Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays"

Transcript

1 DOI 1.763/s Moroccan J. Pure and Appl. Anal.(MJPAA) Volume 1(1), 215, Pages ISSN: RESEARCH ARTICLE Pseudo Almost Perodc Solutons for HCNNs wth Tme-Varyng Leakage Delays Ceml Tunç Abstract. In ths paper, we consder a class of hgh-order cellular neural networks (HCNNs) model wth tme-varyng delays n the leakage terms. We gve some suffcent condtons whch guarantee the exponental stablty of pseudo almost perodc solutons for the model. The obtaned results complement wth some recent ones n the lteature.the technque of proof nvolves the exponental dchotomy theory and the fxed pont theorem. An llustratve example s gven wth an applcaton. 2 Mathematcs Subject Classfcaton. 34C25, 34D4. Key words and phrases. Hgh-order cellular neural network; pseudo almost perodc soluton; exponental stablty; tme-varyng delay; leakage term. 1. Introducton It s well known that retarded functonal dfferental equatons descrbe those systems or processes whose rate of change of state s determned by ther past and present states. These equatons are frequently encountered as mathematcal models of most dynamcal process n mechancs, control theory, physcs, chemstry, bology, medcne, economcs, atomc energy, nformaton theory, etc. For example, t follows from lterature that the hgh-order recurrent neural networks (HCNNs), whch nclude both the Cohen- Grossberg neural networks and the Hopfeld neural networks as specal cases, allow hgh-order nteractons between neurons, and therefore have stronger approxmaton property, faster convergence rate, greater storage capacty, and hgher fault tolerance than the tradtonal frst-order neural networks (see Dembo et al. [1]). Hence, n the past years, hgh-order neural networks have been successfully appled n many areas, Receved Aprl 8, Accepted June 28, 215. c The Author(s) 215.Ths artcle s publshed wth open access by Sd Mohamed Ben Abdallah Unversty Ths work was supported by.yuzuncu Yl Unversty, BAP-214-FEN-B Correspondng author. Tel.:(432) ; fax:(432) Department of Mathematcs, Faculty of Scences, Yüzüncü Yıl Unversty, 658, VanTurkey. 51.

2 52 CEMIL TUNÇ such as bologcal scence, pattern recognton and optmzaton (see Psalts et al.[2], Karayanns and Venetsanopoulos [3]). In partcular, some attenton has been pad to the convergence behavor for HRNNs wth delays n the leakage terms (see [4 6] and the references theren). Recently, Xu [7] and Zhang [8] consdered the exstence and exponental stablty of the ant-perodc solutons for the followng HCNNs wth tme-varyng delays n the leakage terms: x (t) = c (t)x (t η (t)) a j (t)f j (x j (t τ j (t))) b jl (t)g j (x j (t α jl (t)))g l (x l (t β jl (t))) d jl (t) σ jl (u)h j (x j (t u))du ν jl (u)h l (x l (t u))du I (t), = 1, 2,, n, (1.1) n whch n corresponds to the number of unts n a neural network, x (t) corresponds to the state vector of the th unt at the tme t, c (t) represents the rate wth whch the th unt wll reset ts potental to the restng state n solaton when dsconnected from the network and external nputs, a j (t), b jl (t) and d jl (t) are the frst and second order connecton weghts of the neural network, respectvely, η (t) corresponds to the tme-varyng leakage delays, α jl (t), β jl (t) and τ j (t) correspond to the transmsson delays, σ jl (u) and ν jl (u) correspond to the transmsson delay kernels, I (t) denotes the external nputs at tme t, f j, g j and h j are the actvaton functons of sgnal transmsson. On the other hand, the dynamcs of delayed neural networks s manly affected by the varaton of the envronment. As mentoned n [9, p87-9] and [1, p77-94], perodcally and almost perodcally varyng envronments are the fundamental bass of the theory of natural selecton. In contrast wth perodcal effects, almost perodc effects can be encountered more often, and pseudo almost perodc effects regulate many phenomena excellently. Hence, complex repettve phenomena can be consdered as almost perodc process and an ergodc component. Therefore, the study of the exstence and stablty of almost perodc solutons and pseudo almost perodc solutons for the frst order cellular neural networks (CNNs) models wth leakage delays takes great attenton (see [11-14] and the references theren). It should be noted that to the best of our knowledge from the lterature, there s no result on the exstence of pseudo almost perodc solutons of the HCNNs wth tmevaryng delays n the leakage terms. The am of ths work s to prove the exstence and global exponental stablty of the pseudo almost perodc solutons for HCNNs (1.1). Our approach s based on the exponental dchotomy theory and contracton mappng fxed pont theorem developed n [15]. The ntal condtons assocated wth system (1.1) are of the form x (s) = ϕ (s), x (s) = ϕ (s), s (, ], = 1, 2,, n, (1.2)

3 PSEUDO ALMOST PERIODIC SOLUTIONS 53 where ϕ ( ) and ϕ ( ) are real-valued bounded and contnuous functons defned on (, ]. For convenence, we denote by R n (R = R 1 ) the set of all ndmensonal real vectors (real numbers). Let J = {1, 2,, n} and {x } = (x 1, x 2,, x n ). For any {x } R n, we let x denote the absolute-value vector gven by x = { x }, and defne x = max J x. A matrx or vector A means that all entres of A are greater than or equal to zero. A > can be defned smlarly. For matrces or vectors A 1 and A 2, A 1 A 2 (resp. A 1 > A 2 ) means that A 1 A 2 (resp. A 1 A 2 > ). BC(R, R n ) denotes the set of bounded and contnues functons from R to R n. Note that (BC(R, R n ), ) s a Banach space, where denotes the sup norm f := sup t R f BC(R, R), we set f(t). For f = nf t R f(t), f = sup f(t). t R Defnton 1.1 (see [9, 1]). Let u(t) BC(R, R n ). u(t) s sad to be almost perodc on R f, for any ε >, the set T (u, ε) = {δ : u(tδ)u(t) < ε for all t R} s relatvely dense,.e., for any ε >, t s possble to fnd a real number l = l(ε) > wth the property that, for any nterval wth length l(ε), there exsts a number δ = δ(ε) n ths nterval such that u(t δ) u(t) < ε, for all t R. We denote by AP (R, R n ) the set of the almost perodc functons from R to R n. Precsely, defne the class of functons P AP (R, R n ) as follows: { f BC(R, R n 1 r ) lm f(t) dt = }. r 2r r A functon f BC(R, R n ) s called pseudo almost perodc f t can be expressed as f = h ϕ, where h AP (R, R n ) and ϕ P AP (R, R n ). The collecton of such functons wll be denoted by P AP (R, R n ). The functons h and ϕ n above defnton are respectvely called the almost perodc component and the ergodc perturbaton of the pseudo almost perodc functon f. Defnton 1.2. Let x (t) = (x 1(t), x 2(t),, x n(t)) T be the pseudo almost perodc soluton of system (1.1). If there exst constants α > and M > 1 such that for every soluton x(t) = (x 1 (t), x 2 (t),, x n (t)) T of system (1.1) wth any ntal value ϕ(t) = (ϕ 1 (t), ϕ 2 (t),, ϕ n (t)) T satsfyng (1.2), x(t)x (t) 1 = max {max{ x (t)x (t), x (t)x (t) }} M ϕx e αt, t >, =1, 2,, n where ϕ x = max{sup max ϕ (t) x (t), sup max t 1 n t 1 n ϕ (t) x (t) }, then x (t) s sad to be globally exponentally stable.

4 54 CEMIL TUNÇ 2. Prelmnary Lemmas In ths secton, we shall frst recall some basc defntons, lemmas whch are used n what follows. Throughout ths paper, t wll be assumed that c : R (, ) s an almost perodc functon, η, τ j, α jl, β jl : R [, ) and I, a j, b jl, d jl : R R are pseudo almost perodc on R, where, j, l J. We also make the followng assumptons whch wll be used later. (H 1 ) there exst nonnegatve constants L f j, Lg j, Lh j, M g j and M j h such that f j (u) f j (v) L f j u v, g j(u) g j (v) L g j u v, h j(u) h j (v) L h j u v, and g j (u) M g j, h j(u) M h j, where u, v R, j J. (H 2 ) For, j, l J, the delay kernels σ jl, ν jl : [, ) R are contnuous, σ jl (t) e κt and ν jl (t) e κt are ntegrable on [, ) for a certan postve constant κ. (H 3 ) For each J, there exst constants α > and ξ >, such that and c c η ξ 1 α, d jl a j Lf j ξ j ξ 1 σ jl (u) du b jl (M g j Lg l ξ l M g l Lg j ξ j) ν jl (u) du(m h j L h l ξ l M h l L h j ξ j ) c α c (1 α c ) < 1. Lemma 2.1 (see [11, Lemma 2.3 ]). Let B = {f f, f P AP (R, R n )} equpped wth the nduced norm defned by f B = max{ f, f } = max{sup t R f(t), sup f (t) }, t R then, B s a Banach space. Lemma 2.2 (see [11, Lemma 3.1 ]. Assume that assumptons (H 1 ) and (H 2 ) hold. Then, for ϕ j, ϕ l P AP (R, R), σ jl (u)h j (ξ j ϕ j (t u))du, Defnton 2.1 (see [9,1]). defned on R. The lnear system ν jl (u)h l (ξ l ϕ l (t u))du P AP (R, R),, j, l J. (2.1) Let x R n and Q(t) be an n n contnuous matrx x (t) = Q(t)x(t) (2.2)

5 PSEUDO ALMOST PERIODIC SOLUTIONS 55 s sad to admt an exponental dchotomy on R f there exst postve constants k, α, projecton P and the fundamental soluton matrx X(t) of (2.2) satsfyng X(t)P X 1 (s) ke α(ts) for t s, X(t)(I P )X 1 (s) ke α(st) for t s. Lemma 2.3 (see [9]). Assume that Q(t) s an almost perodc matrx functon and g(t) P AP (R, R n ). If the lnear system (2.2) admts an exponental dchotomy, then pseudo almost perodc system has a unque pseudo almost perodc soluton x(t), and x(t) = Lemma 2.4 (see [9,1]). M[c ] = Then the lnear system x (t) = Q(t)x(t) g(t) (2.3) X(t)P X 1 (s)g(s)ds lm T t X(t)(I P )X 1 (s)g(s)ds. (2.4) Let c (t) be an almost perodc functon on R and 1 T T t c (s)ds >, = 1, 2,, n. x (t) = dag (c 1 (t), c 2 (t),, c n (t))x(t) admts an exponental dchotomy on R (It s worthwhle to menton that the exponental dchotomy n that case s wth P = I). 3. Exstence and unqueness of pseudo almost perodc solutons In ths secton, we establsh suffcent condtons on the exstence of pseudo almost perodc solutons of (1.1). Theorem 3.1. Let (H 1 ), (H 2 ) and (H 3 ) hold. Then, there exsts a unque contnuously dfferentable pseudo almost perodc soluton of system (1.1). Proof. Set x (t) = ξ 1 x (t), (3.1) then we can transform (1.1) nto the followng system x (t) = c (t) x (t η (t)) ξ 1 I (t) a j (t)f j (ξ j x j (t τ j (t))) b jl (t)g j (ξ j x j (t α jl (t)))g l (ξ l x l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j x j (t u))du ν jl (u)h l (ξ l x l (t u))du

6 56 CEMIL TUNÇ = c (t) x (t) c (t) x (s)ds ξ 1 tη (t) a j (t)f j (ξ j x j (t τ j (t))) b jl (t)g j (ξ j x j (t α jl (t)))g l (ξ l x l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j x j (t u))du ν jl (u)h l (ξ l x l (t u))du I (t), J. (3.2) Let ϕ B. Obvously, the boundedness of ϕ mples that ϕ s a unformly contnuous functon on R for J. Set f(t, z) = ϕ (t z), ( J). By Theorem 5.3 n [9, p. 58] and Defnton 5.7 n [9, p. 59], we can obtan that f P AP (R Ω) and f s contnuous n z K and unformly n t R for all compact subset K of Ω R. Ths, together wth η P AP (R, R) and Theorem 5.11 n [9, p. 6], mples that Smlarly, we have ϕ (t η (t)) P AP (R, R), J. ϕ j (t τ j (t)), ϕ j (t α jl (t)), ϕ j (t β jl (t)) P AP (R, R),, j, l J. (3.3) From (3.3), (H 1 ) and Corollary 5.4 n [9, p. 58], we have f j (ξ j ϕ j (t τ j (t))), g j (ξ j ϕ j (t α jl (t))), g l (ξ l ϕ l (t β jl (t))) P AP (R, R),, j, l J, (3.4) whch, together wth Lemma 2.2 and the fact that ϕ (t η (t)) P AP (R, R), mples and c (t) ξ 1 tη (t) ϕ (s)ds = c (t)ϕ (t) c (t)ϕ (t η (t)) P AP (R, R), J, (3.5) a j (s)f j (ξ j ϕ j (t τ j (t))) b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j ϕ j (t u))du ν jl (u)h l (ξ l ϕ l (t u))du I (t) P AP (R, R), J. (3.6) For ϕ B, we consder the pseudo almost perodc soluton x ϕ (t) of the followng nonlnear pseudo almost perodc dfferental equatons: x (t) = c (t) x (t) c (t) ϕ (s)ds ξ 1 a j (t)f j (ξ j ϕ j (t τ j (t))) tη (t)

7 PSEUDO ALMOST PERIODIC SOLUTIONS 57 b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) σ jl (u)h j (ξ j ϕ j (t u))du ν jl (u)h l (ξ l ϕ l (t u))du I (t), = 1, 2,, n. (3.7) Then, notce that M[c ] >, = 1, 2,, n, t follows from Lemma 2.4 that the lnear system x (t) = c (t) x (t), J, (3.8) admts an exponental dchotomy on R. Thus, by (3.5), (3.6) and Lemma 2.3, we obtan that the system (3.7) has exactly one pseudo almost perodc soluton: x ϕ (t) = {x ϕ (t)} Let = { F (t) = c (t) e s c (u)du [c (s) s sη (s) ϕ (u)du ξ 1 a j (s)f j (ξ j ϕ j (s τ j (s))) b jl (s)g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) d jl (s) I (s)]ds}. tη (t) ϕ (u)du ξ 1 σ jl (u)h j (ξ j ϕ j (s u))du a j (t)f j (ξ j ϕ j (t τ j (t))) b jl (t)g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) d jl (t) I (t), J. σ jl (u)h j (ξ j ϕ j (t u))du Then, {F } P AP (R, R n ), and (3.9) mples that { From (3.5), (3.6) and (3.1), we get ν jl (u)h l (ξ l ϕ l (s u))du ν jl (u)h l (ξ l ϕ l (t u))du e s c (u)du F (s)ds} P AP (R, R n ). (3.1) (3.9) (x ϕ (t)) = {(x ϕ (t)) }

8 58 CEMIL TUNÇ = {F (t) c (t) e s c (u)du F (s)ds} P AP (R, R n ). Thus, x ϕ B. Now, we defne a mappng T : B B by settng (T ϕ)(t) = x ϕ (t), ϕ B. We next prove that the mappng T s a contracton mappng of the B. In fact, n vew of (3.9), (H 1 ) and (H 3 ), for ϕ, ψ B, we have = { ((T ϕ)(t) (T ψ)(t)) } { e s c(u)du {c (s) s sη (s) (ϕ (u) ψ (u))du a j (s)(f j (ξ j ϕ j (s τ j (s))) f j (ξ j ψ j (s τ j (s)))) b jl (s)[(g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) g j (ξ j ϕ j (s α jl (s)))g l (ξ l ψ l (s β jl (s)))) (g j (ξ j ϕ j (s α jl (s)))g l (ξ l ψ l (s β jl (s))) g j (ξ j ψ j (s α jl (s)))g l (ξ l ψ l (s β jl (s))))] d jl (s)[( σ jl (u)h j (ξ j ϕ j (s u))du ( { σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ψ j (s u))du e s c (u)du [c (s) s sη (s) ν jl (u)h l (ξ l ψ l (s u))du) ν jl (u)h l (ξ l ϕ l (s u))du ν jl (u)h l (ξ l ψ l (s u))du } ν jl (u)h l (ξ l ψ l (s u))du)]}ds ϕ (u) ψ (u) du a j (s) L f j ξ j ϕ j (s τ j (s)) ψ j (s τ j (s)) b jl (s) [M g j Lg l ξ l ϕ l (s β jl (s)) ψ l (s β jl (s)) M g l Lg j ξ j ϕ j (s α jl (s)) ψ j (s α jl (s)) ]

9 PSEUDO ALMOST PERIODIC SOLUTIONS 59 d jl (s) [ σ jl (u) dum h j σ jl (u) L h j ξ j ϕ j (s u) ψ j (s u) du { e s c(u)du [c η ξ 1 a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) { { e d jl σ jl (u) du } s c(u)du (c (s) α )ds ϕ ψ B e s c(u)du d( {1 α { 1 α c s c (u)du) α ν jl (u) L h l ξ l ϕ l (s u)) ψ l (s u) du } ν jl (u) duml h ]}ds } ν jl (u) du(mj h L h l ξ l Ml h L h j ξ j )]ds ϕ ψ B ) } e s c(u)du ds ϕ ψ B } e s c du ds ϕ ψ B } ϕ ψ B, (3.12) and = { ((T ϕ) (t) (T ψ) (t)) } { [c (t) (ϕ (u) ψ (u))du tη 1 (t) a j (t)(f j (ξ j ϕ j (t τ j (t))) f j (ξ j ψ j (t τ j (t)))) b jl (t)(g j (ξ j ϕ j (t α jl (t)))g l (ξ l ϕ l (t β jl (t))) g j (ξ j ψ j (t α jl (t)))g l (ξ l ψ l (t β jl (t)))) d jl (t)( σ jl (u)h j (ξ j ϕ j (t u))du c (t) σ jl (u)h j (ξ j ψ j (t u))du ν jl (u)h l (ξ l ψ l (t u))du)] e s t s c(u)du [c (s) (ϕ (u) ψ (u))du sη (s) ν jl (u)h l (ξ l ϕ l (t u))du

10 6 CEMIL TUNÇ a j (s)(f j (ξ j ϕ j (s τ j (s))) f j (ξ j ψ j (s τ j (s)))) b jl (s)(g j (ξ j ϕ j (s α jl (s)))g l (ξ l ϕ l (s β jl (s))) g j (ξ j ψ j (s α jl (s)))g l (ξ l ψ l (s β jl (s)))) d jl (s)( σ jl (u)h j (ξ j ϕ j (s u))du σ jl (u)h j (ξ j ψ j (s u))du { [c η ξ 1 a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) d jl c { c e s c (u)du [c η σ jl (u) du ξ 1 ν jl (u)h l (ξ l ϕ l (s u))du } ν jl (u)h l (ξ l ψ l (s u))du)]ds ν jl (u) du(m h j L h l ξ l M h l L h j ξ j )]ds ϕ ψ B a j Lf j ξ j b jl (M g j Lg l ξ l M g l Lg j ξ j) From (H 3 ), we have and d jl σ jl (u) du } ν jl (u) du(mj h L h l ξ l Ml h L h j ξ j )]ds ϕ ψ B α c (1 α } c ) ϕ ψ B. (3.13) K = max{ max {1 α 1 n c < 1 α c }, max 1 n {c whch, together wth (3.12) and (3.13), yeld < 1, T ϕ T ψ B K ϕ ψ B, α c (1 α c )} < 1, whch mples that the mappng T : B B s a contracton mappng. Therefore, the mappng T possesses a unque fxed pont x = (x 1 (t), x 2 (t),, x n (t)) T B, T x = x.

11 PSEUDO ALMOST PERIODIC SOLUTIONS 61 By (3.7) and (3.9), x satsfes (3.7). So (1.1) has a unque contnuously dfferentable pseudo almost perodc soluton x = (ξ 1 x 1 (t), ξ 2 x 2 (t),, ξ n x n (t)) T. The proof of Theorem 3.1 s now completed. 4. Exponental stablty of the pseudo almost perodc soluton In ths secton, we wll dscuss the global exponental stablty of the pseudo almost perodc soluton of system (1.1). Theorem 4.1. Suppose that all condtons n Theorem 3.1 are satsfed. Moreover, assume that (1 c c )(c η < 1, J. d jl ξ 1 a j Lf j ξ j ξ 1 σ jl (u) du b jl (M g j Lg l ξ l M g l Lg j ξ j) ν jl (u) du(m g j Lg l ξ l M g l Lg j ξ j) (4.1) Then system (1.1) has at least one pseudo almost perodc soluton x (t), and x (t) s globally exponentally stable. Proof. By Theorem 3.1, (1.1) has a unque contnuously dfferentable almost perodc soluton x (t) = (x 1(t), x 2(t),, x n(t)) T. Suppose that x(t) = (x 1 (t), x 2 (t),, x n (t)) T s an arbtrary soluton of (1.1) assocated wth ntal value ϕ(t) = (ϕ 1 (t), ϕ 2 (t),, ϕ n (t)) T satsfyng (1.2). Let Then y(t) = (y 1 (t), y 2 (t),, y n (t)) T = (ξ 1 1 (x 1 (t) x 1(t)), ξ 1 2 (x 2 (t) x 2(t)),, ξ 1 n (x n (t) x n(t))) T. y (t) = c (t)y (t η (t)) ξ 1 a j (t)(f j (x j (t τ j (t))) f j (x j(t τ j (t)))) b jl (t)(g j (x j (t α jl (t)))g l (x l (t β jl (t))) g j (x j(t α jl (t)))g l (x l (t β jl (t)))) d jl (t)( σ jl (u)h j (x j (t u))du where = 1, 2,, n. σ jl (u)h j (x j(t u))du ν jl (u)h l (x l (t u))du ν jl (u)h l (x l (t u))du), (4.2)

12 62 CEMIL TUNÇ and We can choose a constant λ (, mn{κ, mn J c }) such that Γ (λ) = c λ c η eλη ξ 1 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du β ν jl (u) dum h l ν jl (u) L h l ξ l e λu du = (c λ)( c λ 1) <, (4.3) Π (λ) = (1 c c λ )[c η eλη ξ 1 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) dum h l ] ν jl (u) L h l ξ l e λu du where β = c η eλη ξ 1 = (1 c c λ )β < 1, (4.4) a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) L h l ξ l e λu du ν jl (u) dum h l, = 1, 2,, n.

13 Let ϕ x ξ = max{sup t PSEUDO ALMOST PERIODIC SOLUTIONS 63 max 1 n ξ1 ϕ (t) x (t), sup t max 1 n ξ1 ϕ (t) x (t) } (4.5) and M be a constant such that M > c λ > 1, β for all = 1, 2,..., n, (4.6) whch, together wth (4.3), yelds 1 M β c λ <, β c λ Consequently, for any ε >, t s obvous that < 1, for all J, (4.7) y(t) 1 < ( ϕ x ξ ε)e λt < M( ϕ x ξ ε)e λt for all t (, ]. In the followng, we wll show y(t) 1 < M( ϕ x ξ ε)e λt for all t >. (4.8) Otherwse, there must exst {1, 2,, n} and θ > such that { y(θ) 1 = max{ y (θ), y (θ) } = M( ϕ x ξ ε)e λθ, y(t) 1 < M( ϕ x ξ ε)e λt for all t (, θ). Note that y (s) c (s)y (s) = c (s) s sη (s) y (u)du a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s)))) b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ν jl (u)h l (x l (s u))du (4.9) ν jl (u)h l (x l (s u))du), s [, t], t [, θ].(4.1) Multplyng both sdes of (4.1) by e s c(u)du, and ntegratng t on [, t], we get y (t) = y ()e c (u)du e s c (u)du [c (s) s sη (s) y (u)du a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s))))

14 64 CEMIL TUNÇ b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ν jl (u)h l (x l (s u))du ν jl (u)h l (x l (s u))du)]ds, t [, θ]. Thus, wth the help of (4.7), we have y (θ) = y ()e θ θ c(u)du e s θ s c(u)du [c (s) y (u)du sη (s) a j (s)(f j (x j (s τ j (s))) f j (x j(s τ j (s)))) b jl (s)(g j (x j (s α jl (s)))g l (x l (s β jl (s))) g j (x j(s α jl (s)))g l (x l (s β jl (s)))) d jl (s)( σ jl (u)h j (x j (s u))du σ jl (u)h j (x j(s u))du ( ϕ x ξ ε)e c θ θ a j Lf j ξ jm( ϕ x ξ ε)e λ(sτ j(s)) ν jl (u)h l (x l (s u))du)]ds ν jl (u)h l (x l (s u))du e θ s c (u)du [c (s)η (s)m( ϕ x ξ ε)e λ(sη (s)) b jl [M g j Lg l ξ lm( ϕ x ξ ε)e λ(sβ jl(s)) M g l Lg j ξ jm( ϕ x ξ ε)e λ(sαjl(s)) ] d jl [ σ jl (u) dumj h ν jl (u) L h l ξ l M( ϕ x ξ ε)e λ(su) du σ jl (u) L h j ξ j M( ϕ x ξ ε)e λ(su) du ( ϕ x ξ ε)e c θ θ e θ s c (u)du e λs [c η eλη ν jl (u) dum h l ]ds

15 PSEUDO ALMOST PERIODIC SOLUTIONS 65 a j Lf j ξ je λτ j b jl [M g j Lg l ξ le λβ jl M g l Lg j ξ je λα jl ] d jl [ σ jl (u) dumj h σ jl (u) L h j ξ j e λu du ν jl (u) L h l ξ l e λu du ν jl (u) dum h l ]dsm( ϕ x ξ ε) θ ( ϕ x ξ ε)e c θ e c θ e (c λ)s dsβ M( ϕ x ξ ε) = M( ϕ x ξ ε)e λθ [( 1 M β c λ )e(λc )θ β c λ ] (4.11) < M( ϕ x ξ ε)e λθ, (4.12) whch, together wth (4.9), mples that y(θ) 1 = max{ y (θ), y (θ) } = y (θ) = M( ϕ x ξ ε)e λθ. (4.13) From (4.4) and (4.7), (4.1) and (4.11) yeld y (θ) c (θ)y (θ) c (θ) θ θη (θ) y (u) du a j (θ) f j (x j (θ τ j (θ))) f j (x j(θ τ j (θ))) b jl (θ) [ g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j (θ α jl (θ)))g l (x l (θ β jl (θ))) g j (x j(θ α jl (θ)))g l (x l (θ β jl (θ))) ] d jl (θ) [ σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j (θ u))du σ jl (u)h j (x j(θ u))du ν jl (u)h l (x l (θ u))du ν jl (u)h l (x l (θ u))du ν jl (u)h l (x l (θ u))du ] ν jl (u)h l (x l (θ u))du

16 66 CEMIL TUNÇ M( ϕ x ξ ε)e λθ [c ( 1 M β c λ )e(λc )θ β ( c λ 1)] < M( ϕ x ξ ε)e λθ, whch contradcts (4.13). Hence, (4.8) holds. Lettng ε, we have from (4.8) that y(t) 1 M ϕ x ξ e λt for all t >, whch mples x(t) x (t) 1 M ϕ x e λt for all t >. Ths completes the proof. 5. Example and Remark In ths secton, some examples and remarks are provded to demonstrate the effectveness of our results. Example 5.1. Consder the followng for HCNNs wth tme-varyng leakage delays: x 1(t) = [ cos t cos 2t ]x1 (t 1 sn t ) (cos t cos 2t e t4 sn 2 t )f 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 25 1 (cos t cos 3t e t4 sn 2 t )f 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos 2t sn 2 t et4 )g1(x 2 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 2 7 (cos t cos 5t e t4 sn 2 t )g2(x 2 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos 7t e t4 sn 2 t )g 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) g 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 3 (cos t cos 2t et4 sn 2 t ) 5 1 sn t et4 cos t, x 2(t) = [ where c e u h 1 (x 1 (t u))du e u h 2 (x 2 (t u))du cos t cos 3t ]x1 (t 1 cos t ) (cos t cos πt sn 2 t et4 )f 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 9 (cos t cos 2t sn 2 t et4 )f 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 1 (cos t cos πt sn t et4 )g1(x 2 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) 5 11 (cos t cos 2t e t4 sn t )g2(x 2 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 1 13 (cos t cos 3t e t4 sn t )g 1 (x 1 (t cos 2 2t cos 2 t e t4 sn 2 t )) g 2 (x 2 (t cos 2 2t cos 2 t e t4 sn 2 t )) 7 3 (cos t cos 2t et4 sn 2 t ) 1 5 et4 sn t cos t, f j (x) = 1 4 ( x cos x), g j(x) = h j (x) = cos x, e u h 1 (x 1 (t u))du e u h 2 (x 2 (t u))du (5.1)

17 PSEUDO ALMOST PERIODIC SOLUTIONS 67 and b jl (u) =, (jl 112, jl 212), σ jl (u) = v jl (u) = e u,, j, l = 1, 2. Comparng (5.1) wth (1.1) and usng some basc nformaton, t follows that c 1 = 1 4, c 1 = 1 2, c 2 = 1 4, c 2 = 1 2, η j = 1 1, Lf j = 1 2, L g j = Lh j = L h l = 1, M g j = M j h = Ml h = 1, ξ = ξ 1 = ξ k = ξ l = 1, c c η ξ 1 a j Lf j ξ ξ 1 b jl (M g j Lg l ξ l M g l Lg j ξ j), 2 2 d jl σ jl (u) du v jl (t) du(m h j L h l ξ l M h l L h j ξ j ), = ( ) ( ), (1 c c )(c η ( c ξ 1 2 d jl e u du e u du) = = α, α c (1 α c ) = < 1, 2 a j Lf j ξ ξ 1 σ jl (u) du 1 = 3[ 2 ( )] 8 1 ( 2 2 b jl (M g j Lg l ξ l M g l Lg j ξ j), v jl (t) du(m h j L h l ξ l M h l L h j ξ j ) e u du e u du)] = < 1, whch mply that (5.1) satsfes all the condtons n Theorem 3.1 and Theorem 4.1. Hence, we can conclude that system (5.1) has a unque contnuously dfferentable pseudo almost perodc soluton x (t), whch s globally exponentally stable wth the exponental convergent rate λ.1.

18 68 CEMIL TUNÇ Open Access: Ths artcle s dstrbuted under the terms of the Creatve Commons Attrbuton Lcense (CC-BY 4.) whch permts any use, dstrbuton, and reproducton n any medum, provded the orgnal author(s) and the source are credted.

19 PSEUDO ALMOST PERIODIC SOLUTIONS 69 References [1] A. Dembo, O. Farotm, T. Kalath, Hgh-order absolutely stable neural networks. IEEE Trans. Crcuts Syst. 38 (1991) [2] D. Psalts, C. H. Park, J. Hong, Hgher order assocatve memores and ther optcal mplementatons. Neural Networks 1 (1988), [3] N. B. Karayanns, A. N. Venetsanopoulos, On the tranng and performance of hgh-order neural networks. Math. Bosc. 129 (1995), no. 2, [4] Z. Chen, M. Yang, Exponental convergence for HRNNs wth contnuously dstrbuted delays n the leakage terms. Neural Comput & Applc (213) 23: [5] R. Ja, M. Yang, Convergence for HRNNs wth Unbounded Actvaton Functons and Tmevaryng Delays n the Leakage Terms. Neural Process Lett (214) 39: [6] Y. Yu, W. Jao, New Results on Exponental Convergence for HRNNs wth Contnuously Dstrbuted Delays n the Leakage Terms. Neural Process Lett (214) 39: [7] Y. Xu, Ant-perodc solutons for HCNNs wth tme-varyng delays n the leakage terms, Neural Comput & Applc (212) DOI 1.17/s [8] A. Zhang, Exstence and exponental stablty of ant-perodc solutons for HCNNs wth tmevaryng leakage delays. Adv. Dfference Equ. 213, 213:162, 14 pp. [9] C. Zhang, Almost Perodc Type Functons and Ergodcty. Kluwer Academc/Scence Press, Bejng (23) [1] A. M. Fnk, Almost perodc dfferental equatons, Lecture Notes n Mathematcs, Vol. 377, Sprnger, Berln, [11] B. Lu, Pseudo Almost Perodc Solutons for CNNs wth Contnuously Dstrbuted Leakage Delays, Neural Processng Lett. (214) DOI 1.17/s [12] W. Wang, B. Lu, Global exponental stablty of pseudo almost perodc solutons for SICNNs wth tme-varyng leakage delays, Abstr. Appl. Anal. 214(967328) (214) [13] B. Lu, Pseudo almost perodc solutons for neutral type CNNs wth contnuously dstrbuted leakage delays, Neurocomputng 148 (215) [14] Y. Xu, New results on almost perodc solutons for CNNs wth tme-varyng leakage delays, Neural Computng & Applcatons. 25(6)(214) [15] C. Zhang, Pseudo almost perodc solutons of some dfferental equatons II, J. Math. Anal. Appl., 7-192, , [16] B. Ammar, F. Cherf, A. M. Alm, Exstence and unqueness of pseudo almost-perodc solutons of recurrent neural networks wth tme-varyng coeffcents and mxed delays, IEEE Transactons on Neural Networks and Learnng Systems, 23(1) (212)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Phasor Diagram of an RC Circuit V R

Phasor Diagram of an RC Circuit V R ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V

Διαβάστε περισσότερα

Non polynomial spline solutions for special linear tenth-order boundary value problems

Non polynomial spline solutions for special linear tenth-order boundary value problems ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010 MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

arxiv: v1 [math.ca] 6 Dec 2012

arxiv: v1 [math.ca] 6 Dec 2012 arxv:.v [math.ca] 6 Dec Pontwse strong approxmaton of almost perodc functons n S W lodzmerz Lensk and Bogdan Szal Unversty of Zelona Góra Faculty of Mathematcs, Computer Scence and Econometrcs 65-56 Zelona

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian Electronc Journal of Dfferental Equatons, Vol. 2828, No. 2, pp. 43. ISSN: 72-669. URL: http://ejde.ath.txstate.edu or http://ejde.ath.unt.edu ftp ejde.ath.txstate.edu logn: ftp NON-HOMOGENEOUS BOUNDARY-VALUE

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application; λρ-calculus Yuichi Komori komori@math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences, Chiba University Arato Cho aratoc@g.math.s.chiba-u.ac.jp Department of Mathematics, Faculty of Sciences,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Nonlinear problem with subcritical exponent in Sobolev space

Nonlinear problem with subcritical exponent in Sobolev space Jebrl Journal of Inequaltes and Applcatons 06 06:305 DOI 0.86/s3660-06-5-3 R E S E A R C H Open Access Nonlnear problem wth subcrtcal exponent n Sobolev space Iqbal H Jebrl * * Correspondence: qbal50@hotmal.com

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF 100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα