Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015"

Transcript

1 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015

2 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα

3 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 1) ΑΣΚΗΣΗ α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις του συστήματος που ορίσατε στο α) ερώτημα και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. (Μονάδες 15) ) ΑΣΚΗΣΗ Δίνεται η εξίσωση: 8x y 7 (1) α) Να γράψετε μια άλλη εξίσωση που να μην έχει καμία κοινή λύση με την εξίσωση (1). β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. (Μονάδες 15) 3) ΑΣΚΗΣΗ Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. α) Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 13) β) Δίνεται επιπλέον η πληροφορία ότι η διαφορά των ηλικιών τους είναι 5 χρόνια. Να υπολογίσετε την ηλικία του καθενός. (Μονάδες 1) 4) ΑΣΚΗΣΗ α) Με βάση τα δεδομένα του σχήματος, να προσδιορίσετε τις εξισώσεις των ευθειών (ε) και (η). (Μονάδες 1) β) Να βρείτε τις συντεταγμένες του σημείου τομής τους. (Μονάδες 13)

4 4 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 5) ΑΣΚΗΣΗ xy 8 Δίνεται το σύστημα: με παραμέτρους α,β,γir αx βy γ α) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (,3). (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να είναι αδύνατο. (Μονάδες 1) 6) ΑΣΚΗΣΗ Στο δημοτικό parking μιας επαρχιακής πόλης στις 10 το πρωί, το σύνολο των δίκυκλων και τετράτροχων οχημάτων που έχουν παρκάρει είναι 830 και το πλήθος των τροχών τους.700. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. (Μονάδες 13) β) Να βρείτε τον αριθμό των δίκυκλων καθώς και τον αριθμό των τετράτροχων οχημάτων. (Μονάδες 1) 7) ΑΣΚΗΣΗ (λ 1)x y 3 Δίνεται το σύστημα: με παράμετρο λιr 4x (λ 1)y 6 α) Αν λ 3, να δείξετε ότι το σύστημα έχει άπειρες λύσεις. Να βρείτε μια λύση. (Μονάδες 8) β) Αν λ 3, να δείξετε ότι το σύστημα είναι αδύνατο. (Μονάδες 8) γ) Αν λ 0, να δείξετε ότι το σύστημα έχει μοναδική λύση την οποία και να προσδιορίσετε. (Μονάδες 9) 8) ΑΣΚΗΣΗ Δίνονται οι ευθείες με εξισώσεις: ε 1 :x y 1 και ε :(λ 1)x y 6,με παράμετρο λιr α) Να βρείτε την τιμή του λιr ώστε οι ευθείες ε 1 και ε να είναι παράλληλες. (Μονάδες 8) ε, για λ 3. (Μονάδες 8) β) Να παραστήσετε γραφικά τις ε 1 και γ) Υπάρχει τιμή του λιr, ώστε οι ευθείες 1 ε να ταυτίζονται; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 9) 9) ΑΣΚΗΣΗ Δίνονται οι ευθείες ε :x y 5 ε και 1, ε : x 3y 9, ε 3 :3x y 7 α) i. Να βρείτε τις συντεταγμένες του σημείου τομής των ε 1, ε ii. Να βρείτε τις συντεταγμένες του σημείου τομής των ε 1, ε 3 (Μονάδες 1) β) Με τη βοήθεια του ερωτήματος (α), να δείξετε ότι το κοινό σημείο των ε και ε είναι σημείο της ε (Μονάδες 13) 3 1

5 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 5 10) ΑΣΚΗΣΗ Ένα θέατρο έχει 5 σειρές καθισμάτων χωρισμένες σε δύο διαζώματα. Η κάθε μια από τις σειρές του κάτω διαζώματος έχει 14 καθίσματα και η κάθε μια από τις σειρές του πάνω διαζώματος έχει 16 καθίσματα, ενώ η συνολική χωρητικότητα του θεάτρου είναι 374 καθίσματα. α) Αν x ο αριθμός σειρών του κάτω και y o αριθμός σειρών του πάνω διαζώματος, να εκφράσετε τα δεδομένα του προβλήματος με ένα σύστημα δύο εξισώσεων. (Μονάδες 1) β) Πόσες σειρές έχει το πάνω και πόσες το κάτω διάζωμα; (Μονάδες 13) 11) ΑΣΚΗΣΗ Δίνονται οι ευθείες: ε 1:x y 6, ε :x y 3 α) Να προσδιορίσετε αλγεβρικά το κοινό τους σημείο Μ. (Μονάδες 13) β) Να βρείτε για ποια τιμή του α, η ευθεία 3x αy α 5 διέρχεται από το Μ. (Μονάδες 1) 1) ΑΣΚΗΣΗ xy 9 Δίνεται το σύστημα: με παραμέτρους α,β,γιr αx βy γ α) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,4) (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να είναι αδύνατο και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) 13) ΑΣΚΗΣΗ x y 3 Δίνεται το σύστημα: με παραμέτρους α,β,γιr αx βy γ α) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,5) (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α,β,γ ώστε το σύστημα αυτό να είναι αδύνατο και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) 14) ΑΣΚΗΣΗ λxy Δίνεται το σύστημα:, με παράμετρο λιr. λx λy λ 1 α) Να αποδείξετε ότι για τις ορίζουσες D, D x, D y του συστήματος ισχύουν D λ(λ 1), Dx λ 1 και Dy λ(λ 1) (Μονάδες 15) β) Αν είναι λ 0 και λ 1, τότε να λύσετε το σύστημα.

6 6 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα ΘΕΜΑ 4ο 15) ΑΣΚΗΣΗ Για τις ηλικίες των μελών μιας τριμελούς οικογένειας ισχύουν τα παρακάτω: Η ηλικία της μητέρας είναι τριπλάσια από την ηλικία του παιδιού. Ο λόγος της ηλικίας το πατέρα προς την ηλικία του παιδιού ισούται με 11. Επιπλέον το άθροισμα των 3 ηλικιών και των τριών ισούται με 115 χρόνια. α) Να εκφράσετε τα δεδομένα με ένα σύστημα τριών εξισώσεων με τρείς αγνώστους. (Μονάδες 13) β) Να βρείτε την ηλικία του καθενός. (Μονάδες 1) 16) ΑΣΚΗΣΗ Δίνονται οι ευθείες ε 1 και ε με εξισώσεις x (λ )y 3, (λ )x 5y 3 αντίστοιχα και λιr α) Για τις διάφορες τιμές του λιr, να βρείτε τη σχετική θέση των δύο ευθειών. (Μονάδες 13) β) Στην περίπτωση που οι ευθείες ε 1 και ε τέμνονται, να βρείτε τις συντεταγμένες του σημείου τομής Α των δύο ευθειών. (Μονάδες 7) γ) Να βρείτε την τιμή του λιr για την οποία το σημείο Α ανήκει στην ευθεία με εξίσωση: x y 3 (Μονάδες 5) 17) ΑΣΚΗΣΗ α 1x 3y3 Δίνεται το σύστημα:, με παράμετρο αιr x α 1y 3 x,y, τότε x0 y0 β) Να βρείτε τις τιμές του αιr για τις οποίες το σύστημα: i. έχει άπειρες σε πλήθος λύσεις και να δώσετε τη μορφή τους. (Μονάδες 6) ii. δεν έχει λύση. (Μονάδες 4) γ) Να εξετάσετε τις σχετικές θέσεις των δύο ευθειών που προκύπτουν από τις α) Να αποδείξετε ότι αν το σύστημα έχει μοναδική λύση την 0 0 εξισώσεις του παραπάνω συστήματος για α 3, α, α (Μονάδες 5) 18) ΑΣΚΗΣΗ x 4y 1λ Δίνεται το σύστημα:, λιr. x 6y λ α) Να αποδείξετε ότι το σύστημα έχει λύση για οποιονδήποτε πραγματικό αριθμό λ. (Μονάδες 7) β) Να βρείτε τα x και y συναρτήσει του λ. (Μονάδες 8) γ) Να προσδιορίσετε την τιμή του λ, για την οποία οι ευθείες: x 4y 1 λ, x6y λ και 16x 16y 19 διέρχονται από το ίδιο σημείο.

7 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 7 19) ΑΣΚΗΣΗ Δίνονται οι ευθείες ε 1 : λx y 1 και ε : x λy λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει του λ. (Μονάδες 13) β) Για ποια τιμή του λ οι δύο ευθείες είναι παράλληλες; (Μονάδες 6) 3 γ) Αν οι ευθείες ε 1 και ε ταυτίζονται, να αποδείξετε ότι οι ευθείες λx λ y λ και x λy λ 1 είναι παράλληλες. (Μονάδες 6) 1. ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 0) ΑΣΚΗΣΗ Δίνεται ένα ορθογώνιο παραλληλόγραμμο με μήκος x cm, πλάτος y cm, περίμετρο ίση με 38 cm και με την ακόλουθη ιδιότητα: Αν αυξήσουμε το μήκος του κατά cm και μειώσουμε το πλάτος του κατά 4 cm, θα προκύψει ένα ορθογώνιο με εμβαδόν ίσο με το εμβαδόν του αρχικού. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. β) Να βρείτε τις τιμές των διαστάσεων x, y του ορθογωνίου. (Μονάδες 15) 1) ΑΣΚΗΣΗ y x 1 α) Να λύσετε αλγεβρικά το σύστημα (Μονάδες 15) x y 1 β) Να ερμηνεύσετε γεωμετρικά τις λύσεις του συστήματος που βρήκατε στο ερώτημα α). ΘΕΜΑ 4ο ) ΑΣΚΗΣΗ Ο Κώστας έχει τρία παιδιά. Δύο δίδυμα κορίτσια και ένα αγόρι. Στην ερώτηση πόσων χρονών είναι τα παιδιά του απάντησε ως εξής. 1. Το άθροισμα των ηλικιών και των τριών παιδιών είναι 14. Το γινόμενο της ηλικίας της κόρης μου επί την ηλικία του γιου μου είναι 4 3. Το άθροισμα των ηλικιών των κοριτσιών είναι μικρότερο από την ηλικία του αγοριού. α) Να γράψετε τις εξισώσεις που περιγράφουν τα στοιχεία 1. και. που έδωσε ο Κώστας. β) Να βρείτε τις ηλικίες των παιδιών του Κώστα. (Μονάδες 15) 3) ΑΣΚΗΣΗ Η Άλκηστη και η Ελένη αγαπούν την πεζοπορία και βρίσκονται το καλοκαίρι στην Αμοργό. Αποφασίζουν να περπατήσουν ένα μονοπάτι περίπου 16 χιλιομέτρων που συνδέει τη Χώρα με τον όρμο της Αιγιάλης. Η Άλκηστη ανηφορίζει το μονοπάτι από την Αιγιάλη για να συναντήσει την Ελένη που μένει στη Χώρα. Υπολογίζει ότι η ταχύτητά της έχει σταθερό μέτρο,4 χιλιόμετρα την ώρα. Την ίδια στιγμή, όμως,

8 8 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα ξεκινά η Ελένη να κατηφορίζει το ίδιο μονοπάτι και υπολογίζει ότι η ταχύτητά της έχει σταθερό μέτρο 4 χιλιόμετρα την ώρα. Μια δεδομένη χρονική στιγμή σε κάποιο σημείο της διαδρομής συναντά την Άλκηστη. α) Αν t είναι ο χρόνος που περπάτησαν μέχρι να συναντηθούν και s η απόσταση του σημείου συνάντησης από την Αιγιάλη, να κατασκευάσετε ένα σύστημα δύο εξισώσεων με αγνώστους το t και το s, το οποίο να περιγράφει την παραπάνω κατάσταση. β) Σε πόση απόσταση από τη Χώρα και ποια χρονική στιγμή θα συναντηθούν οι δυο κοπέλες; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 15) 4) ΑΣΚΗΣΗ Ένα ορθογώνιο παραλληλόγραμμο με περίμετρο ίση με 4 cm έχει την ακόλουθη ιδιότητα: αν αυξήσουμε το μήκος του κατά 3 cm και ελαττώσουμε το πλάτος του κατά cm, θα προκύψει ένα ορθογώνιο με εμβαδόν διπλάσιο του εμβαδού του αρχικού ορθογωνίου. α) Να εκφράσετε την παραπάνω κατάσταση με ένα σύστημα δυο εξισώσεων με δυο αγνώστους. β) Να βρείτε τις διαστάσεις του ορθογωνίου. (Μονάδες 15) 5) ΑΣΚΗΣΗ xy 6 α) Να λύσετε το σύστημα Σ 1: x y 13 xy 6 β) Είναι όλες οι λύσεις του συστήματος Σ 1, λύσεις και του Σ : ; Να x y 13 δικαιολογήσετε την απάντησή σας. (Μονάδες 7) γ) Είναι όλες οι λύσεις του συστήματος Σ, λύσεις και του Σ 1 ; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 8)

9 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 9.1 ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ ο 1) ΑΣΚΗΣΗ Η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης f:irir διέρχεται από τα σημεία A(5.) και B(4,9). α) Να προσδιορίσετε το είδος της μονοτονίας της f αιτιολογώντας την απάντησή σας. (Μονάδες 1) β) Να λύσετε την ανίσωση f5 3x (Μονάδες 13) ) ΑΣΚΗΣΗ x Δίνεται η συνάρτηση, f(x) x 1, xir α) Να δείξετε ότι η f(x) 1 (Μονάδες 8) β) Είναι το 1 η μέγιστη τιμή της συνάρτησης; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Να εξετάσετε αν η συνάρτηση είναι άρτια ή περιττή. (Μονάδες 9) 3) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνεται η γραφική παράσταση C f μιας συνάρτησης f με πεδίο ορισμού το IR. Nα απαντήσετε τα παρακάτω ερωτήματα: α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους f(x 1), f(x ), f(x 3) β) Είναι η συνάρτηση f γνησίως μονότονη στο IR; Να αιτιολογήσετε την απάντηση σας. γ) Παρουσιάζει η f μέγιστο στο σημείο x ; Να αιτιολογήσετε την απάντηση σας. (Μονάδες 5)

10 10 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 4) ΑΣΚΗΣΗ Έστω γνησίως μονότονη συνάρτηση f:irir, η γραφική παράσταση της οποίας διέρχεται από τα σημεία A(,3) και B(4,5) α) Να προσδιορίσετε το είδος της μονοτονίας της f (Μονάδες 13) β) Αν η γραφική παράσταση της f τέμνει τον άξονα x x στο, να δείξετε ότι f(0) 0 (Μονάδες 1) 5) ΑΣΚΗΣΗ Στο διπλανό σχήμα δίνεται η γραφική παράστασης της συνάρτησης 3 f(x) x 3x, x(,) α) Είναι η f άρτια ή περιττή; Να αποδείξετε αλγεβρικά τον ισχυρισμό σας. (Μονάδες 7) β) Χρησιμοποιώντας τη γραφική παράσταση της f, να βρείτε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 6) γ) Να βρείτε τις θέσεις των ακρότατων της f. (Μονάδες 1) ΘΕΜΑ 4ο 6) ΑΣΚΗΣΗ Η περιβαλλοντική ομάδα ενός σχολείου παρέλαβε συρματόπλεγμα μήκους 40 m για να περιφράξει, χρησιμοποιώντας όλο το συρματόπλεγμα, έναν ορθογώνιο κήπο για καλλιέργεια λαχανικών. Οι μαθητές της περιβαλλοντικής ομάδας θέλουν να επιλέξουν ένα κήπο που να έχει όσο το δυνατόν μεγαλύτερο εμβαδόν. α) Να δώσετε τις διαστάσεις τριών διαφορετικών ορθογώνιων κήπων με περίμετρο 40 m. Να εξετάσετε αν οι τρεις λαχανόκηποι έχουν το ίδιο εμβαδόν. (Μονάδες 7) β) Αν συμβολίσουμε με x το πλάτος και με Ε το εμβαδόν ενός λαχανόκηπου με περίμετρο 40 m, να εκφράσετε το Ε ως συνάρτηση του x. (Μονάδες 8) γ) Να δείξετε ότι Ε(x) (x10) 100. Χρησιμοποιώντας την γραφική παράσταση της συνάρτησης f(x) x να κατασκευάσετε την γραφική παράσταση της E(x). Από τη γραφική παράσταση της Ε(x) να βρείτε τις διαστάσεις του λαχανόκηπου με το μεγαλύτερο εμβαδόν. 7) ΑΣΚΗΣΗ Για να κατασκευάσουμε ένα ανοικτό κουτί από ένα ορθογώνιο χαρτόνι με διαστάσεις 5 dm και 8 dm, κόβουμε ίσα τετράγωνα, πλευράς x, από κάθε γωνία του και γυρίζουμε προς τα πάνω τις πλευρές του (Σχήμα 1). α) Nα δείξετε ότι ο όγκος V του κουτιού εκφράζεται ως συνάρτηση του x με τον τύπο 3 V(x) 4x 6x 40x (Μονάδες 6) β) Να βρείτε τις τιμές που μπορεί να πάρει το x στο πλαίσιο του προβλήματος. (Μονάδες 5)

11 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 11 γ) Να βρείτε τις διαστάσεις (εκφρασμένες σε dm με ακέραιους αριθμούς) του κουτιού 3 αν γνωρίζουμε ότι ο όγκος του είναι 8 dm. (Μονάδες 7) 3 δ) Στο σχ. δίνεται η γραφική παράσταση της συνάρτησης V(x) 4x 6x 40x x(0,,5). Χρησιμοποιώντας το σχήμα να βρείτε ποιος είναι ο μεγαλύτερος όγκος που μπορεί να έχει το κουτί. Στη συνέχεια να υπολογίσετε αλγεβρικά τις διαστάσεις του κουτιού με το μεγαλύτερο όγκο. (Μονάδες 7) Σχήμα 1 Σχήμα. ΚΑΤΑΚΟΡΥΦΗ ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ ΘΕΜΑ ο 8) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) x 4x 5, xir α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) x 1 (Μονάδες 1)

12 1 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση f, μετατοπίζοντας κατάλληλα την y x (Μονάδες 13) 9) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνονται οι παραβολές C f και C g που είναι γραφικές παραστάσεις των συναρτήσεων f και g αντίστοιχα με πεδίο ορισμού το IR. Η γραφική παράσταση της g προκύπτει από τη γραφική παράσταση της f με οριζόντια και κατακόρυφη μετατόπιση. Παρατηρώντας το σχήμα: α) Να βρείτε τα διαστήματα μονοτονίας, το είδος του ακρότατου της f και την τιμή του. β) Να βρείτε μέσω ποιων μετατοπίσεων της C f προκύπτει η C. g (Μονάδες 15)

13 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 13 10) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) x 1x 19 α) Να δείξετε ότι η συνάρτηση f γράφεται στη μορφή: f(x) x 3 1 β) Παρακάτω δίνεται η γραφική παράσταση της συνάρτησης g(x) x. Στο ίδιο σύστημα αξόνων, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσετε πώς αυτή προκύπτει μετατοπίζοντας κατάλληλα τη γραφική παράσταση της g. (Μονάδες 15) 11) ΑΣΚΗΣΗ f x x 5, xir. Δίνεται η συνάρτηση α) Να δείξετε ότι η f παρουσιάζει ελάχιστο στο x 0. (Μονάδες 8) β) Είναι η f άρτια συνάρτηση; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Με ποια μετατόπιση της gx x προκύπτει η C; f (Μονάδες 9) 1) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνονται οι γραφικές παραστάσεις των συναρτήσεων f και g, που ορίζονται στους πραγματικούς αριθμούς. Η γραφική παράσταση της g προκύπτει από τη γραφική παράσταση της f με οριζόντια και κατακόρυφη μετατόπιση. Από τις γραφικές παραστάσεις να βρείτε: α) Τα διαστήματα μονοτονίας της f, το είδος του ακρότατου της f, τη θέση και την τιμή του. (Μονάδες 1) β) Ποιες μετατοπίσεις της f δίνουν τη g. Να προσδιορίσετε στη συνέχεια τον τύπο της συνάρτησης g, αν f(x) x. (Μονάδες 13)

14 14 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων ΘΕΜΑ 4ο 13) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f (Μονάδες 5) β) Να εξετάσετε αν η f είναι άρτια ή περιττή. (Μονάδες 8) γ) Αν η συνάρτηση f είναι γνησίως φθίνουσα στο πεδίο ορισμού της, να επιλέξετε ποια από τις παρακάτω τρείς προτεινόμενες, είναι η γραφική της παράσταση και στη συνέχεια να υπολογίσετε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 7) δ) Να αιτιολογήσετε γραφικά ή αλγεβρικά, γιατί οι συναρτήσεις g(x) f(x) 3 και h(x) f x 3 δεν είναι ούτε άρτιες ούτε περιττές. (Μονάδες 5)

15 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 15 14) ΑΣΚΗΣΗ Δίνεται η συνάρτηση: f(x) 1 x c d, xir με c,d θετικές σταθερές, η γραφική παράσταση της οποίας διέρχεται από τα σημεία A(0,16) και Β(4,0). α) Με βάση τα δεδομένα, να κατασκευάσετε ένα σύστημα δύο εξισώσεων με αγνώστους τους c,d και να υπολογίσετε την τιμή τους. β) Θεωρώντας γνωστό ότι c 6 και d i. να βρείτε τα σημεία τομής της γραφικής παράστασης της συνάρτησης f με τους άξονες. (Μονάδες 3) ii. να μεταφέρετε στην κόλα σας το διπλανό σύστημα συντεταγμένων, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσετε πώς αυτή σχετίζεται με τη γραφική παράσταση της συνάρτησης 1 g(x) x (Μονάδες 6) iii. με βάση την παραπάνω γραφική παράσταση, να βρείτε το ακρότατο της συνάρτησης f, τα διαστήματα στα οποία η f είναι μονότονη, καθώς και το είδος της μονοτονίας της σε καθένα από αυτά τα διαστήματα. (Μονάδες 6) 15) ΑΣΚΗΣΗ Δίνονται οι συναρτήσεις φ(x) x, xir και f(x) x x 1, xir α) Να αποδείξετε ότι f(x) (x 1) για κάθε xir και στη συνέχεια, με τη βοήθεια της γραφικής παράστασης της συνάρτησης φ να παραστήσετε γραφικά τη συνάρτηση f. β) Με τη βοήθεια της γραφικής παράστασης της f να βρείτε: i. Τα διαστήματα στα οποία η συνάρτηση f είναι γνησίως μονότονη. (Μονάδες 5) ii. Το ολικό ακρότατο της f καθώς και τη θέση του. (Μονάδες 5) iii. Το πλήθος των ριζών της εξίσωσης f(x) κ, κ. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 5)

16 16 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 16) ΑΣΚΗΣΗ Στο σχήμα δίνονται οι γραφικές παραστάσεις μιας παραβολής της ευθείας g(x) x. f(x) αx βx γ και α) Δεδομένου ότι η παραβολή διέρχεται από τα σημεία Α, Β, Γ, να βρείτε τα α, β, γ. (Μονάδες 8)

17 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο ο : Ιδιότητες συναρτήσεων 17 1 β) Αν α, β 0 και γ, να βρείτε αλγεβρικά τις συντεταγμένες των κοινών σημείων ευθείας και παραβολής. (Μονάδες 8) γ) Αν μετατοπίσουμε την παραβολή κατά 4,5 μονάδες προς τα πάνω, να δείξετε ότι η ευθεία και η παραβολή θα έχουν ένα μόνο κοινό σημείο. (Μονάδες 9) 17) ΑΣΚΗΣΗ f x αx β, α,βir Δίνεται η συνάρτηση α) Αν η γραφική παράσταση της f διέρχεται από τα σημεία Α(1,) και Β(5,8), να 3 δείξετε ότι α και 1 β (Μονάδες 8) β) Αν g(x) είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής παράστασης της f οριζόντια κατά 1 μονάδα προς τα αριστερά και κατακόρυφα κατά 3 μονάδες προς τα κάτω, να βρείτε τον τύπο της g. (Μονάδες 9) 3 είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής παράστασης της f οριζόντια κατά κ μονάδες προς τα δεξιά και γ) Αν hx x 1 κατακόρυφα κατά κ μονάδες κάτω, να βρείτε το κ (κ 0 ). (Μονάδες 8)

18 18 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ 3. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΜΑ ο 1) ΑΣΚΗΣΗ π Αν 0 x και συνx15συνx4 0, τότε: 4 α) Να αποδείξετε ότι συνx 5 β) Να βρείτε τους άλλους τριγωνομετρικούς αριθμούς της γωνίας x (Μονάδες 15) ΘΕΜΑ 4ο ) ΑΣΚΗΣΗ xy 1 α) Να λύσετε το σύστημα: (Μονάδες 1) x y 1 β) Με τη βοήθεια του ερωτήματος (α) και του τριγωνομετρικού κύκλου, να βρείτε όλες τις γωνίες ω με 0 ω π, που ικανοποιούν τη σχέση συνω ημω 1 και να τις απεικονίσετε πάνω στον τριγωνομετρικό κύκλο. (Μονάδες 13) 3.3 ΑΝΑΓΩΓΗ ΣΤΟ 1 ο ΤΕΤΑΡΤΗΜΟΡΙΟ ΘΕΜΑ ο 3) ΑΣΚΗΣΗ Δίνεται ημφ, όπου φ η οξεία γωνία που σχηματίζεται με κορυφή το σημείο Α της 5 ευθείας (ε) του παρακάτω σχήματος. α) Να βρείτε το συνημίτονο της γωνίας φ. β) Να βρείτε το ημίτονο και το συνημίτονο των γωνιών θ και ω του σχήματος. (Μονάδες 15)

19 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ ο 4) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) συνx, xιr α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f; (Μονάδες 9) β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας περιόδου. γ) Να εξετάσετε αν η συνάρτηση μπορεί να πάρει την τιμή 1. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 6) 5) ΑΣΚΗΣΗ α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: π π 17π συν, συν, συν (Μονάδες 1) π π β) Αν π x1 x να συγκρίνετε τους αριθμούς ημ x1 και π ημ x (Μονάδες 13) 6) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) 3συνx, xιr α) Να βρείτε την περίοδο, τη μέγιστη και την ελάχιστη τιμή της f (Μονάδες 1) β) Να συμπληρώσετε τον παρακάτω πίνακα και να παραστήσετε γραφικά την f σε διάστημα μιας περιόδου. (Μονάδες 13) x 0 π 4 x συνx f(x) 3συνx 7) ΑΣΚΗΣΗ π Δίνεται η συνάρτηση f(x) ημπ 3xσυν 3x, xιr f(x) ημ 3x α) Να δείξετε ότι β) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f (Μονάδες 15) ΘΕΜΑ 4ο 8) ΑΣΚΗΣΗ Η Αλίκη και η Αθηνά διασκεδάζουν στη ρόδα του λούνα παρκ. Η απόσταση, σε μέτρα, του καθίσματός τους από το έδαφος τη χρονική στιγμή t sec δίνεται από τη συνάρτηση π t h(t) 8 6 ημ 30 και 0 t 180 π 3π 4 π

20 0 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία α) Να βρείτε το ελάχιστο και το μέγιστο ύψος στο οποίο φτάνει το κάθισμα, καθώς και τις στιγμές κατά τις οποίες το κάθισμα βρίσκεται στο ελάχιστο και στο μέγιστο ύψος. (Μονάδες 8) β) Να υπολογίσετε την ακτίνα της ρόδας. (Μονάδες 3) γ) Να βρείτε την περίοδο της κίνησης, δηλαδή το χρόνο στον οποίο η ρόδα ολοκληρώνει μια περιστροφή. Πόσους γύρους έκαναν οι δύο φίλες στο διάστημα από 0 έως 180 sec; (Μονάδες 4+=6) δ) Να μεταφέρετε στην κόλα σας τον πίνακα τιμών και το σύστημα συντεταγμένων που δίνονται παρακάτω και: i. να συμπληρώσετε τον πίνακα τιμών της συνάρτησης του ύψους h(t) (Μονάδες 3) ii. να σχεδιάσετε στο σύστημα συντεταγμένων το τμήμα της γραφικής παράστασης της συνάρτησης h(t) με 0 t 90 (Μονάδες 5) t h(t) 9) ΑΣΚΗΣΗ Ένα παιγνίδι κρέμεται με ένα ελατήριο από το ταβάνι. Το ύψος του από το πάτωμα σε cm συναρτήσει του χρόνου t (sec) δίνεται από τη σχέση: h(t) ασυνωt β με α,βir και ω 0. Όταν το ελατήριο ταλαντώνεται, το ελάχιστο ύψος του παιχνιδιού από το πάτωμα είναι 0 cm και το μέγιστο 100 cm. Τη χρονική στιγμή t 0 το ύψος παίρνει την ελάχιστη τιμή του και ο χρόνος μιας πλήρους ταλάντωσης (θέσεις: ελάχιστο-ηρεμία-μέγιστο-ηρεμία-ελάχιστο) είναι 6 sec. π α) Να δείξετε ότι ω. (Μονάδες 5) 3 β) Να προσδιορίσετε τις τιμές των α και β αιτιολογώντας την απάντησή σας. (Μονάδες 6) γ) Να υπολογίσετε το ύψος του παιγνιδιού από το πάτωμα 14 sec μετά την έναρξη της ταλάντωσης. (Μονάδες 8)

21 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 1 δ) Να χαράξετε τη γραφική παράσταση της συνάρτησης h(t), για 0 t 1 (Μονάδες 6) 10) ΑΣΚΗΣΗ Μια ρόδα ποδηλάτου περιστρέφεται γύρω από τον άξονά της. Σημειώνουμε ένα σημείο Ρ της ρόδας (όπως φαίνεται στο σχήμα), το οποίο τη χρονική στιγμή t 0, είναι το σημείο επαφής της ρόδας με μια επιφάνεια. Η συνάρτηση που εκφράζει την απόσταση h (σε m) του σημείου Ρ από την επιφάνεια, t sec μετά την αρχή της κίνησης δίνεται από τη σχέση: h() t 0,συν( ωt) 0,, με ω θετική πραγματική σταθερά. Υποθέτουμε ότι το σημείο Ρ κάνει ένα πλήρη κύκλο σε 4 sec. π α) Να αποδείξετε ότι ω. (Μονάδες 5) β) Να προσδιορίσετε την απόσταση του Ρ από την επιφάνεια τις στιγμές: t 1 1 sec, t sec και t 3 7sec. (Μονάδες 6) γ) Να βρείτε την μέγιστη και την ελάχιστη τιμή της h. (Μονάδες 5) δ) Να προσδιορίσετε την ακτίνα της ρόδας. (Μονάδες 9) 11) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g(x) αx β, όπου α, β πραγματικοί αριθμοί και της συνάρτησης f(x) ρημ(ωx), όπου ω 0 και ρ 0. Και οι δύο συναρτήσεις έχουν πεδίο ορισμού το ΙR. Επίσης η f έχει μέγιστο 3. α) Να αποδείξετε ότι ρ 3 και ω (Μονάδες 5) β) Να βρείτε τα α, β. 1x γ) Να βρείτε, γραφικά, το πλήθος των λύσεων της εξίσωσης 3ημ(x) 0 στο π διάστημα [0, π].

22 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 1) ΑΣΚΗΣΗ πt Δίνεται η συνάρτηση f t ημ, t[0,4] α) Να βρείτε την περίοδο της f. (Μονάδες 5) β) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της, καθώς και τις τιμές του t για τις οποίες η f παίρνει τις τιμές αυτές. (Μονάδες 1) γ) Να κατασκευάσετε τη γραφική παράσταση της f. (Μονάδες 8) 13) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης π f(x) ημ x 4 α) Να βρείτε την περίοδο της συνάρτησης f. (Μονάδες 5) β) Το τετράπλευρο ΑΒΓΔ είναι ορθογώνιο με A,0 3. Να βρείτε: i. τις συντεταγμένες του σημείου Δ. ii. τις συντεταγμένες των σημείων Β και Γ.

23 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 3 14) ΑΣΚΗΣΗ Στο διπλανό σχήμα δίνεται η γραφική παράσταση της συνάρτησης f(x) αημ(ωx) με παραμέτρους α,ω 0. Να βρείτε: α) την περίοδο της συνάρτησης f (Μονάδες 9) β) τους αριθμούς α και ω (Μονάδες 8) γ) τους αριθμούς κir για τους οποίους η εξίσωση f(x) κ έχει μοναδική λύση στο π διάστημα 0, και στη συνέχεια να λυθεί η εξίσωση αυτή. (Μονάδες 8) 3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΜΑ ο 15) ΑΣΚΗΣΗ π α) Είναι η τιμή x λύση της εξίσωσης 3συν4x 3 0; Να αιτιολογήσετε την 4 απάντησή σας. β) Να βρείτε τις τετμημένες των σημείων τομής της γραφικής παράστασης της συνάρτησης f(x) συν4x με την ευθεία y 1 (Μονάδες 15) 16) ΑΣΚΗΣΗ Δίνεται γωνία ω που ικανοποιεί τη σχέση: ημω συνω 1 α) Να αποδείξετε ότι είτε ημω 0 είτε συνω 0 (Μονάδες 13) β) Να βρείτε τις δυνατές τιμές της γωνίας ω (Μονάδες 1) 17) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) ημx 1, xιr α) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της συνάρτησης f β) Για ποια τιμή του x[0,π] η συνάρτηση παρουσιάζει μέγιστη τιμή; (Μονάδες 15) 18) ΑΣΚΗΣΗ π α) Να αποδείξετε ότι: ημ x συν π x 0 β) Να βρείτε τις τιμές του x[0,π) για τις οποίες ισχύει π συνx ημ x (Μονάδες 15)

24 4 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 19) ΑΣΚΗΣΗ ημ x Δίνεται η παράσταση: Α 1 συνx, x κπ, κ α) Να αποδείξετε ότι Α 1 συνx (Μονάδες 1) ημ x 1 β) Να λύσετε την εξίσωση στο διάστημα (0,π) 1 συνx (Μονάδες 13) 0) ΑΣΚΗΣΗ Έστω γωνία x για την οποία ισχύουν: π x π ημ π x ημ π x 1 και 1 α) Να αποδείξετε ότι ημx (Μονάδες 1) β) Να βρείτε την γωνία x (Μονάδες 13) 1) ΑΣΚΗΣΗ ημx ημx α) Να αποδείξετε ότι : όπου x κπ, κ (Μονάδες 13) 1συνx 1συνx ημx ημx ημx 4 β) Να λύσετε την εξίσωση: (Μονάδες 1) 1συνx 1συνx 3 ΘΕΜΑ 4ο ) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) α 1 ημβπx με αir και β 0, η οποία έχει μέγιστη τιμή 3 και περίοδο 4. 1 α) Να δείξετε ότι α ή α 4 και β. (Μονάδες 7) β) Για α και 1 β i. να λυθεί η εξίσωση f(x) 3 ii. να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f στο διάστημα [0,8] (Μονάδες 8) 3) ΑΣΚΗΣΗ xy 1 Δίνεται το σύστημα: με παράμετρο λir x λy λ α) Να λύσετε το σύστημα για τις διάφορες τιμές του λir β) Αν λ 1 και x,y είναι η αντίστοιχη λύση του συστήματος, να βρείτε γωνία 0 0 θ[0,π) τέτοια ώστε x0 συνθ και y0 ημθ (Μονάδες 7) γ) Αν λ 1 x,y είναι η αντίστοιχη λύση του συστήματος, να δείξετε ότι δεν και 1 1 υπάρχει γωνία ω, τέτοια ώστε x1 συνω και y1 ημω (Μονάδες 8)

25 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 5 4) ΑΣΚΗΣΗ Στο παρακάτω σχήμα δίνεται η γραφική παράσταση μιας συνάρτησης f η οποία είναι f(x) ρημ ωx k, με ρ,k πραγματικές σταθερές και ω 0. της μορφής α) Με βάση τη γραφική παράσταση, να βρείτε: i. τη μέγιστη και την ελάχιστη τιμή της συνάρτησης f (Μονάδες 3) ii. την περίοδο T της συνάρτησης f (Μονάδες 3) β) Να προσδιορίσετε τις τιμές των σταθερών ρ, ω και k. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 9) γ) Θεωρώντας γνωστό ότι ρ 3, 1 ω και k να προσδιορίσετε αλγεβρικά την τετμημένη x 0 του σημείου A της γραφικής παράστασης, που δίνεται στο σχήμα. 5) ΑΣΚΗΣΗ Δίνονται οι συναρτήσεις f(x) συνx και g(x) συνx α) Να μεταφέρετε στην κόλα σας και να συμπληρώσετε τον παρακάτω πίνακα τιμών των συναρτήσεων f και g. Στη συνέχεια, να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων f(x) και g(x), για x[0,π] (Μονάδες 8) x 0 f(x) g(x) π 4 π 3π 4 β) Με τη βοήθεια της γραφικής παράστασης, να προσδιορίσετε το πλήθος των λύσεων της εξίσωσης συνx συνx (1) στο διάστημα [0,π] (Μονάδες 4) γ) Να λύσετε αλγεβρικά την εξίσωση (1) στο διάστημα [0,π] και να σημειώσετε πάνω στο σχήμα του ερωτήματος (α) τις συντεταγμένες των κοινών σημείων των γραφικών παραστάσεων των συναρτήσεων f και g. (Μονάδες 13) 6) ΑΣΚΗΣΗ Ένα σώμα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του πt σώματος από το έδαφος (σε cm), δίνεται από την συνάρτηση: f(t) 1ημ 13 4 όπου t ο χρόνος σε ώρες. α) Να βρείτε την περίοδο της ταλάντωσης. (Μονάδες 7) β) Να βρείτε την απόσταση του σώματος από το έδαφος τις χρονικές στιγμές t 5 και t 8 (Μονάδες 8) π 5π 4 3π 7π 4 π

26 6 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία γ) Να βρείτε κατά το χρονικό διάστημα από t 0 έως t 8, ποιά χρονική στιγμή η απόσταση του σώματος από το έδαφος είναι ελάχιστη. Ποια είναι η απόσταση αυτή; (Μονάδες10) 7) ΑΣΚΗΣΗ Η θερμοκρασία μιας περιοχής σε βαθμούς Κελσίου ( o C) κατά τη διάρκεια ενός εικοσιτετραώρου δίνεται κατά προσέγγιση από τη συνάρτηση: πt f(t) 8συν 4, με 0 t 4 (t ο χρόνος σε ώρες) 1 α) Να βρείτε τη μέγιστη και την ελάχιστη θερμοκρασία κατά τη διάρκεια του εικοσιτετραώρου. (Μονάδες 7) β) Να βρείτε τις χρονικές στιγμές που η θερμοκρασία είναι ίση με 0 ο C. (Μονάδες 6) γ) Να παραστήσετε γραφικά την f για t[0,4]. (Μονάδες 7) δ) Να βρείτε, με τη βοήθεια της γραφικής παράστασης, πότε η θερμοκρασία είναι πάνω από 0 o C. (Μονάδες 5) 8) ΑΣΚΗΣΗ Στο παρακάτω σχήμα, δίνεται η γραφική παράσταση μιας συνάρτησης f, που είναι της μορφής f(x) αβ συνx, όπου α,β πραγματικοί αριθμοί. α) Mε βάση τη γραφική παράσταση της f, να βρείτε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 4) β) Ποια είναι η περίοδος Τ της συνάρτησης f ; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 4) γ) Με βάση τα δεδομένα του σχήματος, να αποδείξετε ότι: α και β 6. (Μονάδες 8) δ) Να προσδιορίσετε αλγεβρικά τα κοινά σημεία της γραφικής παράστασης της f με την ευθεία y 1 στο διάστημα [0,π]. (Μονάδες 9)

27 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 3 ο : Τριγωνομετρία 7 9) ΑΣΚΗΣΗ Δίνεται η συνάρτηση f(x) ημ(3 x) 1, xir α) Να βρείτε την περίοδο Τ και τη μέγιστη τιμή της f. (Μονάδες 5) β) Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g(x) αημ(βx) γ, xir i. Nα προσδιορίσετε τα α, β, γ. (Μονάδες 1) ii. Για α, β 1 και γ 1, να λύσετε την εξίσωση f(x) g(x) στο διάστημα [0,π). (Μονάδες 8) 30) ΑΣΚΗΣΗ Δίνεται η εξίσωση 1ημx 3 συνx (A) α) Να αποδείξετε ότι, αν x 0 είναι μία λύση της εξίσωσης (Α), τότε συνx0 0. (Μονάδες 5) β) Θεωρούμε την εξίσωση (1ημx) 3συν x (B) η οποία προκύπτει υψώνοντας στο τετράγωνο τα δύο μέλη της εξίσωσης (Α). Να λύσετε την εξίσωση (Β). (Μονάδες 1) γ) Να λύσετε την εξίσωση (Α). (Μονάδες 8) 3.6 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΓΩΝΙΩΝ ΘΕΜΑ ο 31) ΑΣΚΗΣΗ ο Δίνονται οι γωνίες ω, θ με συνω 0 και συνθ 0 για τις οποίες ισχύει: ωθ 135 Να αποδείξετε ότι: εφ ω θ 1 α) β) εφω εφθ 1 εφω εφθ (Μονάδες 15) 3) ΑΣΚΗΣΗ π 3 1 α) Να αποδείξετε ότι: ημx συνx ημx 3. (Μονάδες 13)

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 1η έκδοση: 30 11 014 (συνεχής ανανέωση) Το βιβλίο διατίθεται αποκλειστικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

2 η δεκάδα θεµάτων επανάληψης

2 η δεκάδα θεµάτων επανάληψης 1 2 η δεκάδα θεµάτων επανάληψης 11. Α. Αν α > 0 µε α 1 τότε για οποιουσδήποτε πραγµατικούς αριθµούς θ 1, θ 2 > 0 να αποδείξετε ότι log α (θ 1 θ 2 ) = log α θ 1 + log α θ 2 Β. Έστω το σύστηµα Σ : α1x +

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li

3. lim [f(x) g(x)] = lim f(x) lim g(x) x xo x xo x xo x xo x xo v f(x) lim f(x) x xo lim = x xo g(x) lim g(x) x xo v lim [f(x)] = lim f(x) 6. li Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να γνωρίζει: Τον ορισµό της συνάρτησης και τον τρόπο εύρεσης του πεδίου ορισµού της. Τις πράξεις µεταξύ συναρτήσεων, τις γραφικές παραστάσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΚΙΒΙΑΔΗΣ Γ. ΤΖΕΛΕΠΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΚΙΒΙΑΔΗΣ Γ. ΤΖΕΛΕΠΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΑΛΚΙΒΙΑΔΗΣ Γ. ΤΖΕΛΕΠΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 ο : Συστήματα... 1 1.1 Γραμμικά Συστήματα... 2 1.2 Μη Γραμμικά Συστήματα...

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τόμος 1ος Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής μαθηματικών Βαρβακείου Πειραμ. Λυκείου Παπασταυρίδης Στάυρος

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ xcvbnmσγqwφertyuioσδφpγρaηsόρ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ............................................

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Ταυτότητες. α 2 β 2 = (α β)(α + β) "διαφορά τετραγώνων" α 3 β 3 = (α β)(α 2 + αβ + β 2 ) "διαφορά κύβων"

Ταυτότητες. α 2 β 2 = (α β)(α + β) διαφορά τετραγώνων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) διαφορά κύβων Ταυτότητες (α β) α αβ β " αναπτύγματα τετραγώνων " (α β) αβ β (α β) α α β αβ β " αναπτύγματα κύβων " (α β) α α β αβ β " παραγοντοποίηση τριωνύμου " (α β) αβ ( α)( β) (α β) αβ ( α)( β) α β = (α β)(α + β)

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης. Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0%. Να βρείτε: i. Το πλήθος των μαθητών

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

[TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 Ο ΘΕΜΑ

[TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 6 Ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνεται η συνάρτηση α) Να υπολογίσετε το άθροισμα (Μονάδες 10) β) Να βρείτε τα κοινά σημεία της γραφικής της παράστασης της f με τους άξονες.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός ςες ΤΕΤΡΑΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους μαθητές

Διαβάστε περισσότερα

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr 11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα