ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ"

Transcript

1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις του συστήματος που ορίσατε στο α) ερώτημα και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. (Μονάδες 15). Δίνεται η εξίσωση: 8x + y = 7 (1) α) Να γράψετε μια άλλη εξίσωση που να μην έχει καμία κοινή λύση με την εξίσωση (1). β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. (Μονάδες 15) 3. Δίνονται οι ευθείες ε 1 : x + y = 5, ε : - x + 3y = -9 και ε 3 : 3x + y = 7. α) i. Να βρείτε τις συντεταγμένες του σημείου τομής των ε 1 και ε. ii. Να βρείτε τις συντεταγμένες του σημείου τομής των ε 1 και ε 3. (Μονάδες 1) β) Με τη βοήθεια του ερωτήματος (α), να δείξετε ότι το κοινό σημείο των ε και ε 3 είναι σημείο της ε 1. (Μονάδες 13). Δίνονται οι ευθείες: ε 1 : x + y = 6 και ε : x - y = -3 α) Να προσδιορίσετε αλγεβρικά το κοινό τους σημείο Μ. (Μονάδες 13) β) Να βρείτε για ποια τιμή του α, η ευθεία 3x + ay = α + 5 διέρχεται από το Μ. (Μονάδες 1) 5. Δίνεται το σύστημα : x y 8 x y με παραμέτρους α, β, γ R. α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (, -3). (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ ώστε το σύστημα αυτό να είναι αδύνατο. (Μονάδες 1) 6. Δίνεται το σύστημα: x y 9 x y με παραμέτρους α, β, γ R. α) Να επιλέξετε τιμές για τις παραμέτρους α, β, y, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1, -). (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α, β, y, ώστε το σύστημα αυτό να είναι αδύνατο 1

2 και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) 7. Δίνεται το σύστημα: x y 3 x y με παραμέτρους α, β, γ R. α) Να επιλέξετε τιμές για τις παραμέτρους α, β, y, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (-1, 5). (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους α, β, y, ώστε το σύστημα αυτό να έχει άπειρες λύσεις και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) 8. Δίνεται το σύστημα : ( 1)x y 3 x ( 1)y 6, με παράμετρο λ R. α) Αν λ = -3, να δείξετε ότι το σύστημα έχει άπειρες λύσεις. Να βρείτε μια λύση. (Μονάδες 8) β) Αν λ = 3, να δείξετε ότι το σύστημα είναι αδύνατο. (Μονάδες 8) γ) Αν λ = 0, να δείξετε ότι το σύστημα έχει μοναδική λύση την οποία και να προσδιορίσετε. (Μονάδες 9) 9. Δίνονται οι ευθείες με εξισώσεις: (ε 1 ) : x - y = - 1 (ε ) : (λ - 1)x - y = 6, με παράμετρο λ R α) Να βρείτε την τιμή του λ ώστε οι ευθείες ε 1 και ε να είναι παράλληλες. (Μονάδες 8) β) Να παραστήσετε γραφικά τις ε 1 και ε, για λ= 3. (Μονάδες 8) γ) Υπάρχει τιμή του λ R, ώστε οι ευθείες ε 1 και ε να ταυτίζονται; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 9) 10.Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. α) Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 13) β) Δίνεται επιπλέον η πληροφορία ότι η διαφορά των ηλικιών τους είναι 5 χρόνια. Να υπολογίσετε την ηλικία του καθενός. (Μονάδες 1) 11. Στο δημοτικό parking μιας επαρχιακής πόλης στις 10 το πρωί, το σύνολο των δίκυκλων και τετράτροχων οχημάτων που έχουν παρκάρει είναι 830 και το πλήθος των τροχών τους.700. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. (Μονάδες 13) β) Να βρείτε τον αριθμό των δίκυκλων καθώς και τον αριθμό των τετράτροχων οχημάτων. (Μονάδες 1) 1. α) Με βάση τα δεδομένα του σχήματος, να προσδιορίσετε τις εξισώσεις των ευθειών (ε) και (η). (Μονάδες 1)

3 β) Να βρείτε τις συντεταγμένες του σημείου τομής τους. (Μονάδες 13) 13. Ένα θέατρο έχει 5 σειρές καθισμάτων χωρισμένες σε δύο διαζώματα. Η κάθε μια από τις σειρές του κάτω διαζώματος έχει 1 καθίσματα και η κάθε μια από τις σειρές του πάνω διαζώματος έχει 16 καθίσματα, ενώ η συνολική χωρητικότητα του θεάτρου είναι 37 καθίσματα. α) Αν x ο αριθμός σειρών του κάτω και y o αριθμός σειρών του πάνω διαζώματος, να εκφράσετε τα δεδομένα του προβλήματος με ένα σύστημα δύο εξισώσεων. (Μονάδες 1) β) Πόσες σειρές έχει το πάνω και πόσες το κάτω διάζωμα; (Μονάδες 13) 1. α) Να λύσετε αλγεβρικά το σύστημα : y x 1 x y 1 (Μονάδες 15) β) Να ερμηνεύσετε γεωμετρικά τις λύσεις του συστήματος που βρήκατε στο ερώτημα α). 15.Δίνεται ένα ορθογώνιο παραλληλόγραμμο με μήκος x cm, πλάτος y cm, περίμετρο ίση με 38cm και με την ακόλουθη ιδιότητα: Αν αυξήσουμε το μήκος του κατά cm και μειώσουμε το πλάτος του κατά cm, θα προκύψει ένα ορθογώνιο με εμβαδόν ίσο με το εμβαδόν του αρχικού. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. β) Να βρείτε τις τιμές των διαστάσεων x, y του ορθογωνίου. (Μονάδες 15) ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ 16. Στο παρακάτω σχήμα δίνεται η γραφική παράσταση C f μιας συνάρτησης f με πεδίο ορισμού το R. Nα απαντήσετε τα παρακάτω ερωτήματα: 3

4 α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους αριθμούς f (x 1 ), f (x ) και f (x 3 ). β) Είναι η συνάρτηση f γνησίως μονότονη στο R; Να αιτιολογήσετε την απάντηση σας. γ) Παρουσιάζει η f μέγιστο στο σημείο x ; Να αιτιολογήσετε την απάντηση σας. (Μονάδες 5) 17. Η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης f : R R διέρχεται από τα σημεία Α(5,) και β(,9). α) Να προσδιορίσετε το είδος της μονοτονίας της f αιτιολογώντας την απάντησή σας. (Μονάδες 1) β) Να λύσετε την ανίσωση f(5-3x) <. (Μονάδες 13) 18. Έστω γνησίως μονότονη συνάρτηση f: R R, η γραφική παράσταση της οποίας διέρχεται από τα σημεία Α(,3) και Β(,5). α) Να προσδιορίσετε το είδος της μονοτονίας της f. (Μονάδες 13) β) Αν η γραφική παράσταση της f τέμνει τον άξονα x x στο -, να δείξετε ότι f (0) > 0. (Μονάδες 1) x 19.Δίνεται η συνάρτηση f (x) x, με x R. 1 α) Να δείξετε ότι η f (x) 1. (Μονάδες 8) β) Είναι το 1 η μέγιστη τιμή της συνάρτησης; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Να εξετάσετε αν η συνάρτηση είναι άρτια ή περιττή. (Μονάδες 9) 0. Δίνεται η συνάρτηση f(x) = x - x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x - ) + 1. (Μονάδες 1)

5 β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση f, μετατοπίζοντας κατάλληλα την y = x. (Μονάδες 13) 1. Στο παρακάτω σχήμα δίνονται οι παραβολές C f και C g που είναι γραφικές παραστάσεις των συναρτήσεων f και g αντίστοιχα με πεδίο ορισμού το R. Η γραφική παράσταση της g προκύπτει από τη γραφική παράσταση της f με οριζόντια και κατακόρυφη μετατόπιση. Παρατηρώντας το σχήμα: α) Να βρείτε τα διαστήματα μονοτονίας, το είδος του ακρότατου της f και την τιμή του. β) Να βρείτε μέσω ποιων μετατοπίσεων της C f προκύπτει η C g. (Μονάδες 15). Δίνεται η συνάρτηση f(x) = x - 1x α) Να δείξετε ότι η συνάρτηση f γράφεται στη μορφή: f(x) = (x-3)

6 β) Παρακάτω δίνεται η γραφική παράσταση της συνάρτησης g(x) = x. Στο ίδιο σύστη- μα αξόνων, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσε- τε πώς αυτή προκύπτει μετατοπίζοντας κατάλληλα τη γραφική παράσταση της g (Μονάδες 15) ΚΕΦΑΛΑΙΟ 3 : ΤΡΙΓΩΝΟΜΕΤΡΙΑ 3. Αν 0 x και (συνχ +1) (5συνχ - ) = 0, τότε: α) Να αποδείξετε ότι x 5 β) Να βρείτε τους άλλους τριγωνομετρικούς αριθμούς της γωνίας χ. (Μονάδες 15). Δίνεται 3 5, οπού φ η οξεία γωνία που σχηματίζεται με κορυφή το σημείο Α της ευθείας (ε) του παρακάτω σχήματος. 6

7 α) Να βρείτε το συνημίτονο της γωνίας φ. β) Να βρείτε το ημίτονο και το συνημίτονο των γωνιών θ και ω του σχήματος. (Μονάδες 15) 5.α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: 17,, x1 x, να συγκρίνετε τους αριθμούς: ( x1) και ( x ) β) Αν 6. Δίνεται η συνάρτηση f (x) = -3συνx, x R. (Μονάδες 1) (Μονάδες 13) α) Να βρείτε την περίοδο, τη μέγιστη και την ελάχιστη τιμή της f. (Μονάδες 1) β) Να συμπληρώσετε τον παρακάτω πίνακα και να παραστήσετε γραφικά την f σε διάστη- μα μιας περιόδου. x 0 π x π 3π π συνx f ( x ) = 3συνx 7. Δίνεται η συνάρτηση f (x) ( 3x) ( 3x), x R. (Μονάδες 13) α) Να δείξετε ότι f(x) = ημ3x. β) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f. (Μονάδες 15) 8.Δίνεται η συνάρτηση f (x) 1 x, x R α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f; (Μονάδες 9) β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας περιόδου. γ) Να εξετάσετε αν η συνάρτηση μπορεί να πάρει την τιμή 1. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 6) 9. Δίνεται η συνάρτηση f(x) = ημx+1, x R. α) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της συνάρτησης f. β) Για ποια τιμή του x [0, π] η συνάρτηση παρουσιάζει μέγιστη τιμή; (Μονάδες 15) 7

8 30.α) Είναι η τιμή x λύση της εξίσωσης 3συνx + 3 = 0; Να αιτιολογήσετε την απάντη- σή σας. β) Να βρείτε τις τετμημένες των σημείων τομής της γραφικής παράστασης της συνάρτησης f(x) = συνx με την ευθεία y = -1. (Μονάδες 15) 31. Δίνεται γωνία ω που ικανοποιεί τη σχέση : (ημω + συνω) = 1 α) Να αποδείξετε ότι είτε ημω = 0 είτε συνω = 0. (Μονάδες 13) β) Να βρείτε τις δυνατές τιμές της γωνίας ω. (Μονάδες 1) 3. Έστω γωνία x για την οποία ισχύουν: x και ημ(π - x) - ημ(π + x) = 1. 1 α) Να αποδείξετε ότι x (Μονάδες 1) β) Να βρείτε την γωνία x. (Μονάδες 13) x, με x κπ, κ Ζ. 1 x α) Να αποδείξετε ότι Α = 1+συνx x 1 β) Να λύσετε την εξίσωση 1 x 33. Δίνεται η παράσταση: στο διάστημα (0, π). x x 3. α) Να αποδείξετε ότι :, όπου x κ π, κ. Z 1 x 1 x x (Μονάδες 13) β) Να λύσετε την εξίσωση : x x 1 x 1 x 3 (Μονάδες 1) 35. α) Να αποδείξετε ότι : ( x) ( x) 0. β) Να βρείτε τις τιμές του x [0,π) για τις οποίες ισχύει: x ( x). (Μονάδες 15) 36. Δίνονται οι γωνίες ω, θ για τις οποίες ισχύει : ω + θ = 135 ο. Να αποδείξετε ότι: α) εφ(ω + θ) = - 1 β) εφω + εφθ + 1= εφω εφθ (Μονάδες 15) 8

9 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 37. Για τις ηλικίες των μελών μιας τριμελούς οικογένειας ισχύουν τα παρακάτω: Η ηλικία της μητέρας είναι τριπλάσια από την ηλικία του παιδιού. Ο λόγος της ηλικίας το 11 πατέρα προς την ηλικία του παιδιού ισούται με. Επιπλέον το άθροισμα των ηλικιών και των τριών ισούται με 115 χρόνια. α) Να εκφράσετε τα δεδομένα με ένα σύστημα τριών εξισώσεων με τρείς αγνώστους. (Μονάδες 13) β) Να βρείτε την ηλικία του καθενός. (Μονάδες 1) Ο Κώστας έχει τρία παιδιά. Δύο δίδυμα κορίτσια και ένα αγόρι. Στην ερώτηση πόσων χρονών είναι τα παιδιά του απάντησε ως εξής. i) Το άθροισμα των ηλικιών και των τριών παιδιών είναι 1 ii)το γινόμενο της ηλικίας της κόρης μου επί την ηλικία του γιου μου είναι iii)το άθροισμα των ηλικιών των κοριτσιών είναι μικρότερο από την ηλικία του αγοριού. α) Να γράψετε τις εξισώσεις που περιγράφουν τα στοιχεία 1. και. που έδωσε ο Κώστας. β) Να βρείτε τις ηλικίες των παιδιών του Κώστα. (Μονάδες 15) 39. Δίνονται οι ευθείες ε 1 και ε με εξισώσεις x + ( λ + ) y = 3, (λ- ) x + 5y = 3 αντίστοιχα και λ R. α) Γ ια τις διάφορες τιμές του λ R, να βρείτε τη σχετική θέση των δύο ευθειών. (Μονάδες 13) β) Στην περίπτωση που οι ευθείες ε 1 και ε τέμνονται, να βρείτε τις συντεταγμένες του σημείου τομής Α των δύο ευθειών. (Μονάδες 7) γ) Να βρείτε την τιμή του λ R για την οποία το σημείο Α ανήκει στην ευθεία με εξίσωση : x + y = 3. (Μονάδες 5) 0. Δίνεται το σύστημα : ( 1)x 3y 3 x ( 1)y 3 9, με παράμετρο α R. α) Να αποδείξετε ότι αν το σύστημα έχει μοναδική λύση την (x 0, y 0 ), τότε x 0 = y 0. β) Να βρείτε τις τιμές του α R για τις οποίες το σύστημα: i) έχει άπειρες σε πλήθος λύσεις και να δώσετε τη μορφή τους. (Μονάδες 6) ii) δεν έχει λύση. (Μονάδες ) γ) Να εξετάσετε τις σχετικές θέσεις των δύο ευθειών που προκύπτουν από τις εξισώσεις του παραπάνω συστήματος για α = 3, α =, α = -. (Μονάδες 5)

10 ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ 1. Δίνεται η συνάρτηση f (x) 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή. (Μονάδες 8) γ) Αν η συνάρτησης f είναι γνησίως φθίνουσα στο πεδίο ορισμού της, να επιλέξετε ποια από τις παρακάτω τρείς προτεινόμενες, είναι η γραφική της παράσταση και στη συνέχεια να υπολογίσετε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 7) δ) Να αιτιολογήσετε γραφικά ή αλγεβρικά, γιατί οι συναρτήσεις g(x) = f (x) - 3 και h(x) = f (x +3) δεν είναι ούτε άρτιες ούτε περιττές. (Μονάδες 5). Δίνεται η συνάρτηση f (x) 0,5 x c d, x R με c, d θετικές σταθερές, η γραφική παράσταση της οποίας διέρχεται από τα σημεία A(0, 16) και β(, 0). α) Με βάση τα δεδομένα, να κατασκευάσετε ένα σύστημα δύο εξισώσεων με αγνώστους τους c, d και να υπολογίσετε την τιμή τους. β) Θεωρώντας γνωστό ότι c = 6 και d =, i. να βρείτε τα σημεία τομής της γραφικής παράστασης της συνάρτησης f με τους άξονες. (Μονάδες 3) ii. να μεταφέρετε στην κόλα σας το σύστημα συντεταγμένων που ακολουθεί, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσετε πώς 10

11 αυτή σχετίζεται με τη γραφική παράσταση της συνάρτησης g (x) = 0,5 x (Μονάδες 6) iii) με βάση την παραπάνω γραφική παράσταση, να βρείτε το ακρότατο της συνάρτησης f, τα διαστήματα στα οποία η f είναι μονότονη, καθώς και το είδος της μονοτονίας της σε καθένα από αυτά τα διαστήματα. (Μονάδες 6) 11

12 ΚΕΦΑΛΑΙΟ 3 : ΤΡΙΓΩΝΟΜΕΤΡΙΑ 3.α) Να λύσετε το σύστημα: x y 1 x y 1 (Μονάδες 1) β) Με τη βοήθεια του ερωτήματος (α) και του τριγωνομετρικού κύκλου, να βρείτε όλες τις γωνίες ω με 0 < ω < π, που ικανοποιούν τη σχέση : συνω + ημω = -1 και να τις απεικονίσετε πάνω στον τριγωνομετρικό κύκλο. (Μονάδες 13). Δίνεται η συνάρτηση f (x) = a+1 ημ(βπx) με a R και β>0, η οποία έχει μέγιστη τιμή 3 και περίοδο. α) Να δείξετε ότι a = ή a = - και β = 1. (Μονάδες 7) β) Για a = και β = 1, i) να λυθεί η εξίσωση f (x)=3. ii) να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f στο διάστημα [0, 8]. (Μονάδες 8) 5. Ένα σώμα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώματος από το έδαφος (σε cm), δίνεται από την συνάρτηση: f (t) 1 13, όπου t ο χρόνος σε ώρες. α) Να βρείτε την περίοδο της ταλάντωσης. (Μονάδες 7) β) Να βρείτε την απόσταση του σώματος από το έδαφος τις χρονικές στιγμές t = 5 και t = 8. (Μονάδες 8) γ) Να βρείτε κατά το χρονικό διάστημα από t = 0 έως t = 8, ποια χρονική στιγμή η απόσταση του σώματος από το έδαφος είναι ελάχιστη. Ποια είναι η απόσταση αυτή; (Μονάδες10) 6. Στο παρακάτω σχήμα δίνεται η γραφική παράσταση μιας συνάρτησης f η οποία είναι της μορφής f(x) = ρ ημ(ωχ) + k, με ρ, ω, k πραγματικές σταθερές. t α) Με βάση τη γραφική παράσταση, να βρείτε: i) τη μέγιστη και την ελάχιστη τιμή της συνάρτησης f (Μονάδες 3) ii) την περίοδο T της συνάρτησης f (Μονάδες 3) 1

13 β) Να προσδιορίσετε τις τιμές των σταθερών ρ, ω και k. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 9) γ) Θεωρώντας γνωστό ότι ρ = 3, ω = 1 και k =, να προσδιορίσετε αλγεβρικά την τετμημε- νη x 0 του σημείου A της γραφικής παράστασης, που δίνεται στο σχήμα. 7. Ένα παιγνίδι κρέμεται με ένα ελατήριο από το ταβάνι. Το ύψος του από το πάτωμα σε cm συναρτήσει του χρόνου t (sec) δίνεται από τη σχέση: h(t)=α συν(ωt) +β, όπου α, ω, β πραγματικές σταθερές. Όταν το ελατήριο ταλαντώνεται, το ελάχιστο ύψος του παιχνιδιού από το πάτωμα είναι 0cm και το μέγιστο 100cm. Τη χρονική στιγμή t=0 το ύψος παίρνει την ελάχιστη τιμή του και ο χρόνος μιας πλήρους ταλάντωσης (θέσεις: ελάχιστο-ηρεμία-μέγιστο-ηρεμία-ελάχιστο) είναι 6 sec. α) Να δείξετε ότι (Μονάδες 5) 3 β) Να προσδιορίσετε τις τιμές των α και β αιτιολογώντας την απάντησή σας. (Μονάδες 6) γ) Να υπολογίσετε το ύψος του παιγνιδιού από το πάτωμα 1sec μετά την έναρξη της ταλάντωσης. (Μονάδες 8) δ) Να χαράξετε τη γραφική παράσταση της συνάρτησης h(t), για 0 t 1. (Μονάδες 6) 8. Η Αλίκη και η Αθηνά διασκεδάζουν στη ρόδα του λούνα παρκ. Η απόσταση, σε μέτρα, του καθίσματός τους από το έδαφος τη χρονική στιγμή t sec δίνεται από τη συνάρτηση h(t) t , 0 t 180. α) Να βρείτε το ελάχιστο και το μέγιστο ύψος στο οποίο φτάνει το κάθισμα, καθώς και τις στιγμές κατά τις οποίες το κάθισμα βρίσκεται στο ελάχιστο και στο μέγιστο ύψος. (Μονάδες 8) β) Να υπολογίσετε την ακτίνα της ρόδας. (Μονάδες 3) γ) Να βρείτε την περίοδο της κίνησης, δηλαδή το χρόνο στον οποίο η ρόδα ολοκληρώνει μια περιστροφή. Πόσους γύρους έκαναν οι δύο φίλες στο διάστημα από 0 έως 180 sec; (Μονάδες +=6) δ) Να μεταφέρετε στην κόλλα σας τον πίνακα τιμών και το σύστημα συντεταγμένων που δίνονται παρακάτω και: i) να συμπληρώσετε τον πίνακα τιμών της συνάρτησης του ύψους h(t). (Μονάδες 3) ii) να σχεδιάσετε στο σύστημα συντεταγμένων το τμήμα της γραφικής παράστασης της συνάρτησης h(t) με 0 t 90. (Μονάδες 5) 13

14 t h(t) 9. Για τη γωνία ω ισχύει ότι 5συνω + 8συνω + 1 = 0. α) Να δείξετε ότι 5 β) Αν για τη γωνία ω επιπλέον ισχύει τότε: i) να δείξετε ότι 7 5 και ii) να υπολογίσετε την τιμή της παράστασης: ( ) ( ) (Μονάδες 8) (Μονάδες 7) 50. Δίνεται το σύστημα : x y 1 x y, με παράμετρο λ R. α) Να λύσετε το σύστημα για τις διάφορες τιμές του λ R. β) Αν λ = -1 και (x 0, y 0 ) είναι η αντίστοιχη λύση του συστήματος, να βρείτε γωνία θε[0, π) τέτοια ώστε x 0 = συνθ και y 0 = ημθ. (Μονάδες 7) γ) Αν λ = 1 και (x 1, y 1 ) είναι η αντίστοιχη λύση του συστήματος, να δείξετε ότι δεν υπάρχει γωνία ω, τέτοια ώστε x 1 = συνω και y 1 = ημω. (Μονάδες 8) 51. Δίνονται οι συναρτήσεις f (χ) = συνx και g(x) = συνx.

15 α) Να μεταφέρετε στην κόλλα σας και να συμπληρώσετε τον παρακάτω πίνακα τιμών των συναρτήσεων f και g. Στη συνέχεια, να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων f (x) και g (x), για x [0, π]. (Μονάδες 8) x 0 π π 3π π 5π 3π 7π π f (x) g (x) β) Με τη βοήθεια της γραφικής παράστασης, να προσδιορίσετε το πλήθος των λύσεων της εξίσωσης συνx = συνx (1) στο διάστημα [0, π]. (Μονάδες ) γ) Να λύσετε αλγεβρικά την εξίσωση (1) στο διάστημα [0, π] και να σημειώσετε πάνω στο σχήμα του ερωτήματος (α) τις συντεταγμένες των κοινών σημείων των γραφικών παραστάσεων των συναρτήσεωνf και g. (Μονάδες 13) 15

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα Τράπεζα θεμάτων ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα ΘΕΜΑ 2 (16950) α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ Τράπεζα Θεμάτων-ο Β Λυκείου- ΑΛΓΕΒΡΑ ΘΕΜΑ (178) Δίνεται η συνάρτηση f (x) f x 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 )

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 ) 1. Δίνεται η συνάρτηση f(x) = 1 συνx, x R α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f; β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ Α. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (//04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς των Επιμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες:

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι.1 έως και.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: 1 1. 1. 1 1 1. 4. 1 1 1 5. 1 1 1 1 1 6. 1 7 Β. Να υπολογίσετε την τιμή των παρακάτω παραστάσεων:

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Τ Ε Τ Α Ρ Τ Ο Θ Ε Μ Α Γ ρ α μ μ ι κ α Σ υ

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y . Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 1η έκδοση: 30 11 014 (συνεχής ανανέωση) Το βιβλίο διατίθεται αποκλειστικά

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2 11 Τριγωνομετρικές Συναρτήσεις 1 Δίνονται οι συναρτήσεις f ( ) ( ημ ) + σφ =, g( ) ημ ημ = και h( ) ημ( ) αποδειχθεί ότι η f είναι άρτια, η g περιττή και η h ούτε άρτια ούτε περιττή Να εξετασθεί αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

(Έκδοση: )

(Έκδοση: ) (Έκδοση: 06 11-014) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 11 014 (συνεχής ανανέωση) ( προστέθηκαν

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

Β Γενική Τριγωνομετρία

Β Γενική Τριγωνομετρία Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( )

α) ( ) β) ( ) γ) ( ) δ) ( ) ( ) β) ( ) ( ) δ) ( ) ( ) ( ) Συναρτήςεισ Όριο Συνέχεια Πεδίο οριςμού ςυνάρτηςησ 1) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 2) Να βρείτε τα πεδία οριςμού των ςυναρτήςεων α) β) γ) δ) 3) Να βρείτε τα πεδία οριςμού των

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1 1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση 1 η (6/11/014) Οι ααντήσεις και οι λύσεις είναι αοτέλεσμα συλλογικής δουλειάς των Ειμελητών των φακέλων του

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = {

Bbs. ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { ΑΛΓΕΒΡΑ ΣΥΝΟΛΑ Σύνολο Φυσικών αριθμών: N = {0,1,2, } Σύνολο Ακέραιων αριθμών: Z = {,-2,-1,0,1,2, } Σύνολο Ρητών αριθμών: Q = { Άρρητοι αριθμοί A: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών αριθμών R=

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ : ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Θέμα 1 ον ΘΕΩΡΙΑ : α) Τι καλείται αριθμητική παράσταση και τι καλείται αλγεβρική παράσταση ; β) Να συμπληρώσετε

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

θετικοί αριθμοί, να δείξετε ότι

θετικοί αριθμοί, να δείξετε ότι 1 Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ 9 /05/ 01 Προαγωγικές Εξετάσεις Β τάξης Εξεταζόμενο μάθημα : Άλγεβρα Σελίδες : (ΔΥΟ) ΘΕΜΑ 1 ο Α. Αν 0, 1 και, 1 θετικοί αριθμοί, να δείξετε ότι log a 1 log 1 log (15 μονάδες)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Θετικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Θετικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό - Λάθος».

Διαβάστε περισσότερα

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση.

2. Έστω η συνάρτηση f :[0, 6] με την παρακάτω γραφική παράσταση. . Έστω η συνάρτηση f : με την παρακάτω γραφική παράσταση. Α. Να προσδιορίσετε τα διαστήματα στα οποία η f είναι γνησίως αύξουσα, γνησίως φθίνουσα, κυρτή, κοίλη, καθώς και τα τοπικά ακρότατα και τα σημεία

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1- 3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα