ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις"

Transcript

1 Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις Ερωτήσεις+Απαντήσεις Σωστού-Λάθους Πανελλαδικών Εξετάσεων 2-25

2 Περιεχόμενα Ερωτήσεις+Απαντήσεις Θεωρίας...3 Ερωτήσεις Σωστού-Λάθους Πανελλαδικών Εξετάσεων...27 Επιμέλεια: Συντακτική Ομάδα Συντονιστής: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος 2

3 Ερωτήσεις+Απαντήσεις Θεωρίας. Τι ονομάζουμε πραγματική συνάρτηση f με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R. Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο x ϵ A αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό y. Το y ονομάζεται τιμή της f στο x και συμβολίζεται με f(x). Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: f : A R x f (x) 2. Τι ονομάζουμε γραφική παράσταση της συνάρτησης f ; Το σύνολο των σημείων M(x, y) για τα οποία ισχύει σημείων, ( ) με C f. y f x, δηλαδή το σύνολο των M x f x, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως 3. Πότε δύο συναρτήσεις f και g λέγονται ίσες; Δύο συναρτήσεις f και g λέγονται ίσες όταν: έχουν το ίδιο πεδίο ορισμού Α και για κάθε x A ισχύει f ( x) g( x). Για να δηλώσουμε ότι δύο συναρτήσεις f και g είναι ίσες γράφουμε f 4. Πότε λέμε ότι μια συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι : Παρουσιάζει στο x Παρουσιάζει στο x A (ολικό) μέγιστο, A (ολικό) ελάχιστο, Μια συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι : g. 3

4 Παρουσιάζει στο x Παρουσιάζει στο x A (ολικό) μέγιστο, το f x, όταν: f x f x για κάθε x A A (ολικό) ελάχιστο, f x, όταν f x f x για κάθε x A 5. Αν f : και g :, τι ονομάζουμε σύνθεση της f με την f ; Αν f, g είναι δύο συναρτήσεις με πεδίο ορισμού Α, Β αντιστοίχως, τότε ονομάζουμε σύνθεση της f με την g, και τη συμβολίζουμε με gof, τη συνάρτηση με τύπο: gof x g f x ( ) ( ). Το πεδίο ορισμού της gof αποτελείται από όλα τα στοιχεία x του πεδίου ορισμού της f για τα οποία το f ( x) ανήκει στο πεδίο ορισμού της g. Δηλαδή είναι το σύνολο : A x A / f ( x) B Είναι φανερό ότι η gof ορίζεται αν A Ø, δηλαδή αν f(a) B Ø. 6. Πότε μια συνάρτηση f λέγεται : γνησίως αύξουσα σ' ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της; γνησίως φθίνουσα σ' ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της; Μια συνάρτηση f λέγεται : 4

5 γνησίως αύξουσα σ' ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της, όταν για οποιαδήποτε x, x2 με x x2 ισχύει f ( x ) f ( x2). γνησίως φθίνουσα σ' ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της, όταν για οποιαδήποτε x, x2 με x x2 ισχύει f ( x) f ( x2). 7. Πότε μια συνάρτηση f με πεδίο ορισμού Α λέμε ότι : Παρουσιάζει στο x Παρουσιάζει στο x A (ολικό) μέγιστο; A (ολικό) ελάχιστο; Μια συνάρτηση f με πεδίο ορισμού Α θα λέμε ότι : Παρουσιάζει στο x Παρουσιάζει στο x A (ολικό) μέγιστο, το f ( x ), όταν f ( x) f ( x ) για κάθε x A. A (ολικό) ελάχιστο, το το f ( x ), όταν το f ( x ) για κάθε x ϵ A. 8. Πότε μια συνάρτηση f : λέγεται συνάρτηση ; Μια συνάρτηση f : λέγεται συνάρτηση, όταν για οποιαδήποτε x, x2 A ισχύει η συνεπαγωγή: «Aν x x2, τότε f ( x) f ( x2)» που σημαίνει ότι: «τα διαφορετικά στοιχεία x, x2 D f έχουν πάντοτε διαφορετικές εικόνες». 9. Τι ονομάζουμε αντίστροφη της συνάρτησης f : ; Έστω μια συνάρτηση f : A R. Αν υποθέσουμε ότι αυτή είναι -, τότε για κάθε στοιχείο y του συνόλου τιμών, f(a), της f υπάρχει μοναδικό στοιχείο x του πεδίου ορισμού της Α για το οποίο ισχύει f(x) = y. Επομένως ορίζεται μια συνάρτηση g : f(a) R 5

6 με την οποία κάθε y ϵ f(a) αντιστοιχίζεται στο μοναδικό x ϵ A για το οποίο ισχύει Από τον τρόπο που ορίστηκε η g προκύπτει ότι: έχει πεδίο ορισμού το σύνολο τιμών f(a) της f, έχει σύνολο τιμών το πεδίο ορισμού Α της f και ισχύει η ισοδυναμία: f x y g y x g y x Αυτό σημαίνει ότι, αν η f αντιστοιχίζει το x στο y, τότε η g αντιστοιχίζει το y στο x και αντιστρόφως. Δηλαδή η g είναι η αντίστροφη διαδικασία της f. Για το λόγο αυτό η g λέγεται αντίστροφη συνάρτηση της f και συμβολίζεται με f. Επομένως έχουμε: f x y f y x. Ποια είναι η σχέση των γραφικών παραστάσεων C, C των συναρτήσεων f f f, f αντίστοιχα; Να αποδείξετε τον ισχυρισμό σας. Οι γραφικές παραστάσεις C και C των συναρτήσεων f και την ευθεία y = x που διχοτομεί τις γωνίες xoy και x Oy. f είναι συμμετρικές ως προς 6

7 Ας πάρουμε τώρα μια - συνάρτηση f και ας θεωρήσουμε τις γραφικές παραστάσεις C και f x y f y x C των f και της f στο ίδιο σύστημα αξόνων (Σχ. 37). Επειδή αν ένα σημείο M(α, β) ανήκει στη γραφική παράσταση C της f, τότε το σημείο Μ (β,α) θα ανήκει στη γραφική παράσταση C της f και αντιστρόφως. Τα σημεία, όμως, αυτά είναι συμμετρικά ως προς την ευθεία που διχοτομεί τις γωνίες xoy και x Oy.. Αν P x a x x... a x a ένα πολυώνυμο, να αποδείξετε ότι: v lim P x x x Px : 2. Να διατυπώσετε το κριτήριο της παρεμβολής. Έστω οι συναρτήσεις f, g, h. Αν h( x) f ( x) g( x) κοντά στο x και 7

8 τότε lim f ( x) l x x lim h( x) lim g( x) l x x xx 3. Πότε μία συνάρτηση λέγεται συνεχής σε ένα σημείο x του πεδίου ορισμού της; Εστω μια συνάρτηση f και x ένα σημείο x του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν: 4. Πότε μία συνάρτηση λέγεται συνεχής σε ένα ανοικτό διάστημα a, ; σε ένα κλειστό διάστημα, ; Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (α, β), όταν είναι συνεχής σε κάθε σημείο του (α, β). Μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α, β], όταν είναι συνεχής σε κάθε σημείο του (α, β) και επιπλέον: lim f ( x) f ( a) lim f ( x) f ( ) xa x 5. Να διατυπώσετε το θεώρημα του Bolzano. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: η f είναι συνεχής στο [α, β] και, επιπλέον, ισχύει f(α) f(β) <. τότε υπάρχει ένα, τουλάχιστον, x ϵ (α, β) τέτοιο, ώστε f(x ) = Δηλαδή, υπάρχει μια, τουλάχιστον, ρίζα της εξίσωσης f(x) = στο ανοικτό διάστημα (α, β). 6. Να διατυπώσετε και να αποδείξετε το θεώρημα ενδιαμέσων τιμών. Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα [α, β]. Αν: η f είναι συνεχής στο [α, β] και f(α) f(β) 8

9 τότε, για κάθε αριθμό η μεταξύ των f(α) και f(β) υπάρχει ένας, τουλάχιστον x ϵ (α, β) τέτοιος, ώστε f(x ) = η. Ας υποθέσουμε ότι f(α) < f(β). Τότε θα ισχύει f(α) < η < f(β) συνάρτηση g(x) = f(x) η, x ϵ [α, β], παρατηρούμε ότι : (Σχ. 67). Αν θεωρήσουμε τη η g είναι συνεχής στο [α, β] και g(α) g(β) <, αφού g(α) = f(α) η < και g(β) = f(β) η >. Επομένως, σύμφωνα με το θεώρημα του Bolzano, πάρχει x ϵ (α, β) τέτοιο, ώστε g(x ) = f(x ) η =, οπότε f(x ) = η. 7. Να διατυπώσετε το θεώρημα της Μέγιστης και Ελάχιστης τιμής. Αν f είναι συνεχής συνάρτηση στο [α, β], τότε η f παίρνει στο [α, β] μια μέγιστη τιμή Μ και μια ελάχιστη τιμή m. 8. Τι ορίζουμε ως εφαπτομένη της C f στο σημείο της Α(x, f(x )) ; Έστω f μια συνάρτηση και Α(x, f(x )) ένα σημείο της C f. Αν υπάρχει το lim x x f ( x) f ( x) x x και είναι ένας πραγματικός αριθμός λ, τότε ορίζουμε ως εφαπτομένη της C f στο σημείο της Α, την ευθεία ε που διέρχεται από το Α και έχει συντελεστή διεύθυνσης λ. 9

10 Επομένως, η εξίσωση της εφαπτομένης στο σημείο Α(x, f(x )) είναι: y f ( x ) ( x x ), lim x x f ( x) f ( x) x x 9. Πότε λέμε ότι μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x του πεδίου ορισμού της; Μια συνάρτηση f λέμε ότι είναι παραγωγίσιμη σ' ένα σημείο x του πεδίου ορισμού της, α f ( x) f ( x) υπάρχει το lim και είναι πραγματικός αριθμός x x x x Το όριο αυτό ονομάζεται παράγωγος της f στο x και συμβολίζεται με f (x ). Δηλαδή Η f είναι παραγωγίσιμη στο x, αν και μόνο αν υπάρχουν στο R τα όρια: και είναι ίσα. 2. Να αποδείξετε ότι: Αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x, τότε είναι και συνεχής στο σημείο αυτό. Για x x έχουμε αφού η f είναι παραγωγίσιμη στο x. Επομένως, στο x. lim f ( x) f ( x ), δηλαδή η f είναι συνεχής x x 2. Εστω η σταθερή συνάρτηση f(x) = c, c ϵ R. Η συνάρτηση f είναι παραγωγίσιμη στο R και ισχύει f x, δηλαδή c

11 Αν x είναι ένα σημείο του R, τότε για x x ισχύει : Επομένως: δηλαδή c. 22. Εστω η συνάρτηση f(x) = x. Η συνάρτηση f είναι παραγωγίσιμη στο R και ισχύει f x, δηλαδή x : Αν x είναι ένα σημείο του R, τότε για x x ισχύει : Επομένως: δηλαδή x. 23. Εστω η συνάρτηση f(x) = x ν, ν ϵ N-{, }. Η συνάρτηση f είναι παραγωγίσιμη στο R και ισχύει f x x x v x, δηλαδή v Αν x είναι ένα σημείο του R, τότε για x x ισχύει :

12 Οπότε: Δηλαδή: ( x ν ) = νx ν. 24. Εστω η συνάρτηση f x x. Η συνάρτηση f είναι παραγωγίσιμη στο (, + ) και ισχύει f x, δηλαδή 2 x x 2 x Αν x είναι ένα σημείο του (, + ), τότε για x x ισχύει : Οπότε: Δηλαδή:. 25. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο x, τότε η συνάρτηση f + g είναι παραγωγίσιμη στο x και ισχύει f g x f ( x ) g ( x ). Για x x, ισχύει : Επειδή οι συναρτήσεις f, g είναι παραγωγίσιμες στο x, έχουμε : 2

13 Δηλαδή: f g x f ( x ) g ( x ) 26. Έστω η συνάρτηση f(x) = x ν, ν ϵ N *. Η συνάρτηση f είναι παραγωγίσιμη στο R * και ισχύει f ( x) x x x, δηλαδή Για κάθε x ϵ R * έχουμε : 27. Έστω η συνάρτηση f(x) = εφx. Η συνάρτηση f είναι παραγωγίσιμη στο R = R {x συνx = } και ισχύει f ( x) 2 x, δηλαδή x 2 x Για κάθε x ϵ R έχουμε : a 28. Η συνάρτηση f ( x) x, a, είναι παραγωγίσιμη στο (, + ) και ισχύει: f ( x) x x x a, δηλαδή a a Αν y = x α = e αlnx και θέσουμε u = αlnx, τότε έχουμε y = e u. Επομένως, 3

14 29. Η συνάρτηση f(x) = α x x, α >, είναι παραγωγίσιμη στο R και ισχύει f ( x) ln a, δηλαδή x x ln a a Αν y = α x = e xlnα και θέσουμε u = xlnα, τότε έχουμε y = e u. Επομένως, ln x x 3. Η συνάρτηση f(x) = ln x, x ϵ R *, είναι παραγωγίσιμη στο R * και ισχύει αν x >, τότεln x ln x ενώ x αν x <, τότε ln x = ln ( x), οπότε, αν θέσουμε y = ln( x) και u = x, έχουμε y = lnu. Επομένως, και άρα ln x. x 3. Τι ονομάζουμε ρυθμό μεταβολής του y = f(x) ως προς το x στο σημείο x Αν δύο μεταβλητά μεγέθη x, y συνδέονται με τη σχέση y = f(x), όταν f είναι μια συνάρτηση παραγωγίσιμη στο x, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x την παράγωγο f ( x ). 32. Να διατυπώσετε το Θεώρημα του Rolle και να δώσετε τη γεωμετρική του ερμηνεία 4

15 Διατύπωση: Αν μια συνάρτηση f είναι: συνεχής στο κλειστό διάστημα [ α, β] παραγωγίσιμη στο ανοικτό διάστημα ( α, β) και f ( ) f ( ) τότε υπάρχει ένα, τουλάχιστον, (, ) τέτοιο, ώστε: f ( ) Γεωμετρική ερμηνεία Γεωμετρικά, αυτό σημαίνει ότι υπάρχει ένα, τουλάχιστον, (, ) τέτοιο, ώστε η εφαπτομένη της C f στο M ( ξ, f ( ξ)) να είναι παράλληλη στον άξονα των x. y 8 Μ(ξ,f(ξ)) Β(β,f(β)) Α(α,f(α)) O α ξ ξ β x 33. Να διατυπώσετε το Θεώρημα της Μέσης Τιμής του Διαφορικού Λογισμού και να δώσετε τη γεωμετρική του ερμηνεία Διατύπωση: Αν μια συνάρτηση f είναι: συνεχής στο κλειστό διάστημα [ α, β] και παραγωγίσιμη στο ανοικτό διάστημα ( α, β) τότε υπάρχει ένα, τουλάχιστον, (, ) τέτοιο, ώστε: f ( ) f ( ) f ( ) Γεωμετρική ερμηνεία Γεωμετρικά, αυτό σημαίνει ότι υπάρχει ένα, τουλάχιστον, ένα (, ) τέτοιο, ώστε η εφαπτομένη της γραφικής παράστασης της f στο σημείο M ( ξ, f ( ξ)) να είναι παράλληλη της ευθείας ΑΒ. 5

16 34. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ( x) για κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, τότε να αποδείξετε ότι η f είναι σταθερή σε όλο το διάστημα Δ. Αρκεί να αποδείξουμε ότι για οποιαδήποτε x, x2 ισχύει f ( x ) f ( x2) Αν x x2, τότε προφανώς f ( x ) f ( x2).. Πράγματι Αν x x2, τότε στο διάστημα [ x, x 2 ] η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης τιμής. Επομένως, υπάρχει ( x, x2) τέτοιο, ώστε f ( ) f ( x2) f ( x) x x 2. () Επειδή το ξ είναι εσωτερικό σημείο του Δ, ισχύει f ( ),οπότε, λόγω της (), είνα f ( x ) f ( x2). Αν x2 x, τότε ομοίως αποδεικνύεται ότι f ( x ) f ( x2). Σε όλες, λοιπόν, τις περιπτώσεις είναι f ( x ) f ( x2). 35. Έστω δυο συναρτήσεις f, g ορισμένες σε ένα διάστημα Δ. Αν οι f, g είναι συνεχείς στο Δ και f ( x) g( x) για κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, Τότε να αποδείξετε ότι υπάρχει σταθερά c τέτοια, ώστε για κάθε f ( x) g( x) c x Δ να ισχύει: Η συνάρτηση f g είναι συνεχής στο Δ και για κάθε εσωτερικό σημείο x Δ ισχύει ( f g) ( x) f ( x) g( x). Επομένως, σύμφωνα με το παραπάνω θεώρημα, η συνάρτηση f g είναι σταθερή στο Δ. Άρα, υπάρχει σταθερά C τέτοια, ώστε για κάθε x να ισχύει f ( x) g( x) c, οπότε f ( x) g( x) c. y 22 y=g(x)+c y=g(x) O x 6

17 36. Έστω μια συνάρτηση f, η οποία είναι σ υ ν ε χ ή ς σε ένα διάστημα Δ. Αν f ( x) σε κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. Αν f ( x) σε κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, τότε να αποδείξετε ότι η f είναι γνησίως φθίνουσα σε όλο το Δ. Έστω x x 2 ϵ Δ με x < x 2. Θα δείξουμε ότι f(x ) < f(x 2 ). Πράγματι, στο διάστημα [x,x 2 ] η f ικανοποιεί τις προϋποθέσεις του Θ.Μ.Τ. Επομένως, υπάρχει ξ ϵ (x,x 2 ) τέτοιο, ώστε, οπότε έχουμε f(x 2 ) f(x ) = f (ξ) (x 2 x Επειδή f ( ) και x 2 x >, έχουμε f(x 2 ) f(x ) >, οπότε f(x ) < f(x 2 ). 37. Πότε λέμε ότι μια συνάρτηση f, με πεδίο ορισμού Α παρουσιάζει στο x A τοπικό μέγιστο; Μια συνάρτηση f, με πεδίο ορισμού Α, θα λέμε ότι παρουσιάζει στο μέγιστο, όταν υπάρχει, τέτοιο ώστε f ( x) f ( x ) x A( x, x ). για κάθε x A τοπικό Το x λέγεται θέση ή σημείο τοπικού μεγίστου, ενώ το f ( x ) τοπικό μέγιστο της f. 38. Πότε λέμε ότι μια συνάρτηση f, με πεδίο ορισμού Α παρουσιάζει στο x ελάχιστο; Μία συνάρτηση f, με πεδίο ορισμού Α, θα λέμε ότι παρουσιάζει στο x ελάχιστο, όταν υπάρχει, τέτοιο ώστε f ( x) f ( x ) x A( x, x )., για κάθε A τοπικό A τοπικό Το x λέγεται θέση ή σημείο τοπικού ελαχίστου, ενώ το f ( x ) τοπικό ελάχιστο της f. 39. Να διατυπώσετε το θεώρημα του Fermat και να το αποδείξετε. Διατύπωση 7

18 Έστω μια συνάρτηση f ορισμένη σ ένα διάστημα Δ και x ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x και είναι παραγωγίσιμη στο σημείο αυτό, τότε: f ( x ) Ας υποθέσουμε ότι η f παρουσιάζει στο x τοπικό μέγιστο. Επειδή το x είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει τέτοιο, ώστε ( x, x ) και f ( x) f ( x ), για κάθε x ( x, x ). () Επειδή, επιπλέον, η f είναι παραγωγίσιμη στο x, ισχύει Επομένως, f ( x) f ( x) f ( x) f ( x ) f ( x ) lim lim. x x x x x x xx f ( x) f ( x) αν x ( x, x ), τότε, λόγω της (), θα είναι, οπότε θα έχουμε x x f ( x) f ( x ) f ( x ) lim (2) x x x x f ( x) f ( x) αν x ( x, x ), τότε, λόγω της (), θα είναι, οπότε θα έχουμε x x f ( x) f ( x) f ( x ) lim. (3) x x x x Έτσι, από τις (2) και (3) έχουμε f ( x ). Η απόδειξη για τοπικό ελάχιστο είναι ανάλογη. 4. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα ( α, β), με εξαίρεση ίσως ένα σημείο του x, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι: i) Αν f ( x) στο ( α, x ) και f ( x) στο ( x, β), τότε το f ( x ) είναι τοπικό μέγιστο της f. ii) Αν f ( x) στο ( α, x ) και f ( x) στο ( x, β), τότε το f ( x ) είναι τοπικό ελάχιστο της f. iii) Aν η f ( x) διατηρεί πρόσημο στο (, x) ( x, ), τότε το f ( x ) δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο ( α, β). y f(x ) O 33 x δ x x +δ x 8

19 i) Eπειδή f ( x) για κάθε x (, x ) και η f είναι συνεχής στο x, η f είναι γνησίως αύξουσα στο α, x ]. Έτσι έχουμε: ( f ( x) f ( x ), για κάθε x (, x ]. () Επειδή f ( x) για κάθε x ( x, ) και η f είναι συνεχής στο x, η f είναι γνησίως φθίνουσα στο [ x, β). Έτσι έχουμε: f ( x) f ( x ), για κάθε x [ x, ). (2) y f > f < y f > f < 35a f(x ) f(x ) O a x β x O a x β x Επομένως, λόγω των () και (2), ισχύει: f ( x) f ( x ), για κάθε x (, ), που σημαίνει ότι το f ( x ) είναι μέγιστο της f στο ( α, β) και άρα τοπικό μέγιστο αυτής. ii) Εργαζόμαστε αναλόγως. y y 35β f < f > f < f > O a x β x O a x β x iii) Έστω ότι f ( x), για κάθε x (, x ) ( x, ). y f > y f > 35γ f > f > O a x β x O a x β x Επειδή η f είναι συνεχής στο x θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα ( α, x ] και [ x, β). Επομένως, για x x x 2 ισχύει f ( x ) f ( x) f ( x2). Άρα το f ( x ) δεν είναι τοπικό ακρότατο της f. Θα δείξουμε, τώρα, ότι η f είναι γνησίως αύξουσα στο ( α, β). Πράγματι, έστω x, x2 ( α, β) με x x 2. Αν x, x 2 (, x ], επειδή η f είναι γνησίως αύξουσα στο ( α, x ], θα ισχύε f ( x ) f ( x2) ι. 9

20 Αν x, x 2 [ x, ), επειδή η f είναι γνησίως αύξουσα στο [ x, β), θα ισχύει f ( x ) f ( x2). Τέλος, αν x x x 2, τότε όπως είδαμε f ( x ) f ( x) f ( x2). Επομένως, σε όλες τις περιπτώσεις ισχύει f ( x ) f ( x2), οπότε η f είναι γνησίως αύξουσα στο ( α, β). Ομοίως, αν f ( x) για κάθε x (, x ) ( x, ). 4. Πότε λέμε ότι: Α. Μία συνάρτηση f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο Δ; Β. Μία συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο Δ; Έστω μία συνάρτηση f σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί σ ι μ η στο ε σ ω τ ε ρ ι κ ό του Δ. Θα λέμε ότι: Η συνάρτηση f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο Δ, αν η f είναι γνησίως αύξουσα στο ε σ ω τ ε ρ ι κ ό του Δ. Η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο Δ, αν η f είναι γνησίως φθίνουσα στο ε σ ω τ ε ρ ι κ ό του Δ. 42. Πως σχετίζεται η δεύτερη παράγωγος μιας συνάρτησης f με την κυρτότητά της; Εστω μια συνάρτηση f σ υ ν ε χ ή ς σ ένα διάστημα Δ και δυο φορές παραγωγίσιμη στο ε σ ω τ ε ρ ι κ ό του Δ. Αν f ( x) για κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, τότε η f είναι κυρτή στο Δ. Αν f ( x) για κάθε ε σ ω τ ε ρ ι κ ό σημείο x του Δ, τότε η f είναι κοίλη στο Δ. 43. Πότε το σημείο A x, f ( )) ονομάζεται σημείο καμπής της γραφικής παράστασης της ( x f; Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα ( α, β), με εξαίρεση ίσως ένα σημείο του x. Αν η f είναι κυρτή στο α, x ) και κοίλη στο ( x, β), ή αντιστρόφως, και ( 2

21 η C έχει εφαπτομένη στο σημείο A x, f ( )), f ( x τότε το σημείο A x, f ( )) ονομάζεται σημείο καμπής της γραφικής παράστασης της f. ( x 44. Αν το A x, f ( )) είναι σημείο καμπής της γραφικής παράστασης της f και η f ( x είναι δυο φορές παραγωγίσιμη ποια είναι η τιμή της f ( x ) ; Αν το A x, f ( )) είναι σημείο καμπής της γραφικής παράστασης της f και η f είναι δυο ( x φορές παραγωγίσιμη, τότε f ( x). 45. Τι ονομάζουμε κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f ; Αν ένα τουλάχιστον από τα όρια lim f ( x), lim f ( x) είναι ή, τότε η ευθεία x x x x x x λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f. 46. Τι ονομάζουμε οριζόντια ασύμπτωτη της γραφικής παράστασης της f στο ; (αντιστοίχως στο ); Αν lim f ( x) (αντιστοίχως lim f ( x) ), τότε η ευθεία y λέγεται οριζόντια x x ασύμπτωτη της γραφικής παράστασης της f στο (αντιστοίχως στο ). 47. Πότε λέμε ότι ευθεία y x λέγεται ασύμπτωτη της γραφικής παράστασης της f στο, αντιστοίχως στο ; Η ευθεία y x λέγεται ασύμπτωτη της γραφικής παράστασης της f στο, αντιστοίχως στο, αν αντιστοίχως lim [ f ( x) ( x )], x lim [ f ( x) ( x )]. x 48. Να διατυπώσετε τους κανόνες του de l Hospital 2

22 ΘΕΩΡΗΜΑ ο (μορφή ) Αν lim f ( x), x x ή άπειρο), τότε: lim g( x), x {, } και υπάρχει το xx f ( x) f ( x) lim lim. g( x) g( x) x x x x f ( x) lim xx g ( x ) (πεπερασμένο ΘΕΩΡΗΜΑ 2ο (μορφή Αν lim f ( x), x x x x ) (πεπερασμένο ή άπειρο), τότε: lim g( x), x {, } και υπάρχει το f ( x) f ( x) lim lim. g( x) g( x) x x x x 49. Τι ονομάζουμε αρχική συνάρτηση ή παράγουσα της f στο Δ; f ( x) lim xx g ( x ) Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αρχική συνάρτηση ή παράγουσα της f στο Δ ονομάζεται κάθε συνάρτηση F που είναι παραγωγίσιμη στο Δ και ισχύει F'(x) = f(x), για κάθε x ϵ Δ. 5. Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της f στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της μορφής G(x) = F(x) + c, Δ και c ϵ R, είναι παράγουσες της f στο κάθε άλλη παράγουσα G της f στο Δ παίρνει τη μορφή G(x) = F(x) + c, c ϵ R Κάθε συνάρτηση της μορφής G(x) = F(x) + c, όπου c ϵ R είναι μια παράγουσα της f στο Δ, αφού: G'(x) = (F(x) + c)' = F'(x) = f(x), για κάθε x ϵ Δ. Έστω G είναι μια άλλη παράγουσα της f στο Δ. Τότε για κάθε x ϵ Δ ισχύουν F'(x) = f(x) και G'(x) = f(x), οπότε G'(x) = F'(x), για κάθε x ϵ Δ 22

23 Άρα, υπάρχει σταθερά c τέτοια, ώστε G(x) = F(x) + c, για κάθε x ϵ Δ 5. Να συμπληρώσετε τα κενά στις επόμενες ισότητες-ανισότητες, ώστε να προκύψουν αληθείς σχέσεις: Α.... f x dx f x dx a Β. f x dx... x dx Γ. Αν f x, τότε f Δ. Έστω f μια σ υ ν ε χ ή ς συνάρτηση σε ένα διάστημα [α,β]. Αν f(x) για κάθε x ϵ [α,β] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε f x dx f xdx f xdx a f x dx a Αν f x, τότε f xdx Έστω f μια σ υ ν ε χ ή ς συνάρτηση σε ένα διάστημα [α,β]. Αν f(x) για κάθε x ϵ [α,β] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε f xdx 52. Τι παριστάνει γεωμετρικά το f xdx αν f x ; Από τους ορισμούς του εμβαδού και του ορισμένου ολοκληρώματος προκύπτει ότι : Αν f(x) για κάθε x ϵ [α,β], τότε το ολοκλήρωμα f x dx δίνει το εμβαδόν Ε(Ω) του χωρίου Ω που περικλείεται από τη γραφική παράσταση της f τον άξονα x x και τις ευθείες x = α και x = β (Σχ. ). Δηλαδή, f xdx E 23

24 53. Τι παριστάνει γεωμετρικά το cdx αν c > ; Το cdx εκφράζει το εμβαδόν ενός ορθογωνίου με βάση β α και ύψος c. 54. Α. Να συμπληρώσετε τα κενά στις επόμενες ισότητες, ώστε να προκύψουν αληθείς σχέσεις: «Αν η f είναι σ υ ν ε χ ή ς σε διάστημα Δ και α, β, γ ϵ Δ, τότε ισχύει: f x dx... f x dx f x dx» Β. Αν f(x) και α < γ < β τι δηλώνει, η παραπάνω ιδιότητα; Α. a f x dx f x dx f x dx Β. Ε(Ω) = Ε(Ω ) + Ε(Ω 2 ), όπου f xdx, (Σχήμα 3) a f x dx a... f x dx και 2 24

25 55. Να συμπληρώσετε το επόμενο κενό, ώστε η πρόταση να είναι αληθής: «Αν f είναι μια συνεχής συνάρτηση σε ένα διάστημα Δ και α είναι ένα σημείο του Δ, τότε η συνάρτηση, x f xdx... x είναι μια παράγουσα της f στο Δ. Δηλαδή ισχύει F x f x dx x για κάθε x» x f xdx f x 56. Να διατυπώσετε και να αποδείξετε το Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού: Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού: «Έστω f μια συνεχής συνάρτηση σ' ένα διάστημα [α,β]. Αν G είναι μια παράγουσα της f στο [α, β], τότε να αποδείξετε ότι: f x dx G G a» x Σύμφωνα με το προηγούμενο θεώρημα, η συνάρτηση F x f x dx είναι μια παράγουσα της f στο [α,β]. Επειδή και η G είναι μια παράγουσα της f στο [α,β], θα υπάρχει c ϵ R τέτοιο, ώστε: G(x) = F(x) + c () Από την (), για x = α, έχουμε: a G a F a c f x dx c c οπότε c = G(α). Επομένως, G(x) = F(x) + G(α), οπότε, για x = β, έχουμε: a G F G a f x dx G a a 25

26 και άρα: a f t dt G G a 57. Ποιος είναι ο τύπος της ολοκλήρωσης κατά παράγοντες για το ορισμένο ολοκλήρωμα; a f x g x dx f x g x f x g x dx, όπου f, g είναι συνεχείς συναρτήσεις στο [α,β]. 58. Ποιος είναι τύπος ολοκλήρωσης με αλλαγή μεταβλητής για το ορισμένο ολοκλήρωμα ; u2 ( ) ( ) a u f g x g x dx f u du, όπου f, g είναι συνεχείς συναρτήσεις, u = g(x), du = g (x)dx και u = g(α), u 2 = g(β) 59. Αν g(x) για κάθε x ϵ [α,β] ποιο είναι το εμβαδόν του χωρίου Ω που περικλείεται από τη γραφική παράστασητης g, και τις ευθείες x = α και x = β και τις ευθείες x = α και x = β; g xdx 6. Ποιο είναι το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των συνεχών συναρτήσεων f, g και τις ευθείες x = α και x = β; Αν ισύουν οι προϋποθέσεις: (i) f(x) g(x) για κάθε x ϵ [α,β] και (ii) οι f, g είναι μη αρνητικές στο [α,β]. 26

27 ,τότε ισχύει: f ( x) g x dx Αν η διαφορά f(x) g(x) δεν διατηρεί σταθερό πρόσημο στο [α,β], τότε το εμβαδόν του χωρίου Ω που περικλείεται από τις γραφικές παραστάσεις των f, g και τις ευθείες x = α και x = β είναι ίσο με: f ( x) g x dx 27

28 Ερωτήσεις Σωστού-Λάθους Πανελλαδικών Εξετάσεων 2-25 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλα σας τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος αν η πρόταση είναι λανθασμένη.. Αν η συνάρτηση f είναι συνεχής στο x και η συνάρτηση g είναι συνεχής στο x, τότε η σύνθεσή τους gof είναι συνεχής στο x. 2. Αν f, g είναι δύο συναρτήσεις µε πεδίο ορισµού IR και ορίζονται οι συνθέσεις fog και gof, τότε αυτές οι συνθέσεις είναι υποχρεωτικά ίσες. 3. Μια συνάρτηση f:α IR είναι, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x. 4. Μία συνάρτηση f : Α ΙR είναι συνάρτηση «-», αν και μόνο αν για οποιαδήποτε x, x 2 A ισχύει η συνεπαγωγή: αν x = x 2, τότε f(x )=f(x 2 ) 5. Αν η f έχει αντίστροφη συνάρτηση και η γραφική παράσταση της f έχει κοινό σημείο Α με την ευθεία y = x, τότε το σημείο Α ανήκει και στη γραφική παράσταση της 6. Αν μια συνάρτηση f:a R είναι, τότε για την αντίστροφη συνάρτηση f ισχύει f - (f(x))=x, xa και f(f - (y))=y, yf(a) 7. Αν μια συνάρτηση f:a R είναι, τότε υπάρχουν σημεία της με την ίδια τεταγμένη 8. Αν η συνάρτηση f είναι ορισμένη στο [α, β] και συνεχής στο (α, β], τότε η f παίρνει πάντοτε στο [α, β] μία μέγιστη τιμή. f 9. Οι γραφικές παραστάσεις C και C των συναρτήσεων f και f είναι συµµετρικές ως προς την ευθεία την ευθεία y = x που διχοτομεί τις γωνίες xoy και x Oy.. Οι γραφικές παραστάσεις C και C των συναρτήσεων f και -f είναι συµµετρικές ως προς τον άξονα x x.. Υπάρχουν συναρτήσεις που είναι, αλλά δεν είναι γνησίως μονότονες. 2. Κάθε συνάρτηση, που είναι - στο πεδίο ορισμού της, είναι γνησίως μονότονη. 3. Αν μια συνάρτηση f είναι γνησίως αύξουσα και συνεχής σε ένα ανοικτό διάστημα (α,β), 28

29 τότε το σύνολο τιμών της στο διάστημα αυτό είναι το διάστημα (Α,Β), όπου lim f (x) και Β= lim f (x) x 4. Μια συνεχής συνάρτηση f διατηρεί πρόσημο σε καθένα από τα διαστήματα στα οποία οι διαδοχικές ρίζες της f χωρίζουν το πεδίο ορισμού της. 5. Η εικόνα f(δ) ενός διαστήματος Δ μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα. 6. Αν η συνάρτηση f είναι συνεχής στο διάστημα [α, β] και υπάρχει x (α,β) x τέτοιο, ώστε f(x )=, τότε κατ ανάγκη θα ισχύει f(α)f(β). 7. Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα και δε μηδενίζεται σ αυτό, τότε αυτή ή είναι θετική για κάθε x ή είναι αρνητική για κάθε x, δηλαδή διατηρεί σταθερό πρόσημο στο διάστημα Δ. 8. Μια συνάρτηση f με πεδίο ορισμού το Α λέμε ότι παρουσιάζει (ολικό) ελάχιστο στο x, όταν f ( x) f ( x ) για κάθε x. 9. Αν η f είναι συνεχής στο a, με f και υπάρχει, ώστε f ( ), τότε κατ ανάγκη f. 2. Ισχύει ότι x x για κάθε x x 2. Ισχύει ότι: lim x x x 22. Ισχύει ότι: lim x x 23. Έστω μια συνάρτηση ορισμένη σ ένα σύνολο της μορφής, x x, και λ ένας πραγματικός αριθμός. Τότε ισχύει η ισοδυναμία: lim f (x) lim (f (x) ) xx xx 24. Έστω μια συνάρτηση ορισμένη σ ένα σύνολο της μορφής, x x,. Τότε ισχύει η ισοδυναμία: 29

30 lim f (x) ( lim f (x) lim f (x) ) xx xx xx 25. Αν υπάρχει το όριο της συνάρτησης f στο x τότε αν f x lim είναι x x και x x x lim f 26. Αν υπάρχει το lim x x (f(x)+ g(x)) τότε κατ ανάγκη υπάρχουν τα lim f (x) xx και lim g(x) x x 27. Αν f x lim, τότε f(x) > κοντά στο x. x x 28. Αν f x lim, τότε f(x) < κοντά στο x x x 29. Αν α >, τότε 3. Αν <α <, τότε 3. Αν <α <, τότε 32. Αν xx lim x x x lim x lim x x lim f (x) = και f(x) > κοντά στο x, τότε lim f (x) xx 33. Αν lim f (x) = και f(x) < κοντά στο x, τότε xx lim f (x) xx 34. Αν είναι lim f (x) τότε f(x)< κοντά στο x xx 35. Αν είναι lim f (x) τότε xx lim ( f (x)) xx 36. Αν lim f (x) ή -, τότε xx lim f (x) xx 37. Αν η f είναι παραγωγίσιμη στο x, τότε η f είναι πάντοτε συνεχής στο x. 38. Αν η f δεν είναι συνεχής στο x,τότε η f δεν είναι παραγωγίσιμη στο x. 39. Αν η f έχει δεύτερη παράγωγο στο x,τότε η f είναι συνεχής στο x. 4. Αν µία συνάρτηση f είναι συνεχής σ ένα σηµείο x του πεδίου ορισµού της, τότε είναι και παραγωγίσιμη στο σηµείο αυτό. 4. Έστω δύο συναρτήσεις f, g ορισμένες σε ένα διάστημα. Αν οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σημείο x του, τότε f ( x) g( x), για κάθε x. 3

31 42. Αν η συνάρτηση f είναι παραγωγίσιμη στο IR. και δεν είναι αντιστρέψιμη, τότε υπάρχει κλειστό διάστημα [α, β], στο οποίο η f ικανοποιεί τις προϋποθέσεις του θεωρήματος Rolle. 43. Έστω f μια συνάρτηση συνεχής σε ένα διάστημα και παραγωγίσιμη σε κάθε εσωτερικό σημείο x του. Αν η συνάρτηση f είναι γνησίως αύξουσα στο τότε f (x) > σε κάθε εσωτερικό σημείο x του. 44. Έστω συνάρτηση f συνεχής σε ένα διάστημα και παραγωγίσιμη στο εσωτερικό του. Αν η f είναι γνησίως αύξουσα στο, τότε η παράγωγός της δεν είναι υποχρεωτικά θετική στο εσωτερικό του. 45. Έστω συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη σε κάθε εσωτερικό σημείο του Δ. Αν η συνάρτηση f είναι γνησίως φθίνουσα στο Δ, τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του Δ. 46. Αν μια συνάρτηση f παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα. 47. Έστω συνάρτηση f ορισμένη και παραγωγίσιμη στο διάστημα [α, β] και σημείο x [α, β] στο οποίο η f παρουσιάζει τοπικό μέγιστο. Tότε πάντα ισχύει ότι f (x )=. 48. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα Δ και δύο φορές παραγωγίσιμη στο εσωτερικό του Δ. Αν f (x)> για κάθε εσωτερικό σημείο x του Δ, τότε η f είναι κυρτή στο Δ. 49. Αν μια συνάρτηση f είναι δύο φορές παραγωγίσιμη στο R και στρέφει τα κοίλα προς τα άνω, τότε κατ ανάγκη θα ισχύει f (x)>, για κάθε πραγματικό αριθμό x. 5. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (α, β) με εξαίρεση ίσως ένα σημείο του xo. Αν η f είναι κυρτή στο (α, xo) και κοίλη στο 3

32 (xo, β) ή αντιστρόφως, τότε το σημείο Α(x,f(x ) είναι υποχρεωτικά σημείο καμπής της γραφικής παράστασης της f. 5. Αν μια συνάρτηση f είναι κυρτή σε ένα διάστημα Δ, τότε η εφαπτομένη της γραφικής παράστασης της f σε κάθε σημείο του Δ βρίσκεται «πάνω» από τη γραφική της παράσταση. 52. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x ένα εσωτερικό σημείο του Δ. Αν η f είναι παραγωγίσιμη στο x και f (x )=, τότε η f παρουσιάζει υποχρεωτικά τοπικό ακρότατο στο x. 53. Έστω μία συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α, β), με εξαίρεση ίσως ένα σημείο του x, στο οποίο όμως η f είναι συνεχής. Αν f (x) > στο (α, x ) και f (x) < στο (x, β), τότε το f (x ) είναι τοπικό ελάχιστο της f. 54. Αν f συνάρτηση συνεχής στο διάστημα [ a, ] και για κάθε x [ a, ]. ισχύει f x, τότε f xdx 55. Αν η f είναι συνεχής στο διάστημα Δ και,,, τότε ισχύει: 56. Το ολοκλήρωμα f a f x dx f x dx f x dx x dx είναι ίσο με το άθροισμα των εμβαδών των χωρίων που βρίσκονται πάνω από τον άξονα x x μείον το άθροισμα των εμβαδών των χωρίων που βρίσκονται κάτω από τον άξονα x x. 57. Αν μία συνάρτηση f είναι συνεχής σε ένα διάστημα [α, β] και ισχύει f x για κάθε x [ a, ], τότε το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της f, τις ευθείες x a, x και τον άξονα x x είναι f x dx a 58. Αν f είναι μία συνεχής συνάρτηση σε ένα διάστημα και α είναι ένα σημείο του Δ, τότε: x f tdt f x 32

33 59. Αν f, g είναι δύο συναρτήσεις με συνεχή πρώτη παράγωγο, τότε ισχύει: 6. Ισχύει: a f x dx f x g x f x g x dx g( x) f ( t) dt f g( x) g ( x) a 6. Αν η συνάρτηση f είναι παραγωγίσιμη στο ΙR, τότε: 62. Αν lim f x xx o ή τότε a a f x dx xf ( x) xf ( x) dx lim f x xx o 63. Αν μια συνάρτηση f παρουσιάζει (ολικό) μέγιστο, τότε αυτό θα είναι το μεγαλύτερο από τα τοπικά της μέγιστα. 64. Οι πολυωνυμικές συναρτήσεις βαθμού μεγαλύτερου ή ίσου του 2 δεν έχουν ασύμπτωτες. 65. Έστω συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη σε κάθε εσωτερικό σημείο του Δ. Αν η συνάρτηση f είναι γνησίως φθίνουσα στο Δ, τότε η παράγωγός της είναι υποχρεωτικά αρνητική στο εσωτερικό του Δ. 66. Αν για δύο συναρτήσεις f, g ορίζονται οι συναρτήσεις fog και gof, τότε ισχύει πάντοτε ότι fog=gof. 67. Για κάθε x R ισχύει ότι (συνx) = ημx. 68. Έστω f μία συνεχής συνάρτηση σε ένα διάστημα [α, β]. Αν ισχύει ότι f(x) για κάθε x [α, β] και η συνάρτηση f δεν είναι παντού μηδέν στο διάστημα αυτό, τότε β f (x)dx α 69. Αν lim f (x) και f(x)> κοντά στο x o, τότε lim. xx o f (x) xx o 7. Έστω μια συνάρτηση f που είναι ορισμένη σε ένα σύνολο της μορφής (α,x ) (x,β) Ισχύει η ισοδυναμία: 33

34 lim f x lim f x lim f x xxo xx xx x 7. Αν είναι < α <, τότε lim. x 72. Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και δυο φορές παραγωγίσιμη στο εσωτερικό του Δ. Αν η f είναι κυρτή στο Δ, τότε υποχρεωτικά f (x) > για κάθε εσωτερικό σημείο του Δ. 73. Ισχύει: g(x) f(t)dt α f g(x) g (x) με την προϋπόθεση ότι τα χρησιμοποιούμενα σύμβολα έχουν νόημα. 34

35 ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ Αρ. Ερώτησης Αρ. Ερώτησης Λ 37 Λ 2 Λ 38 Σ 3 Σ 39 Σ 4 Λ 4 Λ 5 Σ 4 Λ 6 Σ 42 Σ 7 Λ 43 Λ 8 Λ 44 Σ 9 Σ 45 Λ Σ 46 Σ Σ 47 Λ 2 Λ 48 Σ 3 Σ 49 Λ 4 Σ 5 Σ 5 Σ 5 Λ 6 Λ 52 Λ 7 Σ 53 Λ 8 Σ 54 Σ 9 Λ 55 Σ 2 Σ 56 Σ 2 Λ 57 Λ 22 Λ 58 Σ 23 Σ 59 Λ 24 Σ 6 Σ 25 Σ 6 Σ 26 Λ 62 Σ 27 Σ 63 Σ 28 Σ 64 Σ 29 Σ 65 Λ 3 Λ 66 Λ 3 Σ 67 Λ 32 Σ 68 Σ 33 Λ 69 Σ 34 Λ 7 Σ 35 Σ 7 Λ 36 Σ 72 Λ 35

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Θέματα τύπου Σωστό-Λάθος στις Πανελλαδικές Εξετάσεις από το 2000 έως 204 χωρισμένα σε Κεφάλαια Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 = 2. Για κάθε μιγαδικό αριθμό z ισχύει: α.

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς

Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς Μαθηματικά κατεύθυνσης Γ Λυκείου Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς wwwaskisopolisgr Η θεωρία των πανελλαδικών εξετάσεων [] [] Ορισμοί ) Πότε

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x.

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ., τότε η f είναι πάντοτε συνεχής στο x., τότε η f είναι συνεχής στο x. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας την ένδειξη σωστό ή λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου

Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού

Διαβάστε περισσότερα

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις

Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ ΣΥΝΕΧΕΙΑ Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο τουr Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ 1. Αν f συνεχής στο [α, β] είναι f ( ) d 0 f ( ) 0 2. Αν f συνεχής και γν. αύξουσα στο [α, β] ισχύει ότι: f ( ) d 0. 3. Αν f ( ) d g( ) d, ό f ( ) g( ) ά [, ]. 4. Το σύνολο τιμών

Διαβάστε περισσότερα

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.

Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου

Διαβάστε περισσότερα

[ α π ο δ ε ί ξ ε ι ς ]

[ α π ο δ ε ί ξ ε ι ς ] Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

5o Επαναληπτικό Διαγώνισμα 2016

5o Επαναληπτικό Διαγώνισμα 2016 5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim. ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ (3) A1. Έστω μια

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/7 έως τις /4/7 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη Απριλίου 7 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 7 ΘΕΜΑ Α A Έστω συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ Αν f σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. 1 x. ln = Μονάδες 10 Α.2 Πότε μια συνάρτηση f λέμε ότι είναι συνεχής σε ένα κλειστό διάστημα [α,β]; Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΜΑΪΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1 o A.1 Να

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A wwwaskisopolisgr ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A Α Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα, Αν: η f είναι συνεχής στο, f f να

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

1 ο Τεστ προετοιμασίας Θέμα 1 ο

1 ο Τεστ προετοιμασίας Θέμα 1 ο ο Τεστ προετοιμασίας Θέμα ο Σε κάθε μια από τις ακόλουθες προτάσεις αφού πρώτα σημειώσετε το Σ (σωστή) ή το Λ (λανθασμένη), στη συνέχεια να δώσετε μια σύντομη τεκμηρίωση της όποιας απάντησή σας Αν για

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 8 ΜΑΪΟΥ 6 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α A Έστω μια

Διαβάστε περισσότερα

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0

1. Για οποιουσδήποτε μιγαδικούς z 1, z 2 με Re (z 1 + z 2 ) = 0, ισχύει: Re (z 1 ) + Re (z 2 ) = 0 ΣΩΣΤΑ ΛΑΘΟΣ. Για οποιουσδήποτε μιγαδικούς z, z με Re (z + z ) = 0, ισχύει: Re (z ) + Re (z ) = 0. Ισχύει η ισοδυναμία : i κ = i λ κ = λ για κάθε κ., λ ακεραίους αριθμούς. 3. Για κάθε μιγαδικό αριθμό z

Διαβάστε περισσότερα

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ

ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρ ΜΑΙΟΣ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο 5 + i Α. Δίνεται ο μιγαδικός αριθμός z =. + i α) Να γράψετε τον z στη μορφή α + βi, α, β IR. Στην παρακάτω ερώτηση να γράψετε τη σωστή απάντηση. δ) Το z

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

3o Επαναληπτικό Διαγώνισμα 2016

3o Επαναληπτικό Διαγώνισμα 2016 3o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A A Έστω μια συνάρτηση παραγωγίσιμη σ ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του,στο οποίο όμως η είναι συνεχής Να αποδείξετε ότι Αν () στο (α,

Διαβάστε περισσότερα

f '(x 0) lim lim x x x x

f '(x 0) lim lim x x x x Α Θ Ε Μ Α A Θ Ε Ω Ρ Η Μ Α ( F e r m a t ) Έστω μια συνάρτηση ορισμένη σ ένα διάστημα Δ και ένα εσωτερικό σημείο του Δ Αν η παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, τότε:

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 11 Μαΐου 19 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Έστω f μια

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ () ΣΑΒΒΑΤΟ, ΜΑΡΤΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui Qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ uiopasdfghjklzxcvbnmqwertyui ΟΡΙΟ- ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό.

Α2. Να αποδείξετε ότι, αν μια συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο x 0 του πεδίου ορισμού της,τότε είναι και συνεχής στο σημείο αυτό. ΘΕΜΑΤΑ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑo ΑAν η συνάρτηση f είναι παραγωγίσιμη σ' ένα σημείο του πεδίου ορισμού της, να γραφεί η εξίσωση της εφαπτομένης της γραφικής παράστασης της f στο σημείο Α

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; (5 ΕΣΠ Β ) Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4)

ΦΕΒΡΟΥΑΡΙΟΣ Ο συντελεστής διεύθυνσης της εφαπτοµένης της γραφικής παράστασης τη f(x) στο σηµείο x ο είναι f x ) (Μονάδες 4) Αµυραδάκη, Νίκαια (-493576) ΘΕΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 3 Α. Πότε µια συνάρτηση f λέγεται παραγωγίσιµη στο ο ; Β. Τι σηµαίνει γεωµετρικά το θεώρηµα Rolle ; Γ. Να αποδείξετε ότι ( ) a = a ln a (Μονάδες 5) (Μονάδες

Διαβάστε περισσότερα

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως

g x είναι συνάρτηση 1 1 στο Ag = R αλλά δεν είναι γνησίως ΘΕΜΑ Α Α. Απόδειξη θεωρήματος σελ. 99 σχολικού βιβλίου. Α. α. Ψευδής β. Θεωρούμε τη συνάρτηση, 0 g, 0 η οποία έχει γραφική παράσταση (σχήμα σχολικού βιβλίου σελ.5): y O y=g() Η g είναι συνάρτηση στο Ag

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα).

ΛΥΣΕΙΣ. f(x) = g(x)+c. Α2. ί. Ποια είναι η γεωμετρική ερμηνεία του Θεωρήματος Μέσης Τιμής του διαφορικού λογισμού;; (Να κάνετε πρόχειρο σχήμα). ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΚΥΡΙΑΚΗ, 3 ΑΠΡΙΛΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ 6 Τι ονομάζουμε αρχική μιας συνάρτησης σε ένα διάστημα Δ ; Απάντηση : Αρχική συνάρτηση ή παράγουσα της στο Δ ονομάζουμε κάθε

Διαβάστε περισσότερα

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ), Πανελλαδικές Εξετάσεις 8 Μαθηματικά Προσανατολισμού /6/8 ΘΕΜΑ Α Προτεινόμενες λύσεις Α Αφού η f είναι παραγωγίσιμη στο σημείο του πεδίου ορισμού της, ισχύει ότι: Για κάθε έχουμε: Επομένως ισχύει ότι: Δηλαδή:

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4) ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 4 ΠΑΡΑΣΚΕΥΗ, 22 ΑΠΡΙΛΙΟΥ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019

Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα 13 Μαΐου 2019 ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΑΠΟ ΣΕΛΙΔΕΣ ο ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ Διαγώνισμα προσομοίωσης Πανελλαδικών Εξετάσεων στα Μαθηματικά Κατεύθυνσης Δευτέρα Μαΐου 9 BAΘΜΟΣ../ ή / Ονοματεπώνυμο: Τμήμα:. ΘΕΜΑ Α Α. Να αποδείξετε το παρακάτω

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. 3 η Έκδοση

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. 3 η Έκδοση ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 3 η Έκδοση Οδηγός για τις πανελλαδικές εξετάσεις ΘΕΜΑ: Α, Β, Γ και Δ Σχολικού

Διαβάστε περισσότερα

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΑΡΑΣΚΕΥΗ, 4 ΜΑΡΤΙΟΥ 206 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού

Διαβάστε περισσότερα

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν

= R {x συν x = 0} ισχύει: 1 ( εφ x)' = συν ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και ένα εσωτερικό σημείο

Διαβάστε περισσότερα

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ). ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016

Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 9//6 ΘΕΜΑ ο Α. Πότε μία συνάρτηση f λέγεται

Διαβάστε περισσότερα

αριθμοί σε τριγωνομετρική μορφή, να αποδείξετε ότι: z 1 z 2 = ρ 1 ρ 2 [συν (θ 1 +θ 2 )+i ημ (θ 1 +θ 2 )] ( 1Α/2002 ΙΟΥΛ)

αριθμοί σε τριγωνομετρική μορφή, να αποδείξετε ότι: z 1 z 2 = ρ 1 ρ 2 [συν (θ 1 +θ 2 )+i ημ (θ 1 +θ 2 )] ( 1Α/2002 ΙΟΥΛ) ο Γενικό Λύκειο Χανίων Τάξη Γ Μαθηματικών προσανατολισμού Θέματα εξετάσεων ΘΕΩΡΙΑ Μιγαδικοί αριθμοί. Δίνονται οι μιγαδικοί αριθμοί z, z. Να αποδείξετε ότι: z z = z z. ( Α/00-007). Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης.

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ 2 Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 18 ΜΑΙΟΥ 2018 ΘΕΜΑ Α. η f ικανοποιεί τις υποθέσεις του θεωρήματος μέσης. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣΗΣ ΝΟ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕ.Λ. 8 ΜΑΙΟΥ 8 ΘΕΜΑ Α Α. Εστω μια συνάρτηση f και x ένα σημείο του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x, όταν Α. lim f ( x) f

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 9 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A Να αποδείξετε ότι, αν μια συνάρτηση είναι παραγωγίσιμη σε ένα σημείο 0,

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα