Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015"

Transcript

1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι α: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1

2 Π ε ρ ι ε χ ό μ ε ν α Κεφαλαιο 1 ο : Συστήματα Θέμα ο...4 Θέμα 4 ο...11 Κεφάλαιο ο : Ιδιότητες συναρτήσεων Θέμα ο...15 Θέμα 4 ο... Κεφάλαιο 3 ο : Τριγωνομετρία Θέμα ο...7 Θέμα 4 ο...33 Μαθηματικός Περιηγητής

3 Κ Ε Φ Α Λ Α Ι Ο 1 ο Σ Υ Σ Τ Η Μ Α Τ Α Μαθηματικός Περιηγητής 3

4 Θ Ε Μ Α ο 16 θέματα Μαθηματικός Περιηγητής 4

5 ΘΕΜΑ 1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δύο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά στο επίπεδο τις δύο εξισώσεις του συστήματος που ορίσατε στο (α) ερώτημα και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. (Μονάδες 15) ΘΕΜΑ Δίνεται η εξίσωση: 8x y 7 (1) α) Να γράψετε μια άλλη εξίσωση που να μην έχει καμία κοινή λύση με την εξίσωση (1). β) Να παραστήσετε γραφικά στο επίπεδο τις δύο εξισώσεις και, με βάση το γράφημα, να εξηγήσετε γιατί το σύστημα είναι αδύνατο. ΘΕΜΑ 3 (Μονάδες 15) Δίνεται το σύστημα: x y 8 x y με παραμέτρους,, α) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (, 3). β) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να είναι αδύνατο. (Μονάδες 1) Μαθηματικός Περιηγητής 5

6 ΘΕΜΑ 4 Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. α) Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β) Δίνεται επιπλέον η πληροφορία ότι η διαφορά των ηλικιών τους είναι 5 χρόνια. Να υπολογίσετε την ηλικία του καθενός. (Μονάδες 1) ΘΕΜΑ 5 α) Με βάση τα δεδομένα του σχήματος, να προσδιορίσετε τις εξισώσεις των ευθειών (ε) και (η). β) Να βρείτε τις συντεταγμένες του σημείου τομής τους. (Μονάδες 1) ΘΕΜΑ 6 Δίνεται το σύστημα : x y, με παράμετρο. x y 1 α) Να αποδείξετε ότι για τις ορίζουσες D, D, D του συστήματος ισχύουν x y Μαθηματικός Περιηγητής 6

7 1, 1 1 x y D D D β) Αν είναι 0 και 1, τότε να λύσετε το σύστημα. (Μονάδες 15) ΘΕΜΑ 7 Δίνεται ένα ορθογώνιο παραλληλόγραμμο με μήκος x cm, πλάτος y cm, περίμετρο ίση με 38cm και με την ακόλουθη ιδιότητα: Αν αυξήσουμε το μήκος του κατά cm και μειώσουμε το πλάτος του κατά 4 cm, θα προκύψει ένα ορθογώνιο με εμβαδόν ίσο με το εμβαδόν του αρχικού. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. β) Να βρείτε τις τιμές των διαστάσεων x, y του ορθογωνίου. (Μονάδες 15) ΘΕΜΑ 8 Στο δημοτικό parking μιας επαρχιακής πόλης στις 10 το πρωί, το σύνολο των δίκυκλων και τετράτροχων οχημάτων που έχουν παρκάρει είναι 830 και το πλήθος των τροχών τους.700. α) Να εκφράσετε τα δεδομένα με ένα σύστημα δύο εξισώσεων με δύο αγνώστους. β) Να βρείτε τον αριθμό των δίκυκλων καθώς και τον αριθμό των τετράτροχων οχημάτων. (Μονάδες 1) ΘΕΜΑ 9 1 Δίνονται οι ευθείες με εξισώσεις: : x y 1, με παράμετρο. : ( 1)x y 6 α) Να βρείτε την τιμή του ώστε οι ευθείες 1 και να είναι παράλληλες. β) Να παραστήσετε γραφικά τις 1 και, για. 3 (Μονάδες 8) Μαθηματικός Περιηγητής 7

8 γ) Υπάρχει τιμή του 3, ώστε οι ευθείες 1 και (Μονάδες 8) να ταυτίζονται; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 9) ΘΕΜΑ 10 Δίνονται οι ευθείες: 1 : x y 6, : x y 3 α) Να προσδιορίσετε αλγεβρικά το κοινό τους σημείο Μ. β) Να βρείτε για ποια τιμή του α, η ευθεία 3x y 5 διέρχεται από το Μ. (Μονάδες 1) ΘΕΜΑ 11 Δίνεται το σύστημα: x y 9 x y με παραμέτρους,, α) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος 1, 4 β) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να είναι αδύνατο και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) ΘΕΜΑ 1 Δίνεται το σύστημα: x y 3 x y με παραμέτρους,, α) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος 1,5 (Μονάδες 13) β) Να επιλέξετε τιμές για τις παραμέτρους,, ώστε το σύστημα αυτό να είναι αδύνατο και να επαληθεύσετε γραφικά την επιλογή σας. (Μονάδες 1) Μαθηματικός Περιηγητής 8

9 ΘΕΜΑ 13 α) Να λύσετε αλγεβρικά το σύστημα y x 1 x y 1 (Μονάδες 15) β) Να ερμηνεύσετε γεωμετρικά τις λύσεις του συστήματος που βρήκατε στο ερώτημα (α). ΘΕΜΑ 14 ( 1)x y 3 Δίνεται το σύστημα: με παράμετρο. 4x ( 1)y 6 α) Αν 3, να δείξετε ότι το σύστημα έχει άπειρες λύσεις. Να βρείτε μια λύση. β) Αν 3, να δείξετε ότι το σύστημα είναι αδύνατο. (Μονάδες 8) (Μονάδες 8) γ) Αν 0, να δείξετε ότι το σύστημα έχει μοναδική λύση την οποία και να προσδιορίσετε. (Μονάδες 9) ΘΕΜΑ 15 Δίνονται οι ευθείες 1 3 : x y 5, : x 3y 9, :3x y 7 α) i. Να βρείτε τις συντεταγμένες του σημείου τομής των 1, ii. Να βρείτε τις συντεταγμένες του σημείου τομής των 1, 3 (Μονάδες 1) β) Με τη βοήθεια του ερωτήματος (α), να δείξετε ότι το κοινό σημείο των και 3 είναι σημείο της ΘΕΜΑ 16 1 Ένα θέατρο έχει 5 σειρές καθισμάτων χωρισμένες σε δύο διαζώματα. Η κάθε μια από τις σειρές του κάτω διαζώματος έχει 14 καθίσματα και η κάθε μια από τις σειρές του πάνω διαζώματος έχει 16 καθίσματα, ενώ η συνολική χωρητικότητα του θεάτρου είναι 374 καθίσματα. Μαθηματικός Περιηγητής 9

10 α) Αν x ο αριθμός σειρών του κάτω και yo αριθμός σειρών του πάνω διαζώματος, να εκφράσετε τα δεδομένα του προβλήματος με ένα σύστημα δύο εξισώσεων. β) Πόσες σειρές έχει το πάνω και πόσες το κάτω διάζωμα; (Μονάδες 1) Μαθηματικός Περιηγητής 10

11 Θ Ε Μ Α 4 ο 6 θέματα Μαθηματικός Περιηγητής 11

12 ΘΕΜΑ 17 1 x 3y 3 Δίνεται το σύστημα:, με παράμετρο x 1 y 3 α) Να αποδείξετε ότι αν το σύστημα έχει μοναδική λύση την 0 0 β) Να βρείτε τις τιμές του για τις οποίες το σύστημα: i. έχει άπειρες σε πλήθος λύσεις και να δώσετε τη μορφή τους. ii. δεν έχει λύση. x, y, τότε x0 y0 (Μονάδες 6) (Μονάδες 4) γ) Να εξετάσετε τις σχετικές θέσεις των δύο ευθειών που προκύπτουν από τις εξισώσεις του παραπάνω συστήματος για 3,, (Μονάδες 5) ΘΕΜΑ 18 Για τις ηλικίες των μελών μιας τριμελούς οικογένειας ισχύουν τα παρακάτω: Η ηλικία της μητέρας είναι τριπλάσια από την ηλικία του παιδιού. Ο λόγος της ηλικίας το πατέρα προς την ηλικία του παιδιού ισούται με Επιπλέον το άθροισμα των ηλικιών και των τριών ισούται με 115 χρόνια. α) Να εκφράσετε τα δεδομένα με ένα σύστημα τριών εξισώσεων με τρείς αγνώστους. β) Να βρείτε την ηλικία του καθενός. (Μονάδες 1) ΘΕΜΑ 19 Ο Κώστας έχει τρία παιδιά. Δύο δίδυμα κορίτσια και ένα αγόρι. Στην ερώτηση πόσων χρονών είναι τα παιδιά του απάντησε ως εξής. 1. Το άθροισμα των ηλικιών και των τριών παιδιών είναι 14. Το γινόμενο της ηλικίας της κόρης μου επί την ηλικία του γιου μου είναι 4 3. Το άθροισμα των ηλικιών των κοριτσιών είναι μικρότερο από την ηλικία του αγοριού. α) Να γράψετε τις εξισώσεις που περιγράφουν τα στοιχεία 1. και. που έδωσε ο Κώστας. Μαθηματικός Περιηγητής 1

13 β) Να βρείτε τις ηλικίες των παιδιών του Κώστα. ΘΕΜΑ 0 Δίνονται οι ευθείες 1, (Μονάδες 15) με εξισώσεις x ( )y 3, ( )x 5y 3 αντίστοιχα και α) Για τις διάφορες τιμές του, να βρείτε τη σχετική θέση των δύο ευθειών. β) Στην περίπτωση που οι ευθείες 1, σημείου τομής Α των δύο ευθειών. τέμνονται, να βρείτε τις συντεταγμένες του (Μονάδες 7) γ) Να βρείτε την τιμή του για την οποία το σημείο Α ανήκει στην ευθεία με εξίσωση: x y 3 ΘΕΜΑ 1 Δίνεται το σύστημα: x 4y 1, x 6y (Μονάδες 5) α) Να αποδείξετε ότι το σύστημα έχει λύση για οποιονδήποτε πραγματικό αριθμό λ. β) Να βρείτε τα x και y συναρτήσει του λ. (Μονάδες 7) (Μονάδες 8) γ) Να προσδιορίσετε την τιμή του λ, για την οποία οι ευθείες: x 4y 1, x 6y και 16x 16y 19 διέρχονται από το ίδιο σημείο. ΘΕΜΑ Ένα ορθογώνιο παραλληλόγραμμο με περίμετρο ίση με 4cm έχει την ακόλουθη ιδιότητα: αν αυξήσουμε το μήκος του κατά 3cm και ελαττώσουμε το πλάτος του κατά cm, θα προκύψει ένα ορθογώνιο με εμβαδόν διπλάσιο του εμβαδού του αρχικού ορθογωνίου. α) Να εκφράσετε την παραπάνω κατάσταση με ένα σύστημα δυο εξισώσεων με δυο αγνώστους. β) Να βρείτε τις διαστάσεις του ορθογωνίου. (Μονάδες 15) Μαθηματικός Περιηγητής 13

14 Κ Ε Φ Α Λ Α Ι Ο ο Ι Δ Ι Ο Τ Η Τ Ε Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ω Ν Μαθηματικός Περιηγητής 14

15 Θ Ε Μ Α ο 9 θέματα Μαθηματικός Περιηγητής 15

16 ΘΕΜΑ 3 Η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης f : σημεία A 5, και 4, 9 B. διέρχεται από τα α) Να προσδιορίσετε το είδος της μονοτονίας της αιτιολογώντας την απάντησή σας. (Μονάδες 1) β) Να λύσετε την ανίσωση ΘΕΜΑ 4 Δίνεται η συνάρτηση f ( x) x 4x 5, x f ( x) x 1 α) Να αποδείξετε ότι η f γράφεται στη μορφή (Μονάδες 1) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση f, μετατοπίζοντας κατάλληλα την y x Μαθηματικός Περιηγητής 16

17 ΘΕΜΑ 5 x Δίνεται η συνάρτηση f (x), x x 1 α) Να δείξετε ότι η f (x) 1 β) Είναι το 1 η μέγιστη τιμή της συνάρτησης; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Να εξετάσετε αν η συνάρτηση είναι άρτια ή περιττή. (Μονάδες 8) (Μονάδες 9) ΘΕΜΑ 6 Δίνεται η συνάρτηση f ( x) x 5, x. α) Να δείξετε ότι η f παρουσιάζει ελάχιστο στο x 0 β) Είναι η f άρτια συνάρτηση; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) (Μονάδες 8) γ) Με ποια μετατόπιση της g( x) x προκύπτει η f C ; (Μονάδες 9) ΘΕΜΑ 7 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση το. Nα απαντήσετε τα παρακάτω ερωτήματα: Cf μιας συνάρτησης f με πεδίο ορισμού α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους f (x 1), f (x ), f (x 3) β) Είναι η συνάρτηση f γνησίως μονότονη στο ; Να αιτιολογήσετε την απάντηση σας. γ) Παρουσιάζει η f μέγιστο στο σημείο x ; Να αιτιολογήσετε την απάντηση σας. (Μονάδες 5) Μαθηματικός Περιηγητής 17

18 ΘΕΜΑ 8 Έστω γνησίως μονότονη συνάρτηση f :, η γραφική παράσταση της οποίας διέρχεται από τα σημεία A,3 και A,3. α) Να προσδιορίσετε το είδος της μονοτονίας της f β) Αν η γραφική παράσταση της f τέμνει τον άξονα x x στο, να δείξετε ότι f (0) 0 (Μονάδες 1) ΘΕΜΑ 9 Στο παρακάτω σχήμα δίνονται οι παραβολές C f και C g που είναι γραφικές παραστάσεις των συναρτήσεων f και g αντίστοιχα με πεδίο ορισμού το. Η γραφική παράσταση της g προκύπτει από τη γραφική παράσταση της f με οριζόντια και κατακόρυφη μετατόπιση. Παρατηρώντας το σχήμα: α) Να βρείτε τα διαστήματα μονοτονίας, το είδος του ακρότατου της f και την τιμή του. β) Να βρείτε μέσω ποιων μετατοπίσεων της Cf προκύπτει η C g. (Μονάδες 15) Μαθηματικός Περιηγητής 18

19 ΘΕΜΑ 30 Δίνεται η συνάρτηση f (x) x 1x 19 α) Να δείξετε ότι η συνάρτηση f γράφεται στη μορφή: f (x) x 3 1 β) Παρακάτω δίνεται η γραφική παράσταση της συνάρτησης g(x) x. Στο ίδιο σύστημα αξόνων, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσετε πώς αυτή προκύπτει μετατοπίζοντας κατάλληλα τη γραφική παράσταση της g. (Μονάδες 15) Μαθηματικός Περιηγητής 19

20 ΘΕΜΑ 31 Στο παρακάτω σχήμα δίνονται οι γραφικές παραστάσεις των συναρτήσεων f και g, που ορίζονται στους πραγματικούς αριθμούς. Η γραφική παράσταση της g προκύπτει από τη γραφική παράσταση της f με οριζόντια και κατακόρυφη μετατόπιση. Από τις γραφικές παραστάσεις να βρείτε: α) Τα διαστήματα μονοτονίας της f, το είδος του ακρότατου της f, τη θέση και την τιμή του. (Μονάδες 1) β) Ποιες μετατοπίσεις της f δίνουν τη g. Να προσδιορίσετε στη συνέχεια τον τύπο της συνάρτησης g, αν f ( x) x. Μαθηματικός Περιηγητής 0

21 Μαθηματικός Περιηγητής 1

22 Θ Ε Μ Α 4 ο 3 θέματα Μαθηματικός Περιηγητής

23 ΘΕΜΑ 3 Δίνεται η συνάρτηση f (x) 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή. (Μονάδες 5) (Μονάδες 8) γ) Αν η συνάρτησης f είναι γνησίως φθίνουσα στο πεδίο ορισμού της, να επιλέξετε ποια από τις παρακάτω τρείς προτεινόμενες, είναι η γραφική της παράσταση και στη συνέχεια να υπολογίσετε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 7) δ) Να αιτιολογήσετε γραφικά ή αλγεβρικά, γιατί οι συναρτήσεις g(x) f (x) 3 και h(x) f x 3 δεν είναι ούτε άρτιες ούτε περιττές. ΘΕΜΑ 33 (Μονάδες 5) Στο σχήμα δίνονται οι γραφικές παραστάσεις μιας παραβολής f ( x) ax x και της ευθείας g( x) x Μαθηματικός Περιηγητής 3

24 α) Δεδομένου ότι η παραβολή διέρχεται από τα σημεία Α, Β, Γ, να βρείτε τα α, β, γ. (Μονάδες 8) 1 β) Αν a, 0 και, να βρείτε αλγεβρικά τις συντεταγμένες των κοινών σημείων ευθείας και παραβολής. (Μονάδες 8) γ) Αν μετατοπίσουμε την παραβολή κατά 4,5 μονάδες προς τα πάνω, να δείξετε ότι η ευθεία και η παραβολή θα έχουν ένα μόνο κοινό σημείο. (Μονάδες 9) ΘΕΜΑ 34 Δίνονται οι συναρτήσεις( x) x και f ( x) x x 1, x α) Να αποδείξετε ότι f ( x) x 1 για κάθε και στη συνέχεια, με τη βοήθεια της γραφικής παράστασης της συνάρτησης φ να παραστήσετε γραφικά τη συνάρτηση f. Μαθηματικός Περιηγητής 4

25 β) Με τη βοήθεια της γραφικής παράστασης της f να βρείτε: i. Τα διαστήματα στα οποία η συνάρτηση f είναι γνησίως μονότονη. ii. Το ολικό ακρότατο της f καθώς και τη θέση του. (Μονάδες 5) (Μονάδες 5) iii. Το πλήθος των ριζών της εξίσωσης f ( x),. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 5) Μαθηματικός Περιηγητής 5

26 Κ Ε Φ Α Λ Α Ι Ο 3 ο Τ Ρ Ι Γ Ω Ν Ο Μ Ε Τ Ρ Ι Α Μαθηματικός Περιηγητής 6

27 Θ Ε Μ Α ο 16 θέματα Μαθηματικός Περιηγητής 7

28 ΘΕΜΑ 35 Αν 0 x και x 15 x 4 0, τότε: 4 α) Να αποδείξετε ότι x 5 β) Να βρείτε τους άλλους τριγωνομετρικούς αριθμούς της γωνίας x (Μονάδες 15) ΘΕΜΑ 36 3 Δίνεται, όπου η οξεία γωνία που σχηματίζεται με κορυφή το σημείο Α της 5 ευθείας (ε) του παρακάτω σχήματος. α) Να βρείτε το συνημίτονο της γωνίας. β) Να βρείτε το ημίτονο και το συνημίτονο των γωνιών και του σχήματος. ΘΕΜΑ 37 (Μονάδες 15) Δίνεται γωνία που ικανοποιεί τη σχέση: 1 α) Να αποδείξετε ότι είτε 0 είτε 0 β) Να βρείτε τις δυνατές τιμές της γωνίας (Μονάδες 1) Μαθηματικός Περιηγητής 8

29 ΘΕΜΑ 38 Δίνεται γωνία ω για την οποία ισχύει ότι: 5 0 α) Να αποδείξετε ότι ισχύει: β) Να αποδείξετε ότι 1. (Μονάδες 1) ΘΕΜΑ 39 x x α) Να αποδείξετε ότι : όπου x, 1 x 1 x x x x 4 β) Να λύσετε την εξίσωση: 1 x 1 x 3 (Μονάδες 1) ΘEMA 40 f ( x) x x, x. Έστω η συνάρτηση α) Να αποδείξετε ότι f ( x) 1 x, για κάθε x. β) Να βρείτε την περίοδο καθώς και τη μέγιστη και ελάχιστη τιμή της f. (Μονάδες 1) ΘΕΜΑ 41 α) Είναι η τιμή σας. x λύση της εξίσωσης 3 4x 3 0 ; Να αιτιολογήσετε την απάντησή 4 β) Να βρείτε τις τετμημένες των σημείων τομής της γραφικής παράστασης της συνάρτησης f ( x) 4x με την ευθεία y 1. Μαθηματικός Περιηγητής 9

30 ΘΕΜΑ 4 1 Δίνεται η συνάρτηση f (x) x, x (Μονάδες 15) α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f ; β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας περιόδου. (Μονάδες 9) γ) Να εξετάσετε αν η συνάρτηση μπορεί να πάρει την τιμή 1. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 6) ΘΕΜΑ 43 Δίνονται οι γωνίες ω, θ με συνω 0 και συνθ 0, για τις οποίες ισχύει: ω + θ = Να αποδείξετε ότι: α) εφ(ω + θ)= 1 β) εφω + εφθ +1= εφω εφθ (Μονάδες 15) ΘΕΜΑ 44 α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: 17,, (Μονάδες 1) 3 β) Αν x1 x, να συγκρίνετε τους αριθμούς x 1 και x ΘΕΜΑ 45 Δίνεται η συνάρτηση f (x) 3 x, x α) Να βρείτε την περίοδο, τη μέγιστη και την ελάχιστη τιμή της f (Μονάδες 1) Μαθηματικός Περιηγητής 30

31 β) Να συμπληρώσετε τον παρακάτω πίνακα και να παραστήσετε γραφικά την f σε διάστημα μιας περιόδου. x 0 x x f (x) 3 x ΘΕΜΑ 46 Δίνεται η συνάρτηση α) Να δείξετε ότι f (x) 3x f (x) 3x 3x, x β) Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f. (Μονάδες 15) ΘΕΜΑ 47 Δίνεται η παράσταση: α) Να αποδείξετε ότι 1 x x, x, 1 x (Μονάδες 1) β) Να λύσετε την εξίσωση x 1 1 x στο διάστημα 0,. ΘΕΜΑ 48 x x 0 α) Να αποδείξετε ότι: β) Να βρείτε τις τιμές του x [0, ) για τις οποίες ισχύει x x (Μονάδες 15) Μαθηματικός Περιηγητής 31

32 ΘΕΜΑ 49 Έστω γωνία x για την οποία ισχύουν: x και x x 1 1 α) Να αποδείξετε ότι x (Μονάδες 1) β) Να βρείτε την γωνία x ΘΕΜΑ α) Να αποδείξετε ότι: x x x 3 β) Με τη βοήθεια του ερωτήματος (α), να λύσετε στο διάστημα (0, π) την εξίσωση: 3 1 x x 0. (Μονάδες 1) Μαθηματικός Περιηγητής 3

33 Θ Ε Μ Α 4 ο 1 θέματα Μαθηματικός Περιηγητής 33

34 ΘΕΜΑ 51 Δίνεται η συνάρτηση f (x) 1 x με και 0, η οποία έχει μέγιστη τιμή 3 και περίοδο 4. α) Να δείξετε ότι ή 4 και 1 β) Για i. να λυθεί η εξίσωση f (x) 3 1. (Μονάδες 7) ii. να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f στο διάστημα 0,8 (Μονάδες 8) ΘΕΜΑ 5 Για τη γωνία ισχύει ότι α) Να δείξετε ότι 4 5 β) Αν για τη γωνία επιπλέον ισχύει, τότε: 7 i. να δείξετε ότι και ii. να υπολογίσετε την τιμή της παράστασης: (Μονάδες 8) (Μονάδες 7) ΘΕΜΑ 53 Δίνεται το σύστημα: x y 1 με παράμετρο x y α) Να λύσετε το σύστημα για τις διάφορες τιμές του Μαθηματικός Περιηγητής 34

35 0 0 β) Αν 1 και x, y [0, ) τέτοια ώστε x 0 είναι η αντίστοιχη λύση του συστήματος, να βρείτε γωνία και y0 (Μονάδες 7) γ) Αν 1και x 1, y 1 είναι η αντίστοιχη λύση του συστήματος, να δείξετε ότι δεν υπάρχει γωνία, τέτοια ώστε x1 και y1 (Μονάδες 8) ΘΕΜΑ 54 Η Αλίκη και η Αθηνά διασκεδάζουν στη ρόδα του λούνα παρκ. Η απόσταση, σε μέτρα, του καθίσματός τους από το έδαφος τη χρονική στιγμή t t h(t) και 0 t 180 sec δίνεται από τη συνάρτηση α) Να βρείτε το ελάχιστο και το μέγιστο ύψος στο οποίο φτάνει το κάθισμα, καθώς και τις στιγμές κατά τις οποίες το κάθισμα βρίσκεται στο ελάχιστο και στο μέγιστο ύψος. β) Να υπολογίσετε την ακτίνα της ρόδας. (Μονάδες 8) (Μονάδες 3) γ) Να βρείτε την περίοδο της κίνησης, δηλαδή το χρόνο στον οποίο η ρόδα ολοκληρώνει μια περιστροφή. Πόσους γύρους έκαναν οι δύο φίλες στο διάστημα από 0 έως 180 sec; (Μονάδες 4+=6) δ) Να μεταφέρετε στην κόλα σας τον πίνακα τιμών και το σύστημα συντεταγμένων που δίνονται παρακάτω και: i. να συμπληρώσετε τον πίνακα τιμών της συνάρτησης του ύψους h(t) (Μονάδες 3) ii. να σχεδιάσετε στο σύστημα συντεταγμένων το τμήμα της γραφικής παράστασης της συνάρτησης h(t) με 0 t 90 (Μονάδες 5) t h(t) Μαθηματικός Περιηγητής 35

36 ΘΕΜΑ 55 x y 1 α) Να λύσετε το σύστημα: x y 1 (Μονάδες 1) β) Με τη βοήθεια του ερωτήματος (α) και του τριγωνομετρικού κύκλου, να βρείτε όλες τις γωνίες με 0, που ικανοποιούν τη σχέση 1 και να τις απεικονίσετε πάνω στον τριγωνομετρικό κύκλο. ΘΕΜΑ 56 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση μιας συνάρτησης f η οποία είναι της μορφής f (x) x k,,, k πραγματικές σταθερές. α) Με βάση τη γραφική παράσταση, να βρείτε: Μαθηματικός Περιηγητής 36

37 i. τη μέγιστη και την ελάχιστη τιμή της συνάρτησης f ii. την περίοδο T της συνάρτησης f (Μονάδες 3) (Μονάδες 3) β) Να προσδιορίσετε τις τιμές των σταθερών,, k. Να αιτιολογήσετε την απάντησή σας. γ) Θεωρώντας γνωστό ότι (Μονάδες 9) 1 3,, k να προσδιορίσετε αλγεβρικά την τετμημένη x 0 του σημείου A της γραφικής παράστασης, που δίνεται στο σχήμα. ΘΕΜΑ 57 Δίνεται η συνάρτηση: f (x) 1 x c d, x με c,d θετικές σταθερές, η γραφική παράσταση της οποίας διέρχεται από τα σημεία A0,16, B4,0 α) Με βάση τα δεδομένα, να κατασκευάσετε ένα σύστημα δύο εξισώσεων με αγνώστους τους c,d και να υπολογίσετε την τιμή τους. β) Θεωρώντας γνωστό ότι c 6 d άξονες. i. να βρείτε τα σημεία τομής της γραφικής παράστασης της συνάρτησης f με τους (Μονάδες 3) ii. να μεταφέρετε στην κόλα σας το σύστημα συντεταγμένων που ακολουθεί, να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f και να εξηγήσετε πώς αυτή 1 σχετίζεται με τη γραφική παράσταση της συνάρτησης g(x) x iii. με βάση την παραπάνω γραφική παράσταση, να βρείτε το ακρότατο της συνάρτησης f, τα διαστήματα στα οποία η f είναι μονότονη, καθώς και το είδος της μονοτονίας της σε καθένα από αυτά τα διαστήματα. (Μονάδες 6) (Μονάδες 6) Μαθηματικός Περιηγητής 37

38 ΘΕΜΑ 58 Δίνονται οι συναρτήσεις f (x) x g(x) x α) Να μεταφέρετε στην κόλα σας και να συμπληρώσετε τον παρακάτω πίνακα τιμών των συναρτήσεων f και g. Στη συνέχεια, να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων f (x) και g(x), για x 0, (Μονάδες 8) x f (x) g(x) β) Με τη βοήθεια της γραφικής παράστασης, να προσδιορίσετε το πλήθος των λύσεων της εξίσωσης x x 0, (1) στο διάστημα (Μονάδες 4) Μαθηματικός Περιηγητής 38

39 γ) Να λύσετε αλγεβρικά την εξίσωση (1) στο διάστημα 0, και να σημειώσετε πάνω στο σχήμα του ερωτήματος (α) τις συντεταγμένες των κοινών σημείων των γραφικών παραστάσεων των συναρτήσεων f και g. ΘΕΜΑ 59 Ένα παιγνίδι κρέμεται με ένα ελατήριο από το ταβάνι. Το ύψος του από το πάτωμα σε cm συναρτήσει του χρόνου t (sec) δίνεται από τη σχέση: h(t) t όπου,, πραγματικές σταθερές. Όταν το ελατήριο ταλαντώνεται, το ελάχιστο ύψος του παιχνιδιού από το πάτωμα είναι 0cm και το μέγιστο 100cm. Τη χρονική στιγμή t 0 το ύψος παίρνει την ελάχιστη τιμή του και ο χρόνος μιας πλήρους ταλάντωσης (θέσεις: ελάχιστο-ηρεμία-μέγιστοηρεμία-ελάχιστο) είναι 6 sec. α) Να δείξετε. 3 β) Να προσδιορίσετε τις τιμές των, αιτιολογώντας την απάντησή σας. (Μονάδες 5) γ) Να υπολογίσετε το ύψος του παιγνιδιού από το πάτωμα 14 sec μετά την έναρξη της ταλάντωσης. δ) Να χαράξετε τη γραφική παράσταση της συνάρτησης h(t), για 0 t 1 (Μονάδες 6) (Μονάδες 8) ΘΕΜΑ 60 (Μονάδες 6) Ένα σώμα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώματος από το έδαφος (σε cm), δίνεται από την συνάρτηση: ώρες. α) Να βρείτε την περίοδο της ταλάντωσης. t f (t) 1 13, όπου t ο χρόνος σε 4 (Μονάδες 7) β) Να βρείτε την απόσταση του σώματος από το έδαφος τις χρονικές στιγμές t 5 και t 8 (Μονάδες 8) Μαθηματικός Περιηγητής 39

40 γ) Να βρείτε κατά το χρονικό διάστημα από t 0 έως t 8, ποιά χρονική στιγμή η απόσταση του σώματος από το έδαφος είναι ελάχιστη. Ποια είναι η απόσταση αυτή; ΘΕΜΑ 61 Στο παρακάτω σχήμα, δίνεται η γραφική παράσταση μιας συνάρτησης f, που είναι της μορφής f ( x) a x, όπου α, β πραγματικοί αριθμοί. α) Mε βάση τη γραφική παράσταση της f, να βρείτε τη μέγιστη και την ελάχιστη τιμή της. (Mονάδες 4) β) Ποια είναι η περίοδος Τ της συνάρτησης f ; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 4) γ) Mε βάση τα δεδομένα του σχήματος, να αποδείξετε ότι: α = - και β = 6. (Μονάδες 8) δ) Να προσδιορίσετε αλγεβρικά τα κοινά σημεία της γραφικής παράστασης της f με την ευθεία y = 1 στο διάστημα [0, π]. (Μονάδες 9) Μαθηματικός Περιηγητής 40

41 ΘΕΜΑ 6 Η θερμοκρασία μιας περιοχής σε βαθμούς Κελσίου ( o C ) κατά τη διάρκεια ενός εικοσιτετραώρου δίνεται κατά προσέγγιση από τη συνάρτηση: t f ( t) 8 4, με 0 t 4 ( t ο χρόνος σε ώρες) 1 α) Να βρείτε τη μέγιστη και την ελάχιστη θερμοκρασία κατά τη διάρκεια του εικοσιτετραώρου. β) Να βρείτε τις χρονικές στιγμές που η θερμοκρασία είναι ίση με 0 o C. γ) Να παραστήσετε γραφικά την f για t 0, 4. (Μονάδες 7) (Μονάδες 6) (Μονάδες 7) δ) Να βρείτε, με τη βοήθεια της γραφικής παράστασης, πότε θερμοκρασία είναι πάνω από 0 o C. (Μονάδες 5) Μαθηματικός Περιηγητής 41

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ Τράπεζα Θεμάτων-ο Β Λυκείου- ΑΛΓΕΒΡΑ ΘΕΜΑ (178) Δίνεται η συνάρτηση f (x) f x 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ Α. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 )

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 ) 1. Δίνεται η συνάρτηση f(x) = 1 συνx, x R α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f; β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (22/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρας Β τάξης Γενικού Λυκείου 4o Θέμα Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (//04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα συλλογικής δουλειάς των Επιμελητών των φακέλων του Λυκείου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες:

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι 3.1 έως και 3.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΤΗΣ Β ΛΥΚΕΙΟΥ (παράγραφοι.1 έως και.5) Α. Να αποδείξετε τις παρακάτω ταυτότητες: 1 1. 1. 1 1 1. 4. 1 1 1 5. 1 1 1 1 1 6. 1 7 Β. Να υπολογίσετε την τιμή των παρακάτω παραστάσεων:

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Αναγωγή στο 1ο τεταρτημόριο

Αναγωγή στο 1ο τεταρτημόριο ΑΛΓΕΒΡΑ ΒΛ ΤΡΙΓΩΝΟΜΕΤΡΙΑ - ΑΣΚΗΣΕΙΣ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 1-1. -175663 Βασικές Τριγωνομετρικές ταυτότητες Αν 0

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

(Έκδοση: )

(Έκδοση: ) (Έκδοση: 06 11-014) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 11 014 (συνεχής ανανέωση) ( προστέθηκαν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr

Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 1η έκδοση: 30 11 014 (συνεχής ανανέωση) Το βιβλίο διατίθεται αποκλειστικά

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 6.3 Ασκήσεις: όλες Άσκηση 1 Δίνεται η συνάρτηση f, με x 5x+ 6 f ( x) =. x 3 α) Να βρείτε

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2

( ) x. 1.1 Τριγωνομετρικές Συναρτήσεις. =. Να. 1. Δίνονται οι συναρτήσεις f ( x ) ( x 2 11 Τριγωνομετρικές Συναρτήσεις 1 Δίνονται οι συναρτήσεις f ( ) ( ημ ) + σφ =, g( ) ημ ημ = και h( ) ημ( ) αποδειχθεί ότι η f είναι άρτια, η g περιττή και η h ούτε άρτια ούτε περιττή Να εξετασθεί αν είναι

Διαβάστε περισσότερα

20 επαναληπτικά θέματα

20 επαναληπτικά θέματα 0 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ λυκείου (τεύχος σχολικό έτος 03-04) Γράφουν οι μαθηματικοί: Βέρρας Οδυσσέας Καρύμπαλης Νώντας Κοτσώνης Γιώργος Κώνστας Χάρης Μπούζας Δημήτρης Πετρόπουλος

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =

lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) = Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β.

Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, βάση τη γραφική παράσταση της ευθείας y = ax + β. Ενότητα 1 Εξισώσεις Ανισώσεις α βαθμού Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε την εξίσωση αx + β = 0, με βάση τη γραφική παράσταση της ευθείας y = ax + β. Να επιλύουμε την ανίσωση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4

ΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4 7.0 ΘΕΜΑ 4 Δίνονται τα σημεία Α, Β και Μ που παριστάνουν στον άξονα των πραγματικών αριθμών τους αριθμούς -, 7 και x αντίστοιχα, με - < x < 7. α) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων.

Διαβάστε περισσότερα

x R, να δείξετε ότι: i)

x R, να δείξετε ότι: i) ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ Γ ΛΥΚΕΙΟΥ Έστω μια συνάρτηση f παραγωγίσιμη στο R για την οποία ισχύουν: f ( ), f ( ) για κάθε R και f ( ) f ( ) α) Να βρείτε τον τύπο της f για κάθε R g( ) β) Αν g είναι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9) α) Να λύσετε την ανίσωση: 1 x < 4. (Μονάδες 9) 2 β) Να λύσετε την ανίσωση: x+ 5 3. (Μονάδες 9) γ) Να βρείτε τις κοινές λύσεις των ανισώσεων των ερωτημάτων (α) και (β) με χρήση του άξονα των πραγματικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2.

Μαθηματικά Γενικής Παιδείας. iv) f(x)= v) f(x)= ln(x 2-4) vi) f(x) =, v) f(x) = 6 x 5. vi) vii) f(x) = ln(x 2-2) viii) f(x) = lnx 2. Ερωτήσεις ανάπτυξης Β. Να βρεθούν τα πεδία ορισμού των συναρτήσεων: 5 4 i) f() = ii) f()= iii) f()= iv) f()= ln( ) e v) f()= ln( -4) 4 4 vi) f() =, 5. Να βρείτε το πεδίο ορισμού των συναρτήσεων f με τύπο:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα