λύσεις του διαγωνίσματος στις παραγώγους Λύσεις του διαγωνίσματος στις παραγώγους Θέμα ο Α Έστω ότι f ), για κάθε α, ), β) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα α, ] και [, β) Επομένως, για ισχύει

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

3o Επαναληπτικό Διαγώνισμα 2016

3o Επαναληπτικό Διαγώνισμα 2016 3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων.

Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων. Άσκηση Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων Μέρος ο i. Δίνεται η γνησίως μονότονη συνάρτηση f : A IR. Να αποδείξετε

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A wwwaskisopolisgr ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: η f είναι συνεχής στο, f f να

Διαβάστε περισσότερα

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και 13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1,

). Πράγματι, στο διάστημα [ x, x 1 2 ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ x 1, ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α A Αποδεικνύουμε το θεώρημα στην περίπτωση που

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ

2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή

Μαθηματικά Κατεύθυνσης Γ Λυκείου ( ) ( ) ( ) α β, παραγωγίσιμη στο ( ) β με. β α β α. f β f α. g ( ξ ) = 0, δηλαδή Κεφάλαιο: ιαφορικός Λογισμός Το θεώρημα μέσης τιμής αποτελεί γενίκευση του θεωρήματος Rolle Λόγω όμως των πολλών και σημαντικών εφαρμογών του θεωρείται ένα από τα πλέον θεμελιώδη θεωρήματα της ανάλυσης

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ (-6-) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Α. Αν η συνάρτηση είναι παραγωγίσιμη σ ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 34 Κεφάλαιο ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ o ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Λ 4. Λ 43. Λ. Σ 5. Λ 44. Σ 3. Λ 6. Λ 45. α) Σ 4. Σ 7. Λ β) Λ 5. Σ 8. Σ

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β ΑΠΑΝΤΗΣΕΙΣ-ΥΠΟΔΕΙΞΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΟΥ ΒΙΒΛΙΟΥ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ η Έκδοση, Ιανουάριος 7 Γιάννης Καραγιάννης

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 7 η ΕΚΑ Α 6. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε t (e + )dt για κάθε R Για δυνατούς παίκτες i) είξτε ότι e f() + f() ii) είξτε ότι η f αντιστρέφεται και βρείτε την f iii)

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0] Απαντήσεις στο ο Διαγώνισμα Μαθηματικών Κατεύθυνσης Γ Λυκείου Θέμα ο Α Έστω ότι f( ), για κάθε (, ) (, ) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (, ] και [,

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ

Θ.Rolle Θ.Μ.T. Συνέπειες Θ.Μ.Τ Θέματα Πανελλαδικών 000-05 στις Παραγώγους Εφαπτομένη Έστω η συνάρτηση f :, με f 000 ln Έστω η συνάρτηση Έστω c > 000 και έστω ότι η ευθεία y = c και η C f τέμνονται σε δύο διαφορετικά σημεία Α,Β του επιπέδου

Διαβάστε περισσότερα

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΑΠΡΙΛΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΤΕΚΑ (11) ΘΕΜΑ Α Α1. Σχολικό

Διαβάστε περισσότερα

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle

Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ» 2.6. ΘΕΩΡΗΜΑ ROLLE. Υποδείξεις Απαντήσεις Ασκήσεων. Προσδιορισμός παραμέτρων ώστε να εφαρμόζεται το θεώρημα Rolle Σελ.414 Πρότυπα κλειστά τμήματα «ΜΕΘΟΔΟΣ».6. ΘΕΩΡΗΜΑ ROLLE Υποδείξεις Απαντήσεις Ασκήσεων.344. α. Σωστό β. Λάθος γ. Λάθος δ. Σωστό ε. Σωστό στ. Σωστό ζ. Λάθος η. Σωστό θ. Σωστό ι. Λάθος ια. Σωστό ιβ. Σωστό

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3.1 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΠΑΡΑΓΟΥΣΑ ΣΥΝΑΡΤΗΣΗ [Αρχική Συνάρτηση του κεφ.3. Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Να βρείτε την παράγουσα της συνάρτησης f() =,

Διαβάστε περισσότερα

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ 3.1. Να αποδείξετε ότι η συνάρτηση: f x = { x e 1/ x,αν x 0 x ημx,αν x 0} είναι παραγωγίσιμη στο 0. 3.2. Δίνεται η συνάρτηση f x = { x 2 αx 1,αν x 1 2x 2, αν x 1 } η οποία

Διαβάστε περισσότερα

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της

f( ) + f( ) + f( ) + f( ). 4 γ) υπάρχει x 2 (0, 1), ώστε η εφαπτοµένη της γραφικής παράστασης της ΘΕΜΑΤΑ. Η συνάρτηση f είναι παραγωγίσιµη στο κλειστό διάστηµα [, ] και ισχύει f () > για κάθε (, ). Αν f() και f(), να δείξετε ότι: α. η ευθεία y τέµνει τη γραφική παράσταση της f σ' ένα ακριβώς σηµείο

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R. ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΥΛΗ: Όρια Συνέχεια Διαφορικός Λογισμός Ορισμένο Ολοκλήρωμα ΗΜΕΡΟΜΗΝΙΑ: 4 Μαρτίου 8 Θερινά Τμήματα Απαντήσεις ΘΕΜΑ Α Α. Σχολικό Βιβλίο Σελίδα 33. (Μονάδες 5) Α. Σχολικό

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α A Έστω μια

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση: ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f () f(), η οποία ικανοποιεί τη σχέση: (f () + f () ) f () + f (), για κάθε. Γ. Να αποδείξετε ότι f() ln( ),. Μονάδες 8 Γ. Να μελετήσετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) 3 1 0 011 ΘΕΡΙΝΑ ΤΜΗΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά) ΘΕΜΑ 1 Α. Έστω η συνάρτηση F()=f()+g(). Aν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι F

Διαβάστε περισσότερα

M z ισαπέχουν από τα 4,0, 4,0

M z ισαπέχουν από τα 4,0, 4,0 Επιμέλεια: Κωνσταντίνος Λ. Κωνσταντόπουλος Σχολικός Σύμβουλος Μαθηματικών Απαντήσεις- Υποδείξεις 5 ου Επαναληπτικού Διαγωνίσματος ΘΕΜΑ 1 ο Α1: Σχολικό βιβλίο σελ.. Α: Σχολικό βιβλίο σελ. A3: α) Λάθος Το

Διαβάστε περισσότερα

Κανόνες de L Hospital

Κανόνες de L Hospital 4.6 Κανόνες de L'Hospital 4.6.Α Κανόνες de L Hospital Για τα όρια πηλίκου που οδηγούν σε απροσδιόριστες μορφές, ± ± ισχύουν τα επόμενα θεωρήματα, που είναι γνωστά ως κανόνες de L Hospital Αυτοί οι κανόνες

Διαβάστε περισσότερα

3ο Διαγώνισμα στις παραγώγους

3ο Διαγώνισμα στις παραγώγους wwwaskisopolisgr ΘΕΜΑ Α ο Διαγώνισμα στις παραγώγους Διάρκεια:,5 ώρες Α α) Αν μια συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστημα Δ, τότε f στο Δ; Δώστε παράδειγμα β) Αν μια συνάρτηση f είναι παραγωγίσιμη

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να γνωρίζει τον ορισμό της παραγώγου συνάρτησης σε ένα σημείο και να τον ερμηνεύει ως ρυθμό μεταβολής.. Να γνωρίζει τις έννοιες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΘΕΜΑ Έστω (z) = z iz, z. α) Να λύσετε την εξίσωση : (z) = i. β) Αν (z) = να βρείτε το z. γ) Αν z = να δείξετε ότι ο γεωμετρικός τόπος των εικόνων του w=(z) είναι κύκλος

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ - ΘΕΩΡΗΜΑ ROLLE Θεώρημα Rolle Αν μια συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β], παραγωγίσιμη στο ανοικτό διάστημα (α, β) και ισχύει ότι f(α) f(β), τότε υπάρχει ένα τουλάχιστον

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρείτε τις ασύμπτωτες της γραφικής παράστασης της συνάρτησης f με τύπο ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα