[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0."

Transcript

1 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f ( x) f ( x ) f ( x) f ( x ) = ( x x ), οπότε: x x f lim [ ( ) ( )] lim ( x ) f f x f x ( x ) = ( x x ) x x f lim ( ) ( ) lim ( x ) f ( x f x f x ) = lim ( x x ) x x x x x x x x lim f ( x) f ( x) = f ( x) (αφού η f είναι x x x x [ ] [ ] x x lim [ f ( x) f ( x )] x x = lim f ( x) lim f ( x) = x x x x lim f ( x) = lim f ( x ) x x x x παραγωγίσιµη στο χ ) lim f ( x) = f ( x ) ( αφού το f(χ ) είναι σταθερό ), x x άρα η f είναι συνεχής στο χ. Β. Το θεώρηµα µέσης τιµής του διαφορικού λογισµού γεωµετρικά σηµαίνει ότι υπάρχει ένα τουλάχιστον ξ (α, β) τέτοιο ώστε η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο Γ(ξ, f(ξ)) να είναι παράλληλη στην ευθεία ΑΒ που ορίζεται από τα σηµεία Α(α,f(α)), Β(β,f(β)). f(β) f(ξ) f(α) Ο Α α ξ Γ y=f(x) Β β ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

2 ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ. α. Από τη θεωρία γνωρίζουµε ότι αν z ένας µιγαδικός αριθµός και z ο συζυγής του, τότε ισχύει z = z = z = z, δηλαδή, η πρόταση είναι σωστή (Σωστό). β. Από τη θεωρία γνωρίζουµε αν µία συνάρτηση f συνεχής σε ένα διάστηµα, δύο φορές παραγωγίσιµη στο εσωτερικό του και ισχύει f (x)> για κάθε εσωτερικό σηµείο x του, τότε η f είναι κυρτή στο, δηλαδή, η πρόταση είναι σωστή (Σωστό). γ. Από τη θεωρία γνωρίζουµε αν για κάθε συνάρτηση f, παραγωγίσιµη σε ένα διάστηµα, ισχύει ότι f (x)dx = f(x) + c, c IR, δηλαδή, η πρόταση είναι σωστή (Σωστό). δ. Γνωρίζουµε ότι αν µια συνάρτηση f είναι κυρτή σε ένα διάστηµα, τότε η εφαπτοµένη της γραφικής παράστασης της f σε κάθε σηµείο του βρίσκεται «κάτω» από τη γραφική της παράσταση, δηλαδή, η πρόταση είναι Λανθασµένη (Λάθος). ε. Από τη θεωρία γνωρίζουµε ότι αν µια συνάρτηση f είναι ορισµένη σε ένα διάστηµα, x ένα εσωτερικό σηµείο του και η f είναι παραγωγίσιµη στο x µε f (x )=, τότε η f στο x έχει πιθανό τοπικό ακρότατο δηλαδή, η πρόταση είναι Λανθασµένη (Λάθος). ΤΕΛΟΣ 2ΗΣ ΣΕΛΙ ΑΣ

3 ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 2ο α. Έχουµε ότι: w = 3z z = α βi, α, β R, άρα i z +4 w = 3 (α + βi) i (α βi) + 4 w = 3α + 3βi iα + βi w = 3α + 3βi iα β + 4 w = 3α β (3β α) i, άρα Re(w) = 3α β + 4 και Ιm(w) = 3β α. β. Αφού οι εικόνες του w στο µιγαδικό επίπεδο κινούνται στην ευθεία µε εξίσωση y = x 12, θα ισχύει ότι: Im(w) = Re(w) 12 3β α = 3α β β α 3α + β = α + 4β = 8 α β = 2 β = α 2, δηλαδή, οι εικόνες του z κινούνται στην ευθεία µε εξίσωση y = x 2. γ. Επειδή, το µέτρο ενός µιγαδικού εκφράζεται από το µέτρο της αντίστοιχης διανυσµατικής ακτίνας µε πέρας την εικόνα του µιγαδικού στο µιγαδικό επίπεδο, αναζητούµε εκείνο το σηµείο Α της ευθείας (ε): y = x 2 που απέχει την ελάχιστη απόσταση από την αρχή των αξόνων (, ). Από τους µιγαδικούς αριθµούς z, οι εικόνες των οποίων κινούνται στην ευθεία (ε) µε εξίσωση y = x 2 x y 2 =, το ελάχιστο µέτρο επιτυγχάνεται στο σηµείο Α της ευθείας (ε), για το οποίο ισχύει ότι ΟΑ ε. ΤΕΛΟΣ 3ΗΣ ΣΕΛΙ ΑΣ

4 ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ 1ος τρόπος d(o, ε ) = = = = 2 2 Τότε: ( 1) 2, άρα min z = 2 και αν Α(α, α 2) θα πρέπει να ισχύει: ΟΑ = d(o, ε) 2 2 ( α ) + ( α 2 ) = 2 α 2 + α 2 4α + 4 = 2 2α 2 4α + 2 = 2 (α 2 2α + 1) = 2 (α 1) 2 = α 1 = α = 1, άρα Α(1, 1) και o µιγαδικός µε το ελάχιστο µέτρο είναι ο z = 1 i, µε z = 2. 2 ος τρόπος Αφού ΟΑ ε, τότε λ ΟΑ λ ε = 1 λ ΟΑ 1 = 1 λ ΟΑ = 1 και αφού η ευθεία ΟΑ διέρχεται από το (, ) θα έχει εξίσωση y = x. Οι συντεταγµένες του σηµείου Α προκύπτουν από τη λύση του συστήµατος: y = x 2 x = x 2 2x = 2 x = 1 x = 1, y = x y = x y = x y = x y = 1 άρα Α(1, 1) και o µιγαδικός µε το ελάχιστο µέτρο είναι ο z = 1 i, µε 2 2 z = (1 ) + ( 1 ) = 1+ 1 = 2. ΘΕΜΑ 3ο α. H συνάρτηση f(x) = x 5 + x 3 + x είναι ορισµένη και δύο φορές παραγωγίσιµη στο R, µε f (x) = 5x 4 + 3x 2 + 1, όπου f (x) > για κάθε x R, [αφού 5x 4, 3x 2 και 1 > ] άρα η συνάρτηση f(x) είναι γνησίως αύξουσα σε όλο το R. Επίσης f (x) = 2x 3 + 6x = 2x (1x 2 + 3). Τότε: f (x) > 2x (1x 2 + 3) > ΤΕΛΟΣ 4ΗΣ ΣΕΛΙ ΑΣ

5 ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ 2x > [αφού 1x > ] x >. Εποµένως: Αν x (, + ) η συνάρτηση f(x) είναι κυρτή (στρέφει τα κοίλα πάνω) και Αν x (, ) η συνάρτηση f(x) είναι κοίλη (στρέφει τα κοίλα κάτω). Τέλος αφού η συνάρτηση είναι γνησίως αύξουσα σε όλο το R, θα είναι και ένα προς ένα, άρα θα αντιστρέφεται. β. Έστω η συνάρτηση g(x) = e x x 1, ορισµένη και παραγωγίσιµη στο R, µε g (x) = e x 1. Τότε: g (x) > e x 1 > e x > 1 e x > e x >. Εποµένως: + g (x) + g(x) οπότε η συνάρτηση παρουσιάζει ολικό ελάχιστο για x = το g() = και θα ισχύει: g(x) g() e x x 1 e x x + 1, για κάθε x R. Όµως η f είναι γνησίως αύξουσα στο R, άρα f(e x ) f(1+x), αφού ισχύει ότι e x 1 + x. γ. Έχουµε ότι: f() = και f () = 1. Συνεπώς η εφαπτοµένη της γραφικής παράστασης της f στο σηµείο (,) έχει εξίσωση (δ): y f() = f () (x ) y = 1 x y = x. ΤΕΛΟΣ 5ΗΣ ΣΕΛΙ ΑΣ

6 ΑΡΧΗ 6ΗΣ ΣΕΛΙ ΑΣ Από τη θεωρία γνωρίζουµε ότι οι γραφικές παραστάσεις των f και f 1 έχουν ως άξονα συµµετρίας την ευθεία y = x, δηλαδή, την εφαπτοµένη της γραφικής παράστασης της f στο σηµείο (,). δ. 1 ος τρόπος Αλγεβρικά Αφού η f είναι γνησίως αύξουσα στο R, θα είναι γνησίως αύξουσα και στο [, 1] και το σύνολο τιµών της θα είναι το [f(), f(1)] = [, 3], οπότε αν f: [, 1] [, 3], θα ισχύει ότι f 1 : [, 3] [, 1]. Επίσης έχουµε ότι: f() = f 1 () = και f(1) = 3 f 1 (3) = 1. Εποµένως η f 1 είναι θετική, όταν x (, 3) και το ζητούµενο εµβαδό είναι: Θέτουµε: (Ι). E = f (x)dx = f (x)dx u = f 1 (x) x = f(u) x = u 5 + u 3 + u, dx = f (u)du dx = (5u 4 + 3u 2 + 1)du και Από την (Ι) βρίσκουµε ότι: E= u (5u + 3u + 1)du x 3 u f -1 ()= f -1 (3)= E= (5u + 3u + u)du u u u E= E= ΤΕΛΟΣ 6ΗΣ ΣΕΛΙ ΑΣ

7 ΑΡΧΗ 7ΗΣ ΣΕΛΙ ΑΣ E= E= E=. 12 τ µ. 2 ος τρόπος Αλγεβρικά Απόδειξη ότι η f 1 είναι γνησίως αύξουσα Αν για την f 1 : R R έχουµε ότι f(x 1 ), f(x 2 ) R και ισχύει ότι f(x 1 ) < f(x 2 ), θα αποδείξουµε ότι: f 1 [f(x 1 )] < f 1 [f(x 2 )] x 1 < x 2. Έστω ότι x 1 x 2, οπότε αφού η f είναι γνησίως αύξουσα στο R, θα ισχύει f(x 1 ) f(x 2 ), που είναι ΑΤΟΠΟ, άρα η συνάρτηση f 1 είναι γνησίως αύξουσα. Θέτουµε στην σχέση f(x) = x 5 + x 3 + x, όπου x το f 1 (x) και όπου f(x) το x, οπότε έχουµε: x = [f 1 (x)] 5 + [f 1 (x)] 3 + f 1 (x). Τότε: Για x=, έχουµε: [f 1 ()] 5 + [f 1 ()] 3 + f 1 () = f 1 () {[f 1 ()] 4 + [f 1 ()] 2 + 1} = f 1 () = ή [f 1 ()] 4 + [f 1 ()] = f 1 () =, αφού [f 1 ()] 4 + [f 1 ()] >. Για x=3, έχουµε: [f 1 (3)] 5 + [f 1 (3)] 3 + f 1 (3) = 3 [f 1 (3)] 5 + [f 1 (3)] 3 + f 1 (3) 3 = (ΙΙ) Θεωρούµε τη συνάρτηση h(x) = x 5 + x 3 + x 3, ορισµένη και παραγωγίσιµη στο R, µε h (x) = 5x 4 + 3x >, οπότε η h(x) είναι γνησίως αύξουσα. H h(x) έχει ρίζα το 1, αφού h(1) =, και είναι γνησίως αύξουσα, άρα η ρίζα αυτή θα είναι µοναδική. ΤΕΛΟΣ 7ΗΣ ΣΕΛΙ ΑΣ

8 ΑΡΧΗ 8ΗΣ ΣΕΛΙ ΑΣ Εποµένως και µε τη βοήθεια της (ΙΙ) βρίσκουµε ότι: f 1 (3) = 1. Επίσης αφού η f 1 είναι γνησίως αύξουσα και έχουµε f 1 () =, για κάθε x > θα ισχύει f 1 (x) > f 1 () f 1 (x) >, για κάθε x (, + ). Εποµένως το ζητούµενο εµβαδό θα είναι το: , όπου µε αντικατάσταση όπως και E = f (x)dx = f (x)dx στον 1ο τρόπο βρίσκουµε ότι 25 E=. 12 τ µ. 3 ος τρόπος - γεωµετρικά Αφού η συνάρτηση f είναι κυρτή στο (, + ) και η ευθεία µε εξίσωση y = x είναι εφαπτοµένη της στο (, ), η γραφική παράσταση της f βρίσκεται στο (, + ) πάνω από την ευθεία y = x. Εποµένως αφού οι γραφικές παραστάσεις των f, f 1 είναι συµµετρικές ως προς την ευθεία y = x, η γραφική παράσταση της f 1 βρίσκεται στο (, + ) κάτω από την ευθεία y = x. ΤΕΛΟΣ 8ΗΣ ΣΕΛΙ ΑΣ

9 ΑΡΧΗ 9ΗΣ ΣΕΛΙ ΑΣ Επιπλέον λόγω της συµµετρίας των C f, C 1 f ως προς την ευθεία y = x, το ζητούµενο εµβαδό που περικλείεται από την γραφική παράσταση της f 1 την ευθεία x = 3 και τον άξονα xx, θα είναι ίσο µε το εµβαδό του χωρίου που περικλείεται από την γραφική παράσταση της f την ευθεία y=3 και τον άξονα yy. Βρίσκουµε το σηµείο τοµής της C f και της ευθείας y = 3 y = 3 = y x x x 5 3 y = 3 3 = x + x + x 5 3 y = 3 x 1+ x 1+ x 1 = y = 3 x + x + x 3 = 5 3 y = 3 (x 1)(x + x + x + x + 1) + (x 1)(x + x + 1) + (x 1) = y = 3 (x 1)(x + x + x + x + 1+ x + x ) = y = 3 (x 1)(x + x + 2x + 2x + 3) = Εποµένως έχουµε ότι x = 1 ή x 4 + x 3 + 2x 2 + 2x + 3 =, η οποία είναι αδύνατη στο (, + ), αφού ισχύει x 4 >, x 3 >, 2x 2 >, 2x >, 3 >. Άρα το σηµείο τοµής είναι το Α(1, 3).. Εποµένως το ζητούµενο εµβαδό είναι το: ΤΕΛΟΣ 9ΗΣ ΣΕΛΙ ΑΣ

10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ 1 E = [3 f (x)]dx E = [3 (x + x + x)]dx E = (3 x x x)dx x x x E = 3x E = E = E = E=. 12 τ µ. ΘΕΜΑ 4ο α. Ισχύει γ δ, αφού αν γ = δ, τότε f(γ) = f(δ), οπότε f(γ) f(δ) = f 2 (γ), που είναι ΑΤΟΠΟ, αφού f(γ) f(δ) <. Έστω γ < δ, όπου γ, δ (α, β), θα έχουµε ότι α < γ < δ < β. Εφαρµόζουµε θεώρηµα Bolzano για την συνάρτηση f(x) στο διάστηµα [γ, δ]. Η συνάρτηση f(x) είναι ορισµένη και συνεχής στο [γ, δ] µε f(γ) f(δ)<, οπότε υπάρχει µία τουλάχιστον ρίζα ρ (γ, δ) της εξίσωσης f(x) =. Αφού όµως (γ, δ) (α, β), έχουµε ότι υπάρχει µια τουλάχιστον ρίζα ρ (α, β) της εξίσωσης f(x) =, δηλαδή, ισχύει f(ρ) =. β. 1 ος τρόπος Αφού f(γ) f(δ) <, τα f(γ) και f(δ) είναι ετερόσηµα. Έστω ότι f(γ) < και f(δ) >. Εφαρµόζουµε Θ.Μ.Τ για την f(x) στο διάστηµα [a, γ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [α, γ] και παραγωγίσιµη στο (α, γ), οπότε υπάρχει ένα τουλάχιστον κ 1 (α, γ) έτσι ώστε: 1 f ( γ) f ( α) f ( γ) f ( κ ) = = γ α γ α. ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

11 ΑΡΧΗ 11ΗΣ ΣΕΛΙ ΑΣ Εφαρµόζουµε Θ.Μ.Τ για την f(x) στο διάστηµα [γ, β] Η συνάρτηση f είναι ορισµένη, συνεχής στο [γ, β] και παραγωγίσιµη στο (γ, β), οπότε υπάρχει ένα τουλάχιστον κ 2 (γ, β) έτσι ώστε: 2 f ( γ) f ( β) f ( γ) f ( κ ) = = γ β γ β. Τότε: f ( γ) f ( γ) f ( κ1) f ( κ 2) = γ α γ β γf ( γ) βf ( γ) γf ( γ ) + αf ( γ) f ( κ1) f ( κ 2) = γ α ( α β)f ( γ) f ( κ1) f ( κ 2) = (Ι) γ α Εφαρµόζουµε Θ.Μ.Τ για την f (x) στο διάστηµα [κ 1, κ 2 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [κ 1, κ 2 ] και παραγωγίσιµη στο (κ 1, κ 2 ), οπότε υπάρχει ένα τουλάχιστον ξ 1 (κ 1, κ 2 ) έτσι ώστε: βρίσκουµε ότι: 1 f ( ξ ) = f ( κ1) f ( κ2) f ( ξ 1) = κ1 κ2 ( α β)f ( γ) γ α ( α β)f ( γ) f ( ξ 1) =, κ κ ( κ κ )( γ α ) 1 2, όπου λόγω της (Ι) 1 2 οπότε f (ξ 1 ) <, αφού α β <, f(γ) <, κ 1 κ 2 < και γ α >. Εφαρµόζουµε Θ.Μ.Τ για την f(x) στο διάστηµα [a, δ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [α, δ] και παραγωγίσιµη στο (α, δ), οπότε υπάρχει ένα τουλάχιστον λ 1 (α, δ) έτσι ώστε: 1 f ( δ) f ( α) f ( δ) f ( λ ) = = δ α δ α. Εφαρµόζουµε Θ.Μ.Τ για την f(x) στο διάστηµα [δ, β] Η συνάρτηση f είναι ορισµένη, συνεχής στο [δ, β] και παραγωγίσιµη στο (δ, β), οπότε υπάρχει ένα τουλάχιστον λ 2 (δ, β) έτσι ώστε: 2 f ( δ) f ( β) f ( δ) f ( λ ) = = δ β δ β. ΤΕΛΟΣ 11ΗΣ ΣΕΛΙ ΑΣ

12 ΑΡΧΗ 12ΗΣ ΣΕΛΙ ΑΣ Τότε: f ( δ) f ( δ) f ( λ1) f ( λ 2) = δ α δ β δf ( δ) βf ( δ) δf ( δ ) + αf ( δ) f ( λ1) f ( λ 2) = δ α ( α β)f ( δ) f ( λ1) f ( λ 2) = (ΙΙ) δ α Εφαρµόζουµε Θ.Μ.Τ για την f (x) στο διάστηµα [λ 1, λ 2 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [λ 1, λ 2 ] και παραγωγίσιµη στο (λ 1, λ 2 ), οπότε υπάρχει ένα τουλάχιστον ξ 2 (λ 1, λ 2 ) έτσι ώστε: βρίσκουµε ότι: 2 f ( ξ ) = f ( λ1) f ( λ2) f ( ξ 2) = λ λ ( α β)f ( δ) δ α λ λ , όπου λόγω της (ΙΙ) ( α β)f ( δ) f ( ξ ) =, ( λ λ )( δ α ) 1 2 οπότε f (ξ 2 ) >, αφού α β <, f(δ) >, λ 1 λ 2 < και δ α >. 2 ος τρόπος Εφαρµόζουµε θεώρηµα Rolle για την f(x) στο διάστηµα [a, ρ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [α, ρ] και παραγωγίσιµη στο (α, ρ), µε f(α) = f(ρ) =, οπότε υπάρχει ένα τουλάχιστον χ 1 (α, ρ) έτσι ώστε: f (χ 1 ) =. Εφαρµόζουµε θεώρηµα Rolle για την f(x) στο διάστηµα [ρ, β] Η συνάρτηση f είναι ορισµένη, συνεχής στο [ρ, β] και παραγωγίσιµη στο (ρ, β), µε f(ρ) = f(β) =, οπότε υπάρχει ένα τουλάχιστον χ 2 (α, ρ) έτσι ώστε: f (χ 2 ) =. Εφαρµόζουµε θεώρηµα Rolle για την f (x) στο διάστηµα [χ 1, χ 2 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [χ 1, χ 2 ] και παραγωγίσιµη στο (χ 1, χ 2 ), µε f (χ 1 ) = f (χ 2 ) =, οπότε υπάρχει ένα τουλάχιστον χ (χ 1, χ 2 ) έτσι ώστε: f (χ ) =. ΤΕΛΟΣ 12ΗΣ ΣΕΛΙ ΑΣ

13 ΑΡΧΗ 13ΗΣ ΣΕΛΙ ΑΣ Αυτό σηµαίνει ότι στο χ η f έχει θέση πιθανού ακρότατου. Επίσης έχουµε ότι: α < χ 1 < ρ < χ 2 < β και γ (α, ρ), δ (ρ, β). Αν για κάθε χ (α, β) ισχύει f (x) =, τότε η f είναι σταθερή στο (α, β) και µε δεδοµένο ότι f (χ 1 ) = και f (χ 2 ) =, θα ισχύει ότι f (x)=, για κάθε x (α, β), οπότε και η f θα είναι σταθερή, που είναι ΑΤΟΠΟ, αφού f(γ) f(δ) <. Αν για κάθε χ (α, β) ισχύει f (x) > ή f (x) <, τότε η f είναι γνησίως αύξουσα ή γνησίως φθίνουσα, που είναι ΑΤΟΠΟ, αφού υπάρχουν χ 1, χ 2 (α, β) έτσι ώστε f (χ 1 ) = και f (χ 2 ) =, δηλαδή, υπάρχουν δύο τουλάχιστον ρίζες της f στο (α, β). Έστω ότι για κάθε χ (α, β) ισχύει f (x), οπότε η f είναι αύξουσα στο (α, β). Τότε για κάθε x > χ 1 θα έχουµε ότι: f (x) f (χ 1 ) f (x), δηλαδή, η f είναι αύξουσα στο [χ 1, β] και αφού ρ (χ 1, β) µε f(ρ) = f(β) =, η f είναι σταθερή στο [ρ, β] και ίση µε, που είναι ΑΤΟΠΟ, αφού f(δ) και δ (ρ, β) (χ 1, β). Έστω ότι για κάθε χ (α, β) ισχύει f (x), οπότε η f είναι φθίνουσα στο (α, β). Τότε για κάθε x < χ 2 θα έχουµε ότι: f (x) f (χ 2 ) f (x), δηλαδή, η f είναι αύξουσα στο [α, χ 2 ] και αφού ρ (α, χ 2 ) µε f(α) = f(ρ) =, η f είναι σταθερή στο [α, χ 2 ] και ίση µε, που είναι ΑΤΟΠΟ, αφού f(γ), και γ (α, ρ) (α, χ 2 ). Εποµένως υπάρχουν σηµεία ξ 1, ξ 2 (α, β), τέτοια ώστε: f (ξ 1 ) < και f (ξ 2 ) >. ΤΕΛΟΣ 13ΗΣ ΣΕΛΙ ΑΣ

14 ΑΡΧΗ 14ΗΣ ΣΕΛΙ ΑΣ 3 ος τρόπος Αφού η f είναι συνεχής στο [α, β], από το θεώρηµα της µέγιστης και της ελάχιστης τιµής, υπάρχουν ω 1, ω 2 [α, β], για τα οποία η συνάρτηση παίρνει µια µέγιστη και µια ελάχιστη τιµή, δηλαδή, ισχύει: f(ω 1 ) f(x) f(ω 2 ), για κάθε x [α, β]. Όµως η f παίρνει µία τουλάχιστον αρνητική τιµή και µια τουλάχιστον θετική τιµή, αφού f(γ) f(δ) <, οπότε f(ω 1 ) < και f(ω 2 ) >. Αφού όµως έχουµε ότι f(α) = f(β) =, τα σηµεία ω 1, ω 2 είναι εσωτερικά του διαστήµατος [α, β], οπότε για τις θέσεις ω 1, ω 2 των ακρότατων, από το θεώρηµα του Fermat έχουµε ότι: f (ω 1 ) = f (ω 2 ) =. Αν f (x) =, για κάθε x [ω 1, ω 2 ], τότε η f θα είναι σταθερή στο [ω 1, ω 2 ], µε f(x) = f(ω 1 ) = f(ω 2 ), που είναι άτοπο, αφού f(ω 1 ) < και f(ω 2 ) >. Εποµένως υπάρχει ένα τουλάχιστον x [ω 1, ω 2 ] έτσι ώστε: f (x). Έστω ω 3 (ω 1, ω 2 ), για το οποίο ισχύει: f (ω 3 ) < ή f (ω 3 ) >. Εφαρµόζουµε Θ.Μ.Τ για την f (x) στο διάστηµα [ω 1, ω 3 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [ω 1,ω 3 ] και παραγωγίσιµη στο (ω 1, ω 3 ), άρα από το Θ.Μ.Τ υπάρχει ένα τουλάχιστον ξ 1 (ω 1, ω 3 ) έτσι f ( ω3) f ( ω1 ) f ( ω3) ώστε: f ( ξ 1) = f ( ξ 1) = ω ω ω ω Εφαρµόζουµε Θ.Μ.Τ για την f (x) στο διάστηµα [ω 3, ω 2 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [ω 3,ω 2 ] και παραγωγίσιµη στο (ω 3, ω 2 ), άρα από το Θ.Μ.Τ υπάρχει ένα τουλάχιστον ξ 2 (ω 3, ω 2 ) έτσι f ( ω3 ) f ( ω2) f ( ω3 ) ώστε: f ( ξ 2) = f ( ξ 2) = ω ω ω ω ΤΕΛΟΣ 14ΗΣ ΣΕΛΙ ΑΣ

15 ΑΡΧΗ 15ΗΣ ΣΕΛΙ ΑΣ Συνεπώς έχουµε ότι: Αν f (ω 3 ) <, τότε f (ξ 1 ) < και f (ξ 2 ) >. Αν f (ω 3 ) >, τότε f (ξ 1 ) > και f (ξ 2 ) <. γ. To ερώτηµα αυτό όπως δόθηκε, δεν ισχύει για όλες τις συναρτήσεις, αφού υπάρχουν συναρτήσεις που ενώ ικανοποιούν τις συνθήκες της άσκησης δεν επαληθεύουν το συγκεκριµένο ερώτηµα. Για παράδειγµα η συνάρτηση: 3 x 2 + α < x 5x, x f (x) = 6x +, 1 x x < β x 5x, 1 x 3 3, όπου α ( 6, 5) και β (5, 6), είναι συνεχής στο διάστηµα [α, β], (αποδεικνύεται εύκολα µε τη βοήθεια του ορισµού), ισχύει f(α) = f(β) = (αποδεικνύεται εύκολα µε Θ. Bolzano στα διαστήµατα ( 6, 5) και (5, 6)) ισχύει f( 2) f(2)<. Η f είναι παραγωγίσιµη και έχει συνεχή πρώτη παράγωγο στο (α, β) µε + α < < f (x) = 6, 1 x 1 2 x 2x 5, x 1 2 x + 2x + 5, 1 < x < β παραγωγισιµότητα της f στα σηµεία 1 και 1 αποδεικνύεται εύκολα µε τη βοήθεια του ορισµού) Η f είναι δύο φορές παραγωγίσιµη και έχει συνεχή δεύτερη παράγωγο στο (α, β) µε 2x 2, α < x < 1 f (x) =, 1 x 1 2x + 2, 1 < x < β (η (η παραγωγισιµότητα της f στα σηµεία 1 και 1 αποδεικνύεται εύκολα µε τη βοήθεια του ορισµού) ΤΕΛΟΣ 15ΗΣ ΣΕΛΙ ΑΣ

16 ΑΡΧΗ 16ΗΣ ΣΕΛΙ ΑΣ Παρόλο που όλες οι προϋποθέσεις της άσκησης ισχύουν, η συνάρτηση f δεν έχει σηµεία καµπής όπως φαίνεται και από τη γραφική παράσταση της f στο ακόλουθο σχήµα. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ f ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ f ΤΕΛΟΣ 16ΗΣ ΣΕΛΙ ΑΣ

17 ΑΡΧΗ 17ΗΣ ΣΕΛΙ ΑΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ f ΤΕΛΟΣ 17ΗΣ ΣΕΛΙ ΑΣ

18 ΑΡΧΗ 18ΗΣ ΣΕΛΙ ΑΣ To σωστό ερώτηµα θα έπρεπε να διατυπώνεται ως εξής: «Να αποδείξετε ότι υπάρχει ένα τουλάχιστον ΠΙΘΑΝΟ σηµείο καµπής της γραφικής παράστασης της f». Η Κ.Ε.Γ.Ε βέβαια, περίµενε µια από τις ακόλουθες απαντήσεις. 1 ος τρόπος Εφαρµόζουµε θεώρηµα Rolle για την f (x) στο διάστηµα [κ 1, κ 2 ] Η συνάρτηση f είναι ορισµένη, συνεχής στο [κ 1, κ 2 ] και παραγωγίσιµη στο (κ 1, κ 2 ), µε 2 f ( ) f ( ) f ( ) γ γ γ f ( κ1) f ( κ 2) = = < γ α γ β ( γ α)( γ β) τουλάχιστον ξ (κ 1, κ 2 ) έτσι ώστε: f (ξ) =. ΤΕΛΟΣ 18ΗΣ ΣΕΛΙ ΑΣ, οπότε υπάρχει ένα Τότε αφού η συνάρτηση f είναι συνεχής στο (α, β) και ισχύει ότι υπάρχουν ξ 1, ξ 2 (α, β), τέτοια ώστε: f (ξ 1 ) < και f (ξ 2 ) >, η f αλλάζει πρόσηµο εκατέρωθεν του ξ. Εποµένως στο (ξ, f(ξ)) έχουµε σηµείο καµπής, δηλαδή, υπάρχει ένα τουλάχιστον σηµείο καµπής. 2 ος τρόπος Έστω ότι ξ 1 (χ 1, χ ) (α, β) και ξ 2 (χ, χ 2 ) (α, β), οπότε έχουµε α < χ 1 < ξ 1 < χ < ξ 2 < χ 2 < β. Εφαρµόζουµε θεώρηµα Bolzano για την f (x) στο διάστηµα [ξ 1, ξ 2 ]. Η συνάρτηση f (x) είναι ορισµένη, συνεχής στο [ξ 1, ξ 2 ] µε f (ξ 1 ) f (ξ 2 ) <, οπότε υπάρχει ένα τουλάχιστον ξ (ξ 1, ξ 2 ), έτσι ώστε f (ξ) =. Συνεπώς αφού από την απόδειξη του (β) ερωτήµατος (2 ος τρόπος), έχουµε αποδείξει ότι η f (x) θα αλλάζει πρόσηµο εκατέρωθεν του χ, θα ισχύει ότι η συνάρτηση παρουσιάζει στο ξ σηµείο καµπής, δηλαδή, έχουµε ένα τουλάχιστον σηµείο καµπής.

19 ΑΡΧΗ 19ΗΣ ΣΕΛΙ ΑΣ Οµοίως αποδεικνύεται το (γ) ερώτηµα, αν: ξ 2 (χ 1, χ ) (α, β) και ξ 1 (χ, χ 2 ) (α, β), οπότε έχουµε α < χ 1 < ξ 2 < χ < ξ 1 < χ 2 < β. Οµοίως αποδεικνύεται η άσκηση αν δ < γ και όταν f(δ) < και f(γ) >, οπότε θα ισχύει: α < δ < γ < β. ΤΕΛΟΣ 19ΗΣ ΣΕΛΙ ΑΣ

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Πέµπτη, 9 Μαΐου ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o α. Θεωρία: Θεώρηµα σελ. 7 σχολικού βιβλίου β. Θεωρία: Η απάντηση βρίσκεται στη σελ. 7 του σχολικού βιβλίου γ. α-σ β-σ γ-σ δ-λ ε-λ ΘΕΜΑ o α. Είναι: w z iz + ( α + βi i( α βi + α + βi αi

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o A. Θεωρία σελ. 7 Β. Θεωρία σελ. 47 Γ. α. Σωστό β. Σωστό γ. Σωστό δ. Λάθος (βρίσκεται "κάτω" από τη γραφική παράσταση) ε. Λάθος (π.χ. ()

Διαβάστε περισσότερα

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8

A. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο x 0, τότε είναι και συνεχής στο σημείο αυτό. Μονάδες 8 ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ o ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 9 ΜΑΪΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ A. Να αποδείξετε ότι,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

y = 2 x και y = 2 y 3 } ή

y = 2 x και y = 2 y 3 } ή ΘΕΜΑ Έστω οι μιγαδικοί αριθμοί z, w για τους οποίους ισχύουν οι σχέσεις z = και w i =. i). Να βρείτε το γεωμετρικό τόπο των εικόνων των z και w. ii). Να αποδείξετε ότι δεν υπάρχουν μιγαδικοί αριθμοί z,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 3 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνεχής συνάρτηση σε ένα διάστηµα [α, β] Αν G είναι µια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι: β f () t dt = G ( β) G ( α) a Μονάδες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 4 Α Σχολικό βιβλίο σελ 6 Α α) Σ β) Σ γ) Σ δ) Λ ε) Λ ΘΕΜΑ B Β

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 -6 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 8.doc ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α i = βi () β αi α) Να αποδείξετε ότι ο δεν είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 3 Θέµα ο ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ B. α) Λάθος διότι η f είναι «-» που σηµαίνει δεν είναι πάντα γνησίως µονότονη. β) Σωστό διότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θέματα τύπου Σωστό-Λάθος στις Πανελλαδικές Εξετάσεις από το 2000 έως 204 χωρισμένα σε Κεφάλαια Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 = 2. Για κάθε μιγαδικό αριθμό z ισχύει: α.

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ : Σελίδα από ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: /6/9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Θετικών Σπουδών & Σπουδών Οικονομίας & Πληροφορικής ΠΡΟΤΕΙΝΟΜΕΝΕΣ

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x ΕΞΕΤΑΣΕΩΝ 05 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα. Αν η F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51.

6 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 51. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 6 η ΕΚΑ Α 5. ίνεται η συνάρτηση ln, αν > 0 f () 0, αν 0 Να αποδείξετε ότι η f είναι συνεχής στο 0 i Να µελετήσετε την f ως προς την µονοτονία και τα ακρότατα και να βρείτε το σύνολο τιµών

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 99 Α. α) Ψ β) Η συνάρτηση

Διαβάστε περισσότερα

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6

ΘΕΜΑ Α. A2. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Μονάδες 2. Α3. Να διατυπώσετε το θεώρημα Rolle. Μονάδες 6 Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΘΕΜΑ Α ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α Απόδειξη θεωρήματος σελ 99 σχολικού βιβλίου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 8 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α. α. Έστω δυο συναρτήσεις f, g ορισµένες σε ένα διάστηµα. Αν οι f, g είναι συνεχείς στο και f () g ()

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > 0 σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.: 5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης:

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0

z-4 =2 z-1. 2z1 2z2 β) -4 w 4. ( ) x 1 3 x 2 e t dt, x 0 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 5 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω µια συνάρτηση f, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα [α, β]. Αν η f είναι

Διαβάστε περισσότερα

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim

e 1 1. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)(x)=2-x για κάθε χє R. Να δείξετε ότι: α) f(1)=1, β) η f αντιστρέφεται, γ) f x lim ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Μια συνάρτηση f: R R έχει την ιδιότητα: (fof)()=- για κάθε χє R. Να δείξετε ότι: α) f()=, β) η f αντιστρέφεται, γ) f - ()=-f(), є R., δ ) να λύσετε

Διαβάστε περισσότερα

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 7-8 ΘΕΜΑ Α (α) Δίνεται η συνάρτηση, συνεχής στο διάστημα [ ].Αν η G είναι μια παράγουσα της στο [ ], τότε να αποδείξετε ότι : d

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΕΤΟΣ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0] Απαντήσεις στο ο Διαγώνισμα Μαθηματικών Κατεύθυνσης Γ Λυκείου Θέμα ο Α Έστω ότι f( ), για κάθε (, ) (, ) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (, ] και [,

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία

Διαβάστε περισσότερα

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i)

2.8. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.8 Ασκήσεις σχολικού βιβλίου σελίδας 77 79 A Οµάδας 1.i) Να βρείτε τα διαστήµατα στα οποία η συνάρτηση () 5 5 4 + είναι κυρτή ή κοίλη και να προσδιορίσετε (αν υπάρχουν) τα σηµεία καµπής της γραφικής της

Διαβάστε περισσότερα

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4) Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες

Διαβάστε περισσότερα

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρακάτω ερώτηση να γράψετε τη σωστή απάντηση. δ) Το z

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 9 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του. Αν η f παρουσιάζει τοπικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΠΡΟΣΟΜΟΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ ΜΑΡΤΗ ΘΕΜΑ Α Α Θεωρία Σελίδες 33-33 Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ ΑΘεωρία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α

ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α ΜΑΘΗΜΑ 47 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 η ΕΚΑ Α Όχι βιαστικά, όχι αργά. Στο ρυθµό σου.. Έστω συνάρτηση f ορισµένη στο R µε συνεχή δεύτερη παράγωγο που ικανοποιεί τις σχέσεις f() f () και f ()f() + (f ()) f()f ()

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α Ηµεροµηνία: Μ. Τετάρτη 7 Απριλίου 6 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα

1. Βλέπε σχολικό βιβλίο «Μαθηματικά θετικής και τεχνολογικής Κατεύθυνσης», σελίδα 6 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 16: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη

Διαβάστε περισσότερα

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και 13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία σχολ βιβλίου σελ 99 Α α ψευδής β g Α Θεωρία

Διαβάστε περισσότερα

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ 1 ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Σχολικό βιβλίο σελ. 99 Α.α. Ψευδής. β. Σχολικό βιβλίο σελ. 5, Θεωρούμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΗΜΕΡΟΜΗΝΙΑ: 15 MAΪOY 14 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 4 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f σε κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

f (x) 2e 5(x 1) 0, άρα η f

f (x) 2e 5(x 1) 0, άρα η f ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ 8 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Σε όλη την ύλη) ΘΕΜΑ Α 1 Βλέπε σχολικό βιβλίο σελίδα 14-143

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 8 ΜΑΙΟΥ 8 ΘΕΜΑ Α Α. Εστω μια συνάρτηση f και x ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν Α. lim f ( x) f

Διαβάστε περισσότερα

Σελίδα 1 από 3. f ( x ) 0. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού ( Μονάδες 5 ) (Α3) Πότε η ευθεία y x

Σελίδα 1 από 3. f ( x ) 0. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού ( Μονάδες 5 ) (Α3) Πότε η ευθεία y x Σελίδα από 3 ΔΙΑΓΩΝΙΣΜΑ ΕΠΑΝΑΛΗΨΗΣ 0-3 0-4 0-5 0-6 0 ΓΕΛ ΑΙΓΑΛΕΩ ΚΥΡΙΑΚΗ 3 ΜΑΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΘΕΜΑ Α (Α) (Α) Έστω μια συνάρτηση f ορισμένη

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ' Λυκείου

Μαθηματικά Προσανατολισμού Γ' Λυκείου ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α Να αποδείξετε ότι αν μια συνάρτηση f είναι παραγωγίσιμη στο, τότε είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 8 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A Να αποδειχθεί ότι η συνάρτηση f ln, * είναι παραγωγίσιµη στο * και ισχύει: ln Μονάδες Α Πότε µια συνάρτηση f λέµε ότι είναι συνεχής σε

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α Αν μια συνάρτηση είναι παραγωγίσιμη σε

Διαβάστε περισσότερα

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ευτέρα, 8 Μα ου Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 3 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3 ΘΕΜΑ Α ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3 Α. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ o ΙΑΓΩΝΙΣΜΑ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ A Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα και δυο φορές παραγωγίσιµη σε κάθε εσωτερικό

Διαβάστε περισσότερα

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ ο Α. Έστω μια συνάρτηση f: Α R η οποία είναι. Να γράψετε τον ορισμό της αντίστροφης συνάρτησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι: ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο A. Αν z, z

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2005 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A στω µια συν ρτηση f, η οποία είναι ορισµ νη σε ένα κειστό δι στηµα [α, β] Αν: η f είναι συνεχής στο [α, β] και fα fβ δείξτε ότι για κάθε

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα