Unfolding-based corrector estimates for a reactiondiffusion system predicting concrete corrosion Fatima, T.; Muntean, A.; Ptashnyk, M.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Unfolding-based corrector estimates for a reactiondiffusion system predicting concrete corrosion Fatima, T.; Muntean, A.; Ptashnyk, M."

Transcript

1 Unfoldng-based corrector estmates for a reactondffuson system predctng concrete corroson Fatma, T.; Muntean, A.; Ptashnyk, M. Publshed: //2 Document Verson Publsher s PDF, also known as Verson of Record ncludes fnal page, ssue and volume numbers Please check the document verson of ths publcaton: A submtted manuscrpt s the author's verson of the artcle upon submsson and before peer-revew. There can be mportant dfferences between the submtted verson and the offcal publshed verson of record. People nterested n the research are advsed to contact the author for the fnal verson of the publcaton, or vst the DOI to the publsher's webste. The fnal author verson and the galley proof are versons of the publcaton after peer revew. The fnal publshed verson features the fnal layout of the paper ncludng the volume, ssue and page numbers. Lnk to publcaton Ctaton for publshed verson APA: Fatma, T., Muntean, A., & Ptashnyk, M. 2. Unfoldng-based corrector estmates for a reacton-dffuson system predctng concrete corroson. CASA-report; Vol. 38. Endhoven: Technsche Unverstet Endhoven. General rghts Copyrght and moral rghts for the publcatons made accessble n the publc portal are retaned by the authors and/or other copyrght owners and t s a condton of accessng publcatons that users recognse and abde by the legal requrements assocated wth these rghts. Users may download and prnt one copy of any publcaton from the publc portal for the purpose of prvate study or research. You may not further dstrbute the materal or use t for any proft-makng actvty or commercal gan You may freely dstrbute the URL dentfyng the publcaton n the publc portal? Take down polcy If you beleve that ths document breaches copyrght please contact us provdng detals, and we wll remove access to the work mmedately and nvestgate your clam. Download date: 7. Oct. 27

2 EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematcs and Computer Scence CASA-Report -38 June 2 Unfoldng-based corrector estmates for a reacton-dffuson system predctng concrete corroson by T. Fatma, A. Muntean, M. Ptashnyk Centre for Analyss, Scentfc computng and Applcatons Department of Mathematcs and Computer Scence Endhoven Unversty of Technology P.O. Box MB Endhoven, The Netherlands ISSN:

3

4 UNFOLDING-BASED CORRECTOR ESTIMATES FOR A REACTION-DIFFUSION SYSTEM PREDICTING CONCRETE CORROSION T. Fatma, A. Muntean and M. Ptashnyk Department of Mathematcs and Computer Scence, Insttute for Complex Molecular Systems Techncal Unversty Endhoven, Endhoven, The Netherlands, e-mal: t.fatma@tue.nl, a.muntean@tue.nl Department of Mathematcs I, RWTH Aachen, D-5256 Aachen, Germany, e-mal: ptashnyk@math.rwth-aachen.de abstract. We use the perodc unfoldng technque to derve corrector estmates for a reacton-dffuson system descrbng concrete corroson penetraton n the sewer ppes. The system, defned n a perodcally-perforated doman, s sem-lnear, partally dsspatve, and coupled va a non-lnear ordnary dfferental equaton posed on the sold-water nterface at the pore level. After dscussng the solvablty of the pore scale model, we apply the perodc unfoldng technques adapted to treat the presence of perforatons not only to get upscaled model equatons, but also to prepare a proper framework for gettng a convergence rate corrector estmates of the averagng procedure. Keywords: Corrector estmates, perodc unfoldng, homogenzaton, sulfate corroson of concrete, reacton-dffuson systems.. Introducton Concrete corroson s a slow natural process that leads to the deteroraton of concrete structures buldngs, brdges, hghways, etc. leadng yearly to huge fnancal losses everywhere n the world. In ths paper, we focus on one of the many mechansms of chemcal corroson, namely the sulfaton of concrete, and am to descrbe t macroscopcally by a system of averaged reacton-dffuson equatons whose effectve coeffcents depend on the partcular shape of the mcrostructure. The fnal am of our research s to become capable to predct quanttatvely the durablty of a well-understood cement-based materal under a controlled expermental setup well-defned boundary condtons. The strkng thng s that n spte of the fact that the basc physcal-chemstry of ths relatvely easy materal s known [], we have no control on how the mcrostructure changes n tme and space and to whch extent these spato-temporal changes affect the observable macroscopc behavor of the materal. The research reported here goes along the lne open n [], where a formal asymptotc expanson ansatz was used to derve macroscopc equatons for a corroson model, posed n a doman wth locally-perodc mcrostructure see

5 2 UNFOLDING AND CORRECTOR ESTIMATES [7] for a rgorous averagng approach of a reduced model defned n a doman wth locallyperodc mcrostructures. A two-scale convergence approach for perodc mcrostructures was studed n [], whle prelmnary multscale smulatons are reported n [3]. Wthn ths paper we consder a partally dsspatve reacton-dffuson system defned n a doman wth perodcally dstrbuted mcrostructure. Ths system was orgnally proposed n [2] as a free-boundary problem. The model equatons descrbe the corroson of sewer ppes made of concrete when sulfate ons penetrate the non-saturated porous matrx of the concrete vewed as a composte. The typcal concrete mcrostructure ncludes sold, water and ar parts, see Fg. 2.. One could argue that the mcrostructure of a concrete s nether unformly perodc nor locally perodc, and the randomness of the pores and of ther dstrbutons should be taken nto account. However, perodc representatons of concrete mcrostructures often provde good descrptons. For what the macroscopc corroson process s concerned, the dervaton of corrector estmates [for the perodc case] s crucal for the dentfcaton of convergence rates of mcroscopc solutons. The stochastc geometry of the concrete wll be studed as future work wth the hope to shed some lght on eventual connectons between the role played by a locally-perodc dstrbuted mcrostructure vs. statonary random-dstrbuted pores. In ths sprt, we thnk that there s much to be learnt from [8]. The man novelty of the paper s twofold: on one hand, we obtan corrector estmates under optmal regularty assumptons on solutons of the mcroscopc model and obtan the desred convergence rate hence, we have now a confdence measure of our averagng results; on the other hand, we apply for the frst tme an unfoldng technque to derve corrector estmates n perforated meda. The man deas of the methodology were presented n [2, 3] and appled to lnear ellptc equatons wth oscllatng coeffcents, posed n a fxed doman. Our approach strongly reles on these results. However, novel aspects of the method, related to the presence of perforatons n the consdered mcroscopc doman, are treated here for the frst tme; see secton 3. The man advantage of usng the unfoldng technque to prove corrector estmates s that only H -regularty of solutons of mcroscopc equatons and of unt cell problems s requred, compared to standard methods mostly based on energy-type estmates used n the dervaton of corrector estmates. As a natural consequence of ths fact, the set of choces of mcrostructures s now much larger. The paper s structured n the followng fashon: After ntroducng model equatons and the assumed mcroscopc geometry of the concrete materal, the secton 2 goes on wth the man assumptons and basc estmates ensurng both the solvablty of the mcroscopc problem and the convergence of mcroscopc solutons to a soluton of the macroscopc equatons, as. In secton 3 we state and prove the corrector estmates for the concrete corroson model, Theorem 3.6, determnng the range of valdty of the upscaled model.

6 UNFOLDING AND CORRECTOR ESTIMATES 3 Note that the technque developed n ths artcle can be appled n a straghtforward way to derve convergence rates for solutons of other classes of partal dfferental equatons, posed n domans wth perodcally-dstrbuted mcrostructures. 2. Problem descrpton 2.. Geometry. We assume that concrete pece conssts of a system of pores perodcally dstrbuted nsde the three-dmensonal cube Ω = [a, b] 3 wth a, b R and b > a. Snce usually the concrete n sewer ppes s not completely dry, we consder a partally saturated porous materal. We assume that every pore has three dstnct non-overlappng parts: a sold part, the water flm whch surrounds the sold part, and an ar layer boundng the water flm and fllng the space of Y as shown n Fg. 2.. Note that the dark black parts ndcate the water-flled parts n the materal where most of our model equatons are defned. The reference pore, Y = [, ] 3, has three par-wse dsjont domans Y, Y and Y 2 wth smooth boundares Γ and Γ 2 as shown n Fg. 2.. Moreover, Y = Ȳ Ȳ Ȳ2. Fgure. Left: Perodc approxmaton of the concrete pece. choce of the mcrostructure. Rght: Our Let be a small factor denotng the rato between the characterstc length of the pore Y and the characterstc length of the doman Ω. Let χ and χ 2 be the characterstc functons of the sets Y and Y 2, respectvely. The shfted set Y k s defned by Y k := Y + Σ 3 j=k j e j for k = k, k 2, k 3 Z 3, where e j s the j th unt vector. The unon of all Y k multpled by that are contaned wthn Ω defnes the perforated doman Ω, namely Ω := k Z 3{Y k Y k Ω}. Smlarly, Ω 2, Γ, and Γ 2 denote the unon of Y2 k, Γ k, and Γ k 2, contaned n Ω Mcroscopc equatons. We consder a mcroscopc model t u Du u = fu, v n, T Ω, t v Dv v = fu, v n, T Ω, t w Dw w = n, T Ω 2, t r = ηu, r on, T Γ, wth the ntal condtons u, x = u x, v, x = v x n Ω, w, x = w x n Ω 2, r, x = r x on Γ 2

7 4 UNFOLDING AND CORRECTOR ESTIMATES and the boundary condtons u =, v = on, T Ω Ω, w = on, T Ω Ω 2, 3 together wth Du u ν = ηu, r on, T Γ, Dv v ν = on, T Γ, Du u ν = on, T Γ 2, Dv v ν = a xw b xv on, T Γ 2, Dw w ν = a xw b xv on, T Γ 2. 4 We consder the space H Ω Ω = {u H Ω : u = on Ω Ω }, =, 2. Assumpton 2.. A D, t D L, T ; L pery 3 3, {u, v, w}, D t, xξ, ξ D ξ 2 for D >, for every ξ R 3 and a.a. t, x, T Y. A2 Reacton rate k 3 L perγ s nonnegatve and ηα, β = k 3 yrαqβ, where R : R R +, Q : R R + are sublnear and locally Lpschtz contnuous. Furthermore, Rα = for α < and Qβ = for β β max, wth some β max >. A3 f C R 2 s sublnear and globally Lpschtz contnuous n both varables,.e. fα, β C f + α + β, fα, β fα 2, β 2 C L α α 2 + β β 2 and fα, β = for α < or β <. A4 The mass transfer functons at the boundary a, b L perγ 2, ay and by are postve for a.a. y Γ 2 and there exsts A v, A w, M v, M w such that bye Avt M v = aye Awt M w for a.a. y Γ 2 and t, T. A5 Intal data u, v, w, r [H 2 Ω HΩ L Ω] 3 L perγ and u x, v x, w x a.e. n Ω, r x a.e. on Γ. We defne the oscllatng coeffcents: D t, x := D t, x, {u, v, w}, a x := a x, b x := b x, k x := k x. Defnton 2.2. We call u, v, w, r a weak soluton of 4 f u, v L 2, T ; H Ω Ω H, T ; L 2 Ω, w L 2, T ; H Ω Ω 2 H, T ; L 2 Ω 2, r H, T ; L 2 Γ and

8 UNFOLDING AND CORRECTOR ESTIMATES 5 satsfes the followng equatons T t u φ + Du u φ + fu, v φ T dxdt = ηu, r φdγdt, 5 Ω T t v φ + Dv v φ fu, v φ T dxdt = Γ a w b v φdγdt, 6 Ω T t w ϕ + Dw w ϕ T dxdt = Γ 2 a w b v ϕdγdt, 7 Ω 2 T T t r ψdγdt = Γ 2 ηu, r ψdγdt 8 Γ Γ for all φ L 2, T ; H Ω Ω, ϕ L 2, T ; H Ω Ω 2, ψ L 2, T Γ and u t u, v t v n L 2 Ω, w t w n L 2 Ω 2, r t r n L 2 Γ as t. Lemma 2.3. Under the Assumpton 2., solutons of the problem 4 satsfy the followng a pror estmates: u L,T ;L 2 Ω + u L 2,T Ω C v L,T ;L 2 Ω + v L 2,T Ω C, w L,T ;L 2 Ω 2 + w L 2,T Ω 2 C, /2 r L,T ;L 2 Γ + /2 t r L 2,T Γ C, 9 where the constant C s ndependent of. Proof. Frst, we consder as test functons φ = u n 5, φ = v n 6, ψ = w n 7 and use Assumpton 2., Young s nequalty, and the trace nequalty,.e. t Γ 2 w v dγdτ C t Ω 2 w w 2 dγdτ + C t Ω v v 2 dγdτ. Then, addng the obtaned nequaltes, choosng convenently and applyng Gronwall s nequalty mply the frst three estmates n Lemma. Takng ψ = r as a test functon n 8 and usng A2 from Assumpton 2. and the estmates for u, yeld the estmate for r. The test functon ψ = t r n 8, the sublnearty of R, the boundedness of Q and the estmates for u mply the boundedness of /2 t r L 2,T Γ. Lemma 2.4. Postvty and boundedness Let Assumpton 2. be fulflled. followng estmates hold: Then the u t, v t a.e. n Ω, w t a.e. n Ω 2 and u t, r t a.e. on Γ, for a.a. t, T.

9 6 UNFOLDING AND CORRECTOR ESTIMATES u t M u e Aut, v t M v e Avt a.e. n Ω, w t M w e Awt a.e. n Ω 2 and u t M u e Aut, r t M r e Art a.e. on Γ, for a.a. t, T. Proof. To show the postvty of a weak soluton we consder u as test functon n 5, v n 6, w n 7, and r n 8, where φ = mn{, φ} wth φ + φ =. The ntegrals nvolvng fu, v u, fu, v v and ηu, r u are zero, snce by Assumpton 2. fu, v s zero for negatve u or v and ηu, r s zero for negatve u. In the ntegrals over Γ 2 we use the postvty of a and b and the estmate v w = v + + v w v w. Due to the postvty of η, the rght hand sde n the equaton for r, wth the test functon ψ = r, s nonpostve. Addng the obtaned nequaltes, applyng both Young s and the trace nequaltes, consderng suffcently small, we obtan, due to postvty of the ntal data and usng Gronwall s nequalty, that u t L 2 Ω + v t L 2 Ω + w t L 2 Ω 2 + r t L 2 Γ, for a.a. t, T. Thus, negatve parts of the nvolved concentratons are equal zero a.e. n, T Ω, =, 2, or n, T Γ, respectvely. To show the boundedness of solutons, we consder u e Aut M u + as a test functon n 5, v e Avt M v + n 6 and w e Awt M w + n 7, where φ M + = max{, φ M} and A, M, = u, v, w are postve numbers, such that u x M u, v x M v, w x M w a.e n Ω, and A, M for = v, w are gven by A4 n Assumpton 2.. Addng the equatons for u, v, w and usng Assumpton 2. yeld, wth U M = u e Aut M u +, V M = v e Avt M v +, and W M = w e Awt M w +, τ t UM 2 + VM 2 + UM 2 + VM 2 dx + t WM 2 + WM 2 dx dt C Ω τ [ Ω Cf e Aut M u + e Avt M v A u e Aut M u U M + U M 2 + V M V M 2 + C f e Aut M u + e Avt M v A v e Avt M v V M dx + Ω 2 W M W M ] 2 dx dt. Ω 2 Choosng A u, M u such that C f e Aut M u + C f e Avt M v A u e Aut M u and C f e Aut M u + C f e Avt M v A v e Avt M v, and suffcently small, Gronwall s nequalty mples the estmates for u, v, w, stated n Lemma. Lemma 5. n Appendx and H -estmates for u n Lemma 2.3 mply u t and u t e Aut M u a.e on Γ for a.a. t, T. The assumpton on η and equaton 8 wth the test functon r e Art M r +, where r x M r a.e. on Γ, yeld τ 2 t r e Art M r A r e Art M r r e Art M r + dγdt = τ Γ Γ τ ηu, r r e Art M r + dγdt C η A u, M u r e Art M r + dγdt. Γ

10 UNFOLDING AND CORRECTOR ESTIMATES 7 Ths, for A r and M r, such that C η A r M r e ArT, mples the boundedness of r on Γ for a.a. t, T. Lemma 2.5. Under Assumpton 2., we have the followng estmates, ndependent of : t u L 2,T Ω + t v L 2,T ;H Ω + t w L 2,T ;H Ω 2 C. Proof. We test 5 wth φ = t u, and usng the structure of η, the regularty assumptons on R and Q and the boundedness of u and r on Γ, we estmate the boundary ntegral by t C Γ Ω ηu, r t u dγdτ = t u u 2 + u u 2 dx + C Γ k t Ru Qr Ru Q r t r dγdτ t Γ + t r 2 dγdτ, where Rα = α Rξdξ. Then, Assumpton 2., estmates n Lemma 2.3 and the fact that Du/2 2 for approprate, mply the estmate for t u. In order to estmate t v and t w, we dfferentate the correspondng equatons wth respect to the tme varable and then test the result wth t v and t w, respectvely. Due to assumptons on f and usng the trace nequalty, we obtan t t t v 2 dx + C t v 2 dxdτ C t w t w 2 dxdτ Ω t +C Ω 2 + Ω t w 2 dx + C Ω 2 Ω t u 2 + t v 2 + v 2 dxdτ + t t w 2 dx + C Ω 2 t t w 2 dxdτ C Ω Ω 2 Ω t t v 2 dx, Ω 2 t w 2 + w 2 dxdτ t v t v 2 dxdτ. The regularty assumptons mply that t v L 2 Ω and t w L 2 Ω 2 can be estmated by the H 2 -norm of v and w. Addng and, makng use of estmates for t u, v and w, and applyng Gronwall s Lemma, gve the desred estmates. Lemma 2.6. Exstence & Unqueness Let Assumpton 2. be fulflled. Then there exsts a unque global-n-tme weak soluton n the sense of Defnton 2.2. Proof. The Lpschtz contnuty of f, local Lpschtz contnuty of η and the boundedness of u and r on Γ ensure the unqueness result. The exstence of weak solutons follows by a standard Galerkn approach, [4], usng the a pror estmates n Lemmata 2.3, 2.4 and 2.5.

11 8 UNFOLDING AND CORRECTOR ESTIMATES 2.3. Unfolded lmt equatons. We defne Ω nt = Int k Z 3{Y k, Y k Ω}, Γ,nt = k Z 3{Γ k, Y k Ω}, R n = R n {Y + ξ, ξ Z n,l }, Ω = {x R n : dstx, Ω < l n}, l =, 2. Defnton 2.7. [4, 5, 7]. For any functon φ Lebesgue-measurable on perforated doman Ω, the unfoldng operator TY : Ω Ω Y, =, 2, s defned by φ [ ] x TY φx, y = + y a.e. for y Y Y, x Ω nt, a.e. for y Y, x Ω \ Ω nt, where k := [ x] denotes the unque nteger combnaton Σ3 k j e j of the perods such that x [ x] belongs to Y, 2. For any functon φ Lebesgue-measurable on oscllatng boundary Γ, the boundary unfoldng operator TΓ : Γ Ω Γ, =, 2 s defned by ] T Γ φx, y = φ x + y Y a.e. for y Γ, x Ω nt, a.e. for y Γ, x Ω \ Ω nt. We note that for w H Ω t holds that T Y w Ω = T Y w Ω Y. Lemma 2.8. Under the Assumpton 2., there exst u, v, w L 2, T ; H Ω H, T ; L 2 Ω, ũ, ṽ L 2, T Ω; H pery, w L 2, T Ω; H pery 2, and r H, T, L 2 Ω Γ such that up to a subsequence for and TY u u, TY v v n L 2, T Ω; H Y, t TY u t u, t TY v t v n L 2, T Ω Y, TY 2 w w, t TY 2 w t w n L 2, T Ω; H Y 2, TY u u + y ũ n L 2, T Ω Y, TY v v + y ṽ n L 2, T Ω Y, TY 2 w w + y w n L 2, T Ω Y 2, T T T Γ r r, t TΓ r t r n L 2, T Ω Γ, Γ u u n L 2, T Ω Γ, Γ 2 v v, TΓ 2 w w n L 2, T Ω Γ Proof. Applyng estmates n Lemmata 2.3, 2.5 and Convergence Theorem [7, 8], see Theorem 5.3 n Appendx, mples the convergences for u, v, w n 2. The strong convergence of r s acheved by showng that TΓ r s a Cauchy sequence n L 2, T Ω Γ, for the proof see [, 6]. A pror estmate for t r and the convergence propertes of TΓ, [7], mply the convergences of TΓ t r. To show the convergences 3, we make use of the trace theorem, [9], and of the strong convergence of TY u as,.e. TΓ u u L 2,T Ω Γ C TY u u L 2,T Ω;H Y as.

12 UNFOLDING AND CORRECTOR ESTIMATES 9 Theorem 2.9. Under the Assumpton 2., the sequences of weak solutons of the problem -4 converges as to a weak soluton u, v, w, r of a macroscopc model,.e. u, v, w L 2, T ; HΩ H, T ; L 2 Ω, r H, T ; L 2 Ω Γ and u, v, w, r satsfy the macroscopc equatons T u t uφ + D u t, y u + y ωu j φ + y φ + fu, vφ dydxdt Ω Y x j T = ηu, rφ dγ y dxdt, Ω Γ T v t vφ + D v t, y v + y ωv j φ + y φ fu, vφ dydxdt Ω Y x j T = ayw byvφ dγ y dxdt, 4 Ω Γ 2 T w t wφ 2 + D w t, y w + y ωw j φ 2 + y φ2 dydxdt Ω Y 2 x j T = ayw byvφ 2 dγ y dxdt, Ω Γ 2 T T t rψdγ y dxdt = ηu, rψdγ y dxdt, Ω Γ Ω Γ for φ, φ 2 L 2, T ; HΩ, φ L 2, T Ω; HperY, φ 2 L 2, T Ω; HperY 2 and ψ L 2, T Ω Γ, where ωu, j ωv j and ωw j are solutons of the correspondent unt cell problems y D ζ t, y y ω j ζ = D ζ t, y ω j ζ ν = 3 k= y D w t, y y ω j w = D w t, y ω j w ν = 3 k= yk D kj ζ t, y n Y, ζ = u, v, 5 D kj ζ t, yν k on Γ Γ 2, ω j ζ s Y -perodc, ω j ζ ydy =, Y 3 k= 3 k= yk D kj w t, y n Y 2, 6 D kj w t, yν k on Γ 2, ω j w s Y -perodc, Y 2 ω j wydy =. Proof. Due to consdered geometry of Ω and Ω 2 we have T T u φdxdt = TY u TY φdydxdt, =, 2. Ω Y Ω Applyng the unfoldng operator to 5-8, usng TY D t, x = D t, y, {u, v} and TY 2 D w t, x = D wt, y, consderng the lmt as and the convergences stated n Theorem 2.8, we obtan the unfolded lmt problem. Smlarly as for mcroscopc problem, usng local Lpschtz contnuty of η and f and boundedness of macroscopc solutons, whch follows drectly from the boundedness of mcroscopc solutons, we can show the

13 UNFOLDING AND CORRECTOR ESTIMATES unqueness of a soluton of the macroscopc model. Thus the whole sequence of mcroscopc solutons converge to a soluton of the unfolded lmt problem. The functons ũ, ṽ, w are defned n terms of u, v, w and solutons ω j u, ω j v, ω j w of unt cell problems 5 and 6, see [, 6]. 3. Corrector estmates Frst of all, we ntroduce the defnton of local average and averagng operators. After that, we show some techncal estmates needed n the followng. Defnton 3.. [2, 4]. For any φ L p Ω, p [, ] and =, 2, we defne the local average operator mean n the cells M Y : L p Ω L p Ω M Y φx = TY Y φx, ydy = φydy, x Ω. Y n Y [ x ]+Y 2. The operator Q : L p Ω,2 W, Ω, =, 2 s defned as Q nterpolaton of MY φ,.e. Q φξ = M Y φξ for ξ Z n and Q φx = k {,} n Q φξ + k x k... x kn n for x Y + ξ, ξ Z n, where for x Y + ξ and k = k,..., k n {, } n ponts x k l l x l ξ l x k, f k l l =, l = x l ξ l, f k l =. are gven by 3. The operator Q : W,p Ω W, Ω s defned by Q φ = Q Pφ Ω, where Q s gven n 2. and P : W,p Ω W,p R n s an extenson operator, n the case there exsts P, such that Pφ W,p R n C φ W,p Ω. Note TY M Y φ = M Y φ for φ L p Ω and M Y φx = M Y TY φx, addtonally x k... x kn n =. k {,} n Defnton 3.2. [7, 8]. For p [ + ] and =, 2, the averagng operator UY : L p Ω Y L p Ω s defned as Φ [ ] x + z, { } x dz for a.a. x Ω UY Y Y Y,nt, Φx = Y for a.a. x Ω \ Ω,nt. 2. UΓ : L p Ω Γ L p Γ s defned as Φ [ ] x + z, { } x dz for a.a. x Γ UΓ Y Y Y,nt, Φx = Y for a.a. x Γ \ Γ,nt. For ω HperY, due to y ω y = y T Y ω x = T Y x ω x and U Y y ω y = UY T Y x ω x = x ω x = yω x, we have that U Y y ω y = y ω x.

14 UNFOLDING AND CORRECTOR ESTIMATES 3.. Basc estmates. In ths subsecton, we prove some techncal estmates, used n the dervaton of corrector estmates. Proposton 3.3. For φ L 2, T ; H Ω and φ 2 L 2, T ; H Ω we have φ M Y φ L 2,T Ω C φ L 2,T Ω, φ 2 M Y φ 2 L 2,T Ω C φ 2 L 2,T Ω. 7 Proof. Ths proof s smlar to [2]. For φ L 2, T ; H Ω we can wrte x φ ξ+y x M Y φ ξ L 2, T ; H ξ + Y wth ξ + Y Ω. Usng Y Y and applyng Poncaré nequalty, we obtan T ξ+y T C n φ M Y φ ξ 2 dxdt = T y φ y 2 dydt = C 2 ξ+y φ y Y ξ+y x φ x 2 dxdt. φ zdz 2 n dydt ξ+y ξ+y Then, we add all nequaltes for ξ Z n, such that ξ + Y Ω, and obtan the frst estmate n 7. The second estmate follows from the decomposton of Ω nto ξ Z nξ + Y and Poncaré s nequalty as n the prevous estmate. Lemma 3.4. For φ L 2, T ; H 2 Ω, φ 2 L 2, T ; H Ω and ω H pery, we have the followng estmates φ M Y φ L 2,T Ω C φ L 2,T ;H 2 Ω, M Y x φ Q Y x φ y ω L 2,T Ω C φ L 2,T ;H 2 Ω ω L 2 Y, Q Y φ 2 M Y φ 2 L 2,T Ω C φ 2 L 2,T Ω, Q Y φ φ L 2,T Ω C φ L 2,T Ω, Q Y φ 2 φ 2 L 2,T Ω C φ 2 L 2,T Ω, 8 φ TΓ φ L 2,T Ω Γ C φ L 2,T Ω + C φ L 2,T Ω, Q Y φ 2 L 2,T Ω C φ 2 L 2,T Ω, Q Y ωy ωy L 2 Y C y ω L 2 Y, T Y Q Y φ 2 Q Y φ 2 L 2 Ω Y C φ 2 L 2,T Ω. Proof. The frst nequalty follows drectly from the frst estmate n 7 appled to φ. To show the second nequalty, we use the defnton of the operator Q, the equalty k {,} x k n... x kn n =, and obtan Q Y φx M Y φx = Q Y φξ + k M Y φξ x k... x kn n. k {,} n

15 2 UNFOLDING AND CORRECTOR ESTIMATES Then, t follows ξ+y 2 n Q Y φx M Y φx 2 x 2 y ω dx Q Y φξ + k Q Y φξ 2 Y n y ωy 2 dy. k {,} n For any φ W,p IntY Y + e j, the followng estmate holds M Y +e j φ M Y φ = M Y φ + e j φ φ + e j φ L p Y C φ L p Y Y +e j. Thus, by the defnton of Q Y φx and by a scalng argument ths mples Q Y φξ + k Q Y φξ C φ L 2 ξ+y ξ+k+y. 9 We sum over ξ Z n wth ξ + Y Ω and obtan the desred estmate. Usng 9 we obtan also that Q Y φ M Y φ 2 dx Ω 2 C n φ 2 L 2 ξ+y ξ+k+y 2 C φ 2 dx. k {,} n Ω ξ+y Ω In the same way, usng the estmates stated n Proposton 3.3, the fourth and ffth estmates n 8 follows from: Ω Γ Q Y φ 2 φ 2 L 2,T Ω Q Y φ 2 M Y φ 2 L 2,T Ω + M Y φ 2 φ 2 L 2,T Ω C φ 2 L 2,T Ω. For φ H Ω applyng the trace theorem to a functon n L 2 Γ yelds φ TΓ φ 2 dγdx φ M Y φ 2 + M Y φ TΓ φ dγdx 2 C 2 Γ Ω C 2 Γ 2 C φ 2 dx + C Ω Ω Γ Ω Y φ 2 dx + C φ 2 dx + Ω M Y φ T Y φ 2 + y M Y φ T Y φ 2 dydx M Y φ φ 2 dx + φ 2 dx. Ω Y y T Y φ 2 dydx Ω Ω To obtan an estmate for the gradent of Q Y φ 2, wth φ 2 L 2, T ; H Ω, we defne k j = k,..., k j, k j+,..., k n, k j = k,..., k j,, k j+,..., k n, k j = k,..., k j,, k j+,..., k n and calculate Q Y φ 2 x j = kj Q Y φ 2 ξ + k j Q Y φ 2 ξ + k j x k... x k j j... xk j+ j+ xkn n. Now, applyng 9 we obtan the estmates for Q Y φ 2 n L 2, T Ω.

16 UNFOLDING AND CORRECTOR ESTIMATES 3 For y Y we have Q Y ωyy ωy = Q Y ωk ωyȳ k... ȳn kn, where k {,} n ȳ k y l l ξ l, f k l =, l =. The Poncaré s nequalty and the perodcty of ω y l ξ l, f k l = mply the estmate for Q Y ωy ωy. To derve the last estmate, we consder T Y Q Y φ 2 Q Y φ 2 L 2 Ω Y T Y Q Y φ 2 M Y Q Y φ 2 L 2 Ω Y + M Y Q Y φ 2 Q Y φ 2 L 2 Ω Y C Q Y φ 2 M Y Q Y φ 2 L 2 Ω +C M Y Q Y φ 2 Q Y φ 2 L 2 Ω C Q Y φ 2 L 2 Ω C φ 2 L 2 Ω Perodcty defect. In the dervaton of error estmates we use a generalzaton of the Theorem 3.4 proved n [2] for functons defned n a perforated doman: Theorem 3.5. For any φ H Ω, =, 2, there exsts ˆψ L 2 Ω; H pery : Here φ = Q Y φ. ˆψ L 2 Ω;H Y C φ L 2 Ω n, T Y φ φ y ˆψ L 2 Y ;H Ω C φ L 2 Ω n. The proofs of Theorem 3.5 go the same lnes as n [2, Theorem 3.4], usng the estmates T Y φ L 2 Ω Y C φ L 2 Ω, Q Y φ L 2 Ω C φ L 2 Ω Error estmates. Under addtonal regularty assumptons on the soluton of the macroscopc problem, we obtan a set of error estmates. We emphasze here agan that the most mportant pont s that only H -regularty for the solutons of the mcroscopc model and of the cell problems s requred. Theorem 3.6. Suppose u, v, w, r are solutons of the mcroscopc problem -4 and u, v, w L 2, T ; H 2 Ω H, T Ω, r H, T ; L 2 Ω Γ are solutons of the macroscopc equatons 4. Then we have the followng corrector estmates: u u L 2,T Ω + u u v v L 2,T Ω + v v w w L 2,T Ω 2 + w w Q Y xj u y ωu j 2 L 2,T Ω C 2, Q Y xj v y ωv j 2 L 2,T Ω C 2, Q Y 2 xj w y ωw j 2 L 2,T Ω 2 C 2, 2 r U Γ rt, x, y L 2,T Γ C 2.

17 4 UNFOLDING AND CORRECTOR ESTIMATES 4. Proof of Theorem 3.6. We defne dstance functon ρx = dstx, Ω, domans ˆΩ ρ,n = {x Ω, ρx < } and ˆΩ,ρ,n = {x Ω, ρx < }, where ρ = nf{ ρ, }. Defnton of ρ yelds x ρ L Ω n = xρ L ˆΩ ρ,n n =. 2 Then, for Φ H 2 Ω and ω j estmates, [2], H Y, =, 2, j = u, v, w, we obtan the followng Φ L 2 ˆΩ + Q ρ,n n Y Φ L 2 ˆΩ + M ρ,n n Y Φ L 2 ˆΩ C ρ,n n 2 Φ H 2 Ω, ω j + ω j C L 2 ˆΩ 2 y ω j L 2,ρ,n L 2 ˆΩ Y n,,ρ,n n ρ x Φ L 2 Ω n xφ L 2 ˆΩ ρ,n n C 2 Φ H 2 Ω, 2 x ρ xj Φ L 2 Ω n C 2 + Φ H 2 Ω, x ρ Q Y xj Φω j C 2 Φ H 2 Ω ω j L 2 L 2 Ω Y, ρ x Q Y xj Φω j C Φ H 2 Ω ω j L 2 L 2 Ω Y. Now, for φ L 2, T ; H Ω gven by φ x = u x ux ρ x x Q Y xj uxωu j we consder an extenson φ from, T Ω nto, T Ω such that φ L 2,T Ω C φ L 2,T Ω and φ L 2,T Ω C φ L 2,T Ω. Due to zero boundary condtons such extenson can be defned for whole Ω. Notce that Q Y xj u and u are n L 2, T ; H Ω, but not n L 2, T ; HΩ. We consder φ L 2, T ; HΩ and ˆψ L 2, T Ω, HperY, gven by Theorem 3.5, as test functons n the macroscopc equaton 4 for u: τ t u φ u + D u y u + y ωu j φ + y ˆψ Ω Y x dydxdt j τ + fu, v φ τ dydxdt + ηu, r φ dγdxdt =. Ω Y Ω Γ In the frst term and n the last two ntegrals we replace φ by M Y φ, φ by TΓ φ, and u by TY u. As next step, we ntroduce ρ n front of u and xj u and replace φ by Q Y φ. Now, usng Theorem 3.5, we replace φ + y ˆψ, by TY φ, where φ = Q Y φ and obtan τ + τ t TY um Y φ + D u yρ u + Ω Y Ω Y T Y fu, vm Y φ dydxdt + τ u y ωu j TY x φ dydxdt j Ω Γ ηu, rt Γ φ dγdxdt = R u,

18 where R u = τ Ω Y +ρ D u u + UNFOLDING AND CORRECTOR ESTIMATES 5 [ t u T Y um Y φ + t u φ M Y φ u y ωu j Q Y x φ φ + TY φ φ y ˆψ j +ρ u D u u + y ωu j φ x + y ˆψ + fu, v φ M Y φ j ] τ +f TY fm Y φ dydxdt + ηu, rtγ φ φ dγdxdt. Ω Γ Then we remove ρ, replace u by M Y u, xj u by M Y xj u and, usng M Y φ = T Y M Y φ, we apply the nverse unfoldng τ + Ω τ t um Y φ + Du M Y u + Ω fu, vm Y φ dxdt + τ x M Y xj u y ωu φ j dxdt Ω Γ ηu, rt Γ φ dγdxdt = R u + R 2 u, where R 2 u = τ Ω Y [ ρ D u y u + +D u y M Y u u + xj u y ωuy j TY φ M Y xj u xj u ] y ωuyt j Y φ dydxdt. Introducng ρ n front of M Y xj u and replacng M Y φ by φ, M Y u by u, M Y xj u by Q Y xj u yeld where τ = R 3 u = +D u Ω τ τ Ω [ t uφ + Du u + x ] ρ Q Y xj u y ωu j φ + fu, vφ dxdt Ω Γ ηu, rt Y φ dγdxdt + R u + R 2 u + R 3 u, 22 [ t u + f φ M Y φ + ρ D u u M Y u + x M Y xj u y ωu j φ ρ Q Y xj u M Y xj u x ] y ωu φ j dxdt.

19 6 UNFOLDING AND CORRECTOR ESTIMATES Now, we subtract from the equaton for u the equaton 22 and obtan for the test functon φ = u u ρ τ D u Ω n Q Y xj uω j u the equalty [ t u uu u ρ Q Y xj uωu j + u u ρ Q Y xj u y ωu j u u + fu, v fu, v u u ρ Q Y xj uωu ] j dxdt + τ Ω Γ ηt u, T r ηu, r T Γ u u ρ x ρ Q Y xj u ωu j Q Y xj uωu j dγdxdt = Ru, where R u = Ru + Ru 2 + Ru. 3 We consder ψ = TΓ r r as a test functon n the equatons for TΓ r and r and, usng local Lpschtz contnuty of η and boundedness of u, u, r, r, obtan τ τ t TΓ r r 2 dγdxdt C T Γ r r 2 + TΓ u u 2 dγdxdt. Ω Γ Ω Γ Applyng Gronwall s nequalty and consderng T Γ r x, y = r y yeld TΓ r r 2 L 2 Ω Γ C T Γ u u 2 L 2,τ Ω Γ + T Γ r r 2 L 2 Ω Γ C TΓ u u 2 L 2,τ Ω Γ + T Γ u u 2 L 2,τ Ω Γ. Then, for the boundary ntegral usng the estmate n Lemma 3.4 we obtan τ ηtγ r, TΓ u ηr, utγ φ dγdxdt Ω Γ C TΓ r r L 2,τ Ω Γ + TΓ u u L 2,τ Ω Γ φ L 2,τ Γ C u u L 2,τ Ω + u u L 2,τ Ω + u L 2,τ Ω φ L 2,τ Ω + φ L 2,τ Ω. 23 Therefore, the ellptcty assumpton, the Lpschtz contnuty of f and Young nequalty, appled to the estmate for the boundary ntegral 23, mply τ C Ω τ t û ρ Q Y xj uωu j 2 + û ρ τ + 2 Ω Ω û ρ Q Y xj uωu j 2 + ˆv ρ u 2 dxdt + R u + C u, Q Y xj u y ωu j 2 dxdt Q Y xj vωv j 2 dxdt

20 where û = u u, ˆv = v v and τ Cu := C 2 Ω UNFOLDING AND CORRECTOR ESTIMATES 7 Q Y t xj uω j u Q Y xj uω j u 2 + Q Y xj uω j u 2 + Q Y xj vω j v 2 + Q Y xj u y ω j u 2 dxdt + C τ ˆΩ,ρ,n Q Y xj uωu j 2 dxdt C 2 u 2 L 2,T ;H 2 Ω + 2 u 2 H,T Ω + u 2 L 2,T ;H 2 Ω ωu 2 H Y n +C 2 v 2 L 2,T ;H Ω ω v 2 L 2 Y n. Here we used that 2 ρ Q Y xj u ω j u 2 dx 2 Q Y xj uω j u 2 dx + Q Y xj uω j u 2 dx. Ω Ω ˆΩ,ρ,n The estmates of the error terms n the subsecton 4. mply R u = R u + R 2 u + R 3 u /2 C + u H,T Ω + u L 2,T ;H 2 Ω + v L 2,T ;H Ω + r L 2,T Ω Γ φ L 2,T ;H Ω. Then, applyng Young s nequalty, we obtan τ C Ω τ t û ρ Q xj uωu j 2 + û ρ Ω Q Y xj u y ωu j 2 dxdt û ρ Q Y xj uωu j 2 + ˆv ρ Q Y xj uωv j 2 dxdt +C u 2 H,T Ω + u 2 L 2,T ;H 2 Ω + ω u 2 H Y n +C 2 v 2 L 2,T ;H Ω + ωv 2 H Y n + 2 r 2 L,T Ω Γ. Smlarly, estmates for v v n Q Y xj vωv j and w w n Q Y 2 xj wωw j are obtaned. The only dfference s the boundary term. Applyng the trace theorem and estmates n Lemma 3.4, the boundary term can be estmated by Ω Γ 2 C ayw byv φ aytγ 2 w bytγ 2 vtγ 2 φ dγdx w T Γ2 w + v TΓ 2 v TΓ 2 φ + w + v φ M Y φ Ω Γ 2 +w + v M Y φ TΓ 2 φ dγdx C v H Ω + w H Ω φ H Ω.

21 8 UNFOLDING AND CORRECTOR ESTIMATES Thus, we obtan for ˆv = v v and ŵ = w w τ C C τ Ω τ t ˆv ρ Q Y xj vωv j 2 + ˆv ρ Q Y xj v y ωv j 2 dxdt û ρ Q Y xj uωu j 2 + ˆv ρ Ω ŵ ρ Q Y 2 xj wωw j ŵ ρ Ω 2 Q Y xj vωv dxdt j 2 + Q Y 2 xj w y ωw j 2 dxdt +C v 2 L 2,T ;H 2 Ω + v 2 H,T Ω + ωv 2 H Y n +C 2 u 2 L 2,T ;H Ω + w 2 L 2,T ;H Ω + Cv, τ t ŵ ρ Q Y 2 xj wωw j 2 + ŵ ρ Q Y 2 xj w y ωw dxdt j 2 C C τ Ω 2 τ Ω =j ˆv ρ Q Y xj vωv j ˆv ρ Ω 2 = ŵ ρ Q Y 2 xj wωw j ŵ ρ +C w 2 L 2,T ;H 2 Ω + w 2 H,T Ω +C 2 v 2 L 2,T ;H Ω + C w, Q Y xj v y ωv dxdt j 2 + Q Y 2 xj w y ωw j 2 dxdt + ωv 2 H Y n where τ C v := C 2 Ω Q Y t xj vω j v Q xj vω j v 2 + Q Y xj uω j u 2 + Q Y xj vω j v 2 + Q Y xj v y ω j v 2 dxdt + τ +C 2 Ω 2 = τ ˆΩ,ρ,n Q Y2 xj wω jw 2 + Q Y2 xj w y ω jw 2 dxdt Q Y xj vω j v 2 dxdt C 2 v 2 L 2,T ;H 2 Ω + 2 v 2 H,T Ω + v 2 L 2,T ;H 2 Ω ω v 2 H Y n + 2 C u 2 L 2,T ;H Ω ω u 2 L 2 Y n + 2 C w 2 L 2,T ;H Ω ω w 2 H Y 2 n

22 UNFOLDING AND CORRECTOR ESTIMATES 9 and C w := 2 C τ Ω 2 Q Y 2 t x wωw j 2 + Q Y2 x wωw j 2 + Q Y2 xj wωw j 2 + Q Y2 x w y ωw j 2 dxdt + 2 C τ + ˆΩ 2,ρ,n τ Ω Q Y xj vωv j 2 + Q Y xj v y ωv j 2 dxdt Q Y2 xj wωw j 2 dxdt 2 v 2 L 2,T ;H Ω ω v 2 H Y n +C w 2 L 2,T ;H 2 Ω + 2 w 2 L 2,T ;H 2 Ω + 2 w 2 H,T Ω ωw 2 H Y 2 n. For suffcently small, addng the all estmates, removng ρ by usng the estmates 2, applyng Gronwall s nequalty and consderng that u = u, v = v, v = v we obtan the estmates for u, v, w, stated n the theorem. To obtan the estmate for r UΓ r, we consder the equatons for TΓ r and r wth the test functon TΓ r r. Usng the propertes of UΓ, the local Lpschtz contnuty of η, and Gronwall s nequalty, yelds Γ r U Γ r 2 dγ C TΓ r r 2 dγ y dx Ω Γ t [ û +C + 2 C Ω TΓ r r 2 dγ C Ω Γ t Q Y xj uω j u t Ω Γ T Γ u u 2 dγdτ + TΓ u M Y u 2 + M Y u u 2 dγdτ Ω Γ û Q Y xj u y ωu j 2 Q Y xj uωu j Q Y xj uωu j 2 + Q Y xj u y ωu j 2] dxdτ C + 2 u 2 L 2,T ;H 2 Ω + u 2 H,T Ω + v 2 L 2,T ;H 2 Ω + v 2 H,T Ω + w 2 L 2,T ;H 2 Ω + w 2 H,T Ω + r 2 L,T Ω Γ. 4.. Estmates of the error terms. Now, we proceed to estmatng the error terms R u, R 2 u, and R 3 u. Usng the defnton of ρ, the extenson propertes of φ, Theorem 3.5, and the estmates 2 we obtan Ω Y D u yρ u + C u L 2 ˆΩ,ρ,n + u y ωu j φ x + ˆψ dydx j y ωu j L 2 Y φ L 2 Ω + ˆψ L 2 Ω Y C /2 u H 2 Ω + y ωu j L 2 Y φ L 2 Ω.

23 2 UNFOLDING AND CORRECTOR ESTIMATES The Theorem 3.5 and the estmates 2 and 2 mply τ ρ D u y u + Ω Y xj u y ωu j T Y φ φ y ˆψ dydxdt C /2 + u L 2,T ;H 2 Ω + y ωu j L 2,T Y φ L 2,T Ω. We notce M Y φ = M Y φ and usng estmates 2 and 2, Lemma 3.4, the fact that φ s an extenson of φ from Ω nto Ω and φ = φ a.e n, T Ω, mples τ Ω Y ρ D u u + ρ D u u + u y ωu j Q x Y φ φ dydxdt j u y ωu j L x 2,τ Ω Y Q Y φ φ L 2,τ Ω j C u L 2,T ˆΩ,ρ,n + 2 u L 2 + ωu j L 2 Y φ L 2,τ Ω C /2 + u L 2,T ;H 2 Ω + ωu j L 2 Y φ L 2,τ Ω. Applyng the estmates n Lemma 3.4, yelds τ Ω Y t u T Y u M Y φ + t u φ M Y φ dydxdt C t u L 2,T Ω φ L 2 Ω + t u L 2 Ω φ L 2 Ω. Due to Lpschtz contnuty of f, we can estmate τ Ω Y fu, v TY fu, vm Y φ + fu, v φ M Y φ dydxdt C u L 2,T Ω + v L 2,T Ω φ L 2,τ Ω +C + u L 2,T Ω + v L 2,T Ω φ L 2,τ Ω. For the boundary ntegral we have τ ηu, rtγ φ φ dγdxdt ηu, r L 2,τ Ω Γ Ω Γ T Γ φ M Y φ L 2,τ Ω Γ + M Y φ φ L 2,τ Ω Γ C + u L 2,T Ω + r L,T Ω Γ T Y φ M Y φ L 2,τ Ω;H Y + M Y φ φ L 2,τ Ω C + u L 2,T Ω + r L,T Ω Γ φ L 2,τ Ω.

24 UNFOLDING AND CORRECTOR ESTIMATES 2 Thus, collectng all estmates from above we obtan the estmate for R u: Ru C /2 + u L 2,T ;H 2 Ω + ωu j L 2 Y φ L 2,τ Ω Usng the estmates 2 mples τ +C u H,T Ω + v L 2,T ;H Ω φ L 2,τ;H Ω. Ω ρ D u x M Y xj u y ωu j φ dxdt x M Y xj u L 2,τ ˆΩ yωu j,ρ,n L 2 ˆΩ φ L 2,τ Ω,ρ,n C u L 2,T ;H 2 Ω y ωu j L 2 Y φ L 2,τ Ω. Thus, the last estmate and applyng the estmates 8 and 2 yelds R 2 u u L 2,τ ˆΩ nt,ρ, + yω u L 2 Y n n T Y φ L 2,τ Ω Y +C u L 2,τ;H 2 Ω + y ω u L 2 Y n n T Y φ L 2,τ Ω Y /2 + C u L 2,T ;H 2 Ω + y ω u L 2 Y n n φ L 2,τ Ω. Due to estmates n 2 and n Lemma 3.4 we obtan also Ru 3 C t u L 2,T Ω + f L 2,T Ω + u L 2,T ;H 2 Ω y ω u L 2 Y n n + 2 u L 2,T Ω + 2 u L 2,T Ω y ω u L 2 Y n n φ L 2,τ Ω. In the smlar way we show the estmates for the error terms n the equatons for v and w: R v C 2 + v L 2,T ;H 2 Ω + v H,T Ω + u L 2,T ;H Ω φ 2 L 2,τ;H Ω, + w L 2,T ;H Ω R w C 2 + w L 2,T ;H 2 Ω + w H,T Ω + v L 2,T ;H Ω φ3 L 2,τ;H Ω 2. References [] R.E. Beddoe, H.W. Dorner, Modellng acd attack on concrete: Part. The essental mechansms. Cement and Concrete Research 3525, [2] M. Böhm, F. Jahan, J. Devnny, G. Rosen, A movng-boundary system modelng corroson of sewer ppes. Appl. Math. Comput ,

25 22 UNFOLDING AND CORRECTOR ESTIMATES [3] V. Chalupecký, T. Fatma, A. Muntean, Multscale sulfate attack on sewer ppes: Numercal study of a fast mcro-macro mass transfer lmt. Journal of Math-for-Industry 22, 2B-7, 7 8. [4] D. Coranescu, A. Damlaman, G. Grso, Perodc unfoldng and homogenzaton, SIAM J. Math. Anal., 428, 4, [5] D. Coranescu, P. Donato, R. Zak, Perodc unfoldng and Robn problems n perforated domans, C. R. Acad. Sc. Pars, 34226, [6] D. Coranescu, P. Donato, R. Zak, Asymptotc behavor of ellptc problems n perforated domans wth nonlnear boundary condtons, Asymptotc Analyss, 5327, [7] D. Coranescu, P. Donato, R. Zak, The perodc unfoldng method n perforated domans, Portugalae Mathematca, 6326, [8] D. Coranescu, A. Damlaman, P. Donato, G. Grso, R. Zak, The perodc unfoldng method n domans wth holes, 2, preprnt. [9] L.C. Evans, Partal Dfferental Equatons, AMS, Phladelpha, NY, 26. [] T. Fatma, A. Muntean, Sulfate attack n sewer ppes : dervaton of a concrete corroson model va two-scale convergence. CASA Report No. -7, Technsche Unverstet Endhoven 2. [] T. Fatma, N. Arab, E.P. Zemskov, A. Muntean, Homogenzaton of a reacton-dffuson system modelng sulfate corroson n locally-perodc perforated domans. J. Engng. Math. 692, 2, [2] G. Grso, Error estmate and unfoldng for perodc homogenzaton, Asymptotc Analyss, 424, [3] G. Grso, Interor error estmate for perodc homogenzaton, Comptes Rendus Mathematque, 34 25, 3, [4] J.L. Lons, Quelques méthodes de résoluton des problèmes aux lmtes non lnéares. Edtons Dunod, Pars, 969. [5] G.M. Leberman, Second Order Parabolc Dfferental Equatons, World Scentfc, Sngapore, 996. [6] A. Marcnak-Czochra, M. Ptashnyk, Dervaton of a macroscopc receptor-based model usng homogenzaton technques, SIAM J. Math. Anal. 428,,

26 UNFOLDING AND CORRECTOR ESTIMATES 23 [7] T.L. van Noorden, A. Muntean, Homogenzaton of a locally-perodc medum wth areas of low and hgh dffusvty. European Journal of Appled Mathematcs, 2, to appear. [8] V.V. Zhkov, A.L. Pyatnsk, Homogenzaton of random sngular structures and random measures, Izv. Math., 726,, Appendx Lemma 5.. Let Ω R n be a bounded doman wth Lpschtz boundary. If z H Ω L Ω, then z L Ω. Proof. Let z H Ω L Ω. Snce C Ω s dense n H Ω, we consder a sequence of smooth functons {f n } C Ω, such that f n z n H Ω and f n L Ω z L Ω. Applyng the trace theorem, see [9], we obtan f n z n L 2 Ω. Thus, there exsts a subsequence {f n } {f n } convergng pontwse,.e., f n x zx a.e. x Ω, and, due to f n x L Ω z L Ω, follows that z L Ω z L Ω a.e. x Ω. Lemma 5.2. [4, 5]. For w L p Ω, p [,, we have T Y w L p Ω Y = Y /p w L 2 Ω,nt Y /p w L 2 Ω. 2. For u L p Γ, p [,, we have T Γ u L p Ω Γ = /p Y /p u L 2 Γ,nt /p Y /p u L 2 Γ. 3. If w L p Ω, p [, then T Y w w strongly n L p Ω Y as. 4. For w W,p Ω, < p < +, T Γ w L p Ω Γ C w L p Ω + w L p Ω n. 5. For w W,p Ω holds TY w L p Ω, W,p Y and y TY w = TY w. 6. Let v L p pery and v x = v x, then T Y v x, y = vy. 7. For v, w L p Ω and φ, ψ L p Γ holds T Y v w = T Y vt Y w and T Γ φ ψ = T Γ φt Γ ψ. Theorem 5.3. [7, 8] Let p, and =, 2.. For {φ } W,p Ω satsfes φ W,p Ω C, there exsts a subsequence of {φ } stll denoted by φ, and φ W,p Ω, ˆφ L p Ω; W,p pery, such that TY φ φ strongly n L p,p loc Ω; WperY, T Y φ φ weakly n L p Ω; W,p pery, T Y φ φ + y ˆφ weakly n L p Ω Y. 2. For {φ } W,p Ω such that φ W,p Ω C there exsts a subsequence of {φ } stll denoted by φ and φ W,p Ω, φ L p Ω; WperY,p such that T Y φ φ strongly n L p Ω; W,p Y, T Y φ φ + y φ weakly n L p Ω Y.

27 24 UNFOLDING AND CORRECTOR ESTIMATES 3. For {ψ } L p Γ such that /p ψ L p Γ C there exsts a subsequence of {ψ } and ψ L p Ω Γ such that T Γ ψ ψ weakly n L p Ω Γ. Proposton 5.4. [7, 8]. The operator UY s formal adjont and left nverse of TY,.e for φ L p Ω φx a.e. for Ω,nt, UY TY φx = a.e. for Ω \ Ω,nt. 2. For φ L p Ω Y holds U Y φ L p Ω Y /p φ L p Ω Y. Theorem 5.5. [2] For any φ H Ω, there exsts ˆφ H pery ; L 2 Ω: ˆφ H Y ;L 2 Ω C φ L 2 Ω n, T x φ φ y ˆφ L 2 Y ;H Ω n C φ L 2 Ω n Theorem 5.6. [3] For any φ H Ω there exsts ˆφ H pery ; L 2 Ω: ˆφ H Y ;L 2 Ω C φ L 2 Ω n, T x φ φ y ˆφ L 2 Y ;H Ω n C φ L 2 Ω n + C φ L 2 ˆΩ,3 n, where ˆΩ,l = {x R n : dstx, Ω < l n}. The proofs of Theorems 5.5, 5.6 and 3.5 are based on the followng fundamental results: Theorem 5.7. [2] For any φ H Y, X and X separable Hlbert space, there exsts a unque ˆφ HperY, X, =, 2, such that φ ˆφ HperY, X and ˆφ H Y,X φ H Y,X, φ ˆφ H Y,X C φ ej +Y j φ Y j H /2 Y j,x. Theorem 5.8. [2] For any Φ W,p Y and for any k, k {,..., n}, there exsts ˆΦ k W k = {φ W,p Y, φ = φ + e j, j {,..., k}}, such that Φ ˆΦ k W,p Y C k Φ ej +Y j where the constant C s ndependent on n, Y j Φ Y j W /p Y j, =, 2, = {y Y, y j = }, j {,..., n}.

28 PREVIOUS PUBLICATIONS IN THIS SERIES: Number Authors Ttle Month -34 M.E. Hochstenbach L. Rechel Combnng approxmate solutons for lnear dscrete ll-posed problems May -35 E.J. Brambley M. Darau S.W. Renstra The crtcal layer n sheared flow May -36 M. Oppeneer W.M.J. Lazeroms S.W. Renstra R.M.M. Matthej P. Sjtsma Acoustc modes n a duct wth slowly varyng mpedance and nonunform mean flow and temperature May -37 M.E. Hochstenbach N. Mcnnch L. Rechel Dscrete ll-posed leastsquares problems wth a soluton norm constrant June -38 T. Fatma A. Muntean M. Ptashnyk Unfoldng-based corrector estmates for a reactondffuson system predctng concrete corroson June Ontwerp: de Tantes, Tobas Baanders, CWI

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

arxiv: v2 [math.ap] 6 Dec 2015

arxiv: v2 [math.ap] 6 Dec 2015 Unform Regularty Estmates n Homogenzaton Theory of Ellptc System wth Lower Order Terms arxv:1507.06050v2 math.ap] 6 Dec 2015 Qang Xu School of Mathematcs and Statstcs, Lanzhou Unversty, Lanzhou, Gansu

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

u i t=0 = u i0 (x) 0, (1.2)

u i t=0 = u i0 (x) 0, (1.2) Electronc Journal of Dfferental Euatons, Vol. 8 (8), No. 9, pp. 3. ISSN: 7-669. URL: http://ede.math.txstate.edu or http://ede.math.unt.edu NONEXISTENCE OF GLOBAL SOLUTIONS TO THE SYSTEM OF SEMILINEAR

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Supporting information for: Functional Mixed Effects Model for Small Area Estimation Supportng nformaton for: Functonal Mxed Effects Model for Small Area Estmaton Tapabrata Mat 1, Samran Snha 2 and Png-Shou Zhong 1 1 Department of Statstcs & Probablty, Mchgan State Unversty, East Lansng,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

A domain decomposition method for the Oseen-viscoelastic flow equations

A domain decomposition method for the Oseen-viscoelastic flow equations A doman decomposton method for the Oseen-vscoelastc flow equatons Eleanor Jenkns Hyesuk Lee Abstract We study a non-overlappng doman decomposton method for the Oseen-vscoelastc flow problem. The data on

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

arxiv: v1 [math.ca] 6 Dec 2012

arxiv: v1 [math.ca] 6 Dec 2012 arxv:.v [math.ca] 6 Dec Pontwse strong approxmaton of almost perodc functons n S W lodzmerz Lensk and Bogdan Szal Unversty of Zelona Góra Faculty of Mathematcs, Computer Scence and Econometrcs 65-56 Zelona

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Liner Shipping Hub Network Design in a Competitive Environment

Liner Shipping Hub Network Design in a Competitive Environment Downloaded from orbit.dtu.dk on: Oct 01, 2016 Liner Shipping Hub Network Design in a Competitive Environment Gelareh, Shahin; Nickel, Stefan; Pisinger, David Publication date: 2010 Document Version Publisher's

Διαβάστε περισσότερα

arxiv: v2 [math.pr] 8 Feb 2013

arxiv: v2 [math.pr] 8 Feb 2013 Optmal Stoppng under Nonlnear Expectaton Ibrahm Ekren Nzar Touz Janfeng Zhang arxv:1209.6601v2 math.pr 8 Feb 2013 February 12, 2013 Abstract Let X be a bounded càdlàg process wth postve jumps defned on

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010 MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices A Two Sample Test for Mean Vectors wth Unequal Covarance Matrces Tamae Kawasak 1 and Takash Seo 2 1 Department of Mathematcal Informaton Scence Graduate School of Scence, Tokyo Unversty of Scence, Tokyo,

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

arxiv: v1 [math.na] 16 Apr 2017

arxiv: v1 [math.na] 16 Apr 2017 Energy estmates for two-dmensonal space-resz fractonal wave equaton Mnghua Chen, Wenshan Yu arxv:17.716v1 math.na 16 Apr 17 School of Mathematcs and Statstcs, Gansu Key Laboratory of Appled Mathematcs

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays DOI 1.763/s4956-15-4-7 Moroccan J. Pure and Appl. Anal.(MJPAA) Volume 1(1), 215, Pages 51 69 ISSN: 2351-8227 RESEARCH ARTICLE Pseudo Almost Perodc Solutons for HCNNs wth Tme-Varyng Leakage Delays Ceml

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

Διαβάστε περισσότερα

Nonlinear problem with subcritical exponent in Sobolev space

Nonlinear problem with subcritical exponent in Sobolev space Jebrl Journal of Inequaltes and Applcatons 06 06:305 DOI 0.86/s3660-06-5-3 R E S E A R C H Open Access Nonlnear problem wth subcrtcal exponent n Sobolev space Iqbal H Jebrl * * Correspondence: qbal50@hotmal.com

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα