Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή"

Transcript

1 ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται με τα σημεία ενός άξονα, του άξονα των πραγματικών αριθμών (Σχ ) e π 4 5 Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή, όπου α, β ακέραιοι με 0 Το σύνολο των ρητών αριθμών συμβολίζεται με Q Είναι, δηλαδή, Q, έ 0 Υπενθυμίζουμε ότι το σύνολο των ακέραιων αριθμών είναι το Z {,,,,0,,,,}, ενώ το σύνολο των φυσικών αριθμών είναι το N {0,,,,} Για τα σύνολα N, Z, Q και R ισχύει: N Z Q R ΠΑΡΑΤΗΡΗΣΗ: N Z Q R Τα σύνολα N {0}, Z {0}, Q {0} και {0} συμβολίζουμε συντομότερα με * N, * Z, * Q και τα * αντιστοίχως Πράξεις και διάταξη στο R ) Αν και, τότε ) ), ό 0 ώ, ό 0 4), ό A, ό,,, 0

2 5) Αν, 0 και ν N 6) 0( 0 0) *, τότε ισχύει η ισοδυναμία 7) Aν 0, τότε ισχύει η ισοδυναμία : Διαστήματα πραγματικών αριθμών Αν, με, τότε ονομάζουμε διαστήματα με άκρα τα α,β καθένα από τα παρακάτω σύνολα: () α,β{ α }: β ανοικτό διάστημα [ α,β] { α β}: κλειστό διάστημα [,) { }: κλειστό-ανοικτό διάστημα ( α,β] { α β}: ανοικτό-κλειστό διάστημα a a a a β β β β Αν α, τότε ονομάζουμε μη φραγμένα διαστήματα με άκρο το α καθένα από τα παρακάτω σύνολα: ( α,) { } α [ α,) { } α (,) α { } α (, α] { α} ΠΑΡΑΤΗΡΗΣΕΙΣ: Υπό μορφή διαστήματος το σύνολο το συμβολίζουμε με (,) Τα σημεία ενός διαστήματος Δ, που είναι διαφορετικά από τα άκρα του, λέγονται εσωτερικά σημεία του Δ Απόλυτη τιμή πραγματικού αριθμού Η απόλυτη τιμή ενός πραγματικού αριθμού α, που συμβολίζεται με, ορίζεται ως εξής:, 0, 0 a a a a

3 Γεωμετρικά, η απόλυτη τιμή του α παριστάνει την απόσταση του αριθμού α από το μηδέν, 4 a 0 α 4 ενώ η απόλυτη τιμή του αριθμών α και β παριστάνει την απόσταση των aβ 4 β 0 α 4 Ιδιότητες της απόλυτης τιμής : ) ) ) 4) 5), 0 6) ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της πραγματικής συνάρτησης ΟΡΙΣΜΟΣ Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα), με την οποία κάθε στοιχείο A αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό Το ονομάζεται τιμή της στο και συμβολίζεται με () Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : A () Το γράμμα, που παριστάνει οποιοδήποτε στοιχείο του Α λέγεται ανεξάρτητη μεταβλητή, ενώ το γράμμα, που παριστάνει την τιμή της στο, λέγεται εξαρτημένη μεταβλητή Το πεδίο ορισμού Α της συνάρτησης συνήθως συμβολίζεται με D

4 4 Το σύνολο που έχει για στοιχεία του τις τιμές της σε όλα τα A, λέγεται σύνολο τιμών της και συμβολίζεται με () A Είναι δηλαδή: () A { () για κάποιο A} ΠΡΟΣΟΧΗ Στα επόμενα και σε όλη την έκταση του βιβλίου : Θα ασχοληθούμε μόνο με συναρτήσεις που έχουν πεδίο ορισμού διάστημα ή ένωση διαστημάτων Όταν θα λέμε ότι Η συνάρτηση είναι ορισμένη σ ένα σύνολο Β, θα εννοούμε ότι το Β είναι υποσύνολο του πεδίου ορισμού της Στην περίπτωση αυτή με () B θα συμβολίζουμε το σύνολο των τιμών της σε κάθε B Είναι δηλαδή: () B { () για κάποιο B} Συντομογραφία συνάρτησης Είδαμε παραπάνω ότι για να οριστεί μια συνάρτηση, αρκεί να δοθούν δύο στοιχεία: το πεδίο ορισμού της και η τιμή της, (), για κάθε του πεδίου ορισμού της (τύπος) Συνήθως, όμως, αναφερόμαστε σε μια συνάρτηση δίνοντας μόνο τον τύπο με τον οποίο εκφράζεται το () Σε μια τέτοια περίπτωση θα θ ε ω ρ ο ύ μ ε σ υμ β α τ ι κ ά ότι το πεδίο ορισμού της είναι το σύνολο όλων των πραγματικών αριθμών, για τους οποίους το () έχει νόημα Γραφική παράσταση συνάρτησης Έστω μια συνάρτηση με πεδίο ορισμού Α και ένα σύστημα συντεταγμένων στο επίπεδο Το σύνολο των σημείων M (,) για τα οποία ισχύει (), δηλαδή το σύνολο των σημείων M (,()), A, λέγεται γραφική παράσταση της και συμβολίζεται συνήθως με C Η εξίσωση, λοιπόν, () επαληθεύεται μόνο από τα σημεία της C Επομένως, η () είναι η εξίσωση της γραφικής παράστασης της Επειδή κάθε A αντιστοιχίζεται σε ένα μόνο, δεν υπάρχουν σημεία της γραφικής παράστασης της με την ίδια τετμημένη Αυτό σημαίνει ότι κάθε κατακόρυφη ευθεία έχει με τη γραφική παράσταση της το πολύ ένα κοινό σημείο

5 5 Έτσι, ο κύκλος δεν αποτελεί γραφική παράσταση συνάρτησης C C Α Όταν δίνεται η γραφική παράσταση C μιας συνάρτησης, τότε: α) Το πεδίο ορισμού της είναι το σύνολο Α των τετμημένων των σημείων της C β) Το σύνολο τιμών της είναι το σύνολο () A των σημείων της C των τεταγμένων γ) Η τιμή της στο 0 A είναι η τεταγμένη του σημείου τομής της ευθείας 0 και της C C (Α) C ( 0 ) = 0 C A( 0,( 0 )) Α (α) Όταν δίνεται η γραφική παράσταση C, μιας συνάρτησης μπορούμε, επίσης, να σχεδιάσουμε και τις γραφικές παραστάσεις των συναρτήσεων και α) Η γραφική παράστασης της συνάρτησης είναι συμμετρική, ως προς τον άξονα, της γραφικής παράστασης της, γιατί αποτελείται από τα σημεία M (,()) που είναι συμμετρικά των M (,()), ως προς τον άξονα (β) (γ) 0 Μ(,()) Μ (,()) =() =() β) Η γραφική παράσταση της αποτελείται από τα τμήματα της C που βρίσκονται πάνω από τον άξονα και από τα συμμετρικά, ως προς τον άξονα, των τμημάτων της C που βρίσκονται κάτω από τον άξονα αυτόν = () =()

6 6 Μερικές βασικές συναρτήσεις Η πολυωνυμική συνάρτηση () a>0 a<0 a=0 Η πολυωνυμική συνάρτηση (), 0 α>0 α<0 Η πολυωνυμική συνάρτηση (), 0 α>0 Η ρητή συνάρτηση () α<0, 0 α>0 α<0

7 7 Οι συναρτήσεις (), g(), 0 Επειδή g(), η γραφική παράσταση της, 0 αποτελείται από δύο κλάδους Ο ένας είναι η γραφική παράσταση της και ο άλλος η συμμετρική της ως προς τον άξονα Οι τριγωνικές συναρτήσεις : () (), (), π π =ημ (α) π π =συν (β) π/ π/ π/ =εφ (γ) Υπενθυμίζουμε ότι, οι συναρτήσεις () και () είναι περιοδικές με περίοδο T, ενώ η συνάρτηση () είναι περιοδική με περίοδο T

8 8 Η εκθετική συνάρτηση (), 0 α α α> Υπενθυμίζουμε ότι: (α) 0<α< αν, τότε: ενώ αν 0, τότε: Η λογαριθμική συνάρτηση () log, 0 (β) α α α> (α) Υπενθυμίζουμε ότι: ) log ) log και log ) log και log 0 log() log log 4) 5) log log log k log log 6) 0<α< (β) 7) αν, τότε: log log, ενώ αν 0, τότε : log log 8) e ln, αφού ln e

9 9 Ισότητα συναρτήσεων ΟΡΙΣΜΟΣ Δύο συναρτήσεις και g λέγονται ίσες όταν: έχουν το ίδιο πεδίο ορισμού Α και για κάθε A ισχύει ()() g (Δηλαδή τον ίδιο τύπο) Για να δηλώσουμε ότι δύο συναρτήσεις και g είναι ίσες γράφουμε g (Προσοχή : η ισότητα ()() g σημαίνει ότι οι συναρτήσεις έχουν τον ίδιο τύπο και όχι ότι είναι ίσες!!!!!!!!!!!!) Έστω τώρα, g δύο συναρτήσεις με πεδία ορισμού Α, Β αντιστοίχως και Γ ένα υποσύνολο των Α και Β Αν για κάθε ισχύει ()() g, τότε λέμε ότι οι συναρτήσεις και g είναι ίσες στο σύνολο Γ Πράξεις με συναρτήσεις Ορίζουμε ως άθροισμα g, διαφορά - g, γινόμενο g Ο Γ B A και πηλίκο g δύο συναρτήσεων, g τις συναρτήσεις με τύπους ()()()() g g ()()()() g g ()()()() g g () g () g() Το πεδίο ορισμού των g, g και g είναι η τομή D Dg των πεδίων ορισμού D και Dg των συναρτήσεων και g αντιστοίχως, ενώ το πεδίο ορισμού της g είναι το D Dg, εξαιρουμένων των τιμών του που μηδενίζουν τον παρονομαστή g(), δηλαδή το σύνολο { A και B, με () 0} g δηλαδή D D g() 0 g

10 0 Σύνθεση συναρτήσεων ΟΡΙΣΜΟΣ Αν, g είναι δύο συναρτήσεις με πεδίο ορισμού Α, Β αντιστοίχως, τότε ονομάζουμε σύνθεση της με την g, και τη συμβολίζουμε με go, τη συνάρτηση με τύπο ()()(()) go g (A) B A () g(b) g g g( ()) A Το πεδίο ορισμού της go αποτελείται από όλα τα στοιχεία του πεδίου ορισμού της για τα οποία το () ανήκει στο πεδίο ορισμού της g Δηλαδή είναι το σύνολο A { A () } A go g Είναι φανερό ότι η go ορίζεται αν ΠΡΟΣΟΧΗ Ago, δηλαδή αν () A B Στη συνέχεια, θα ασχοληθούμε μόνο με συναρτήσεις που οι συνθέσεις τους έχουν πεδίο ορισμού διάστημα ή ένωση διαστημάτων ΣΧΟΛΙΑ Στην παραπάνω εφαρμογή παρατηρούμε ότι go og Γενικά, αν, g είναι δύο συναρτήσεις και ορίζονται οι go και og, τότε αυτές δ ε ν ε ί ν α ι υ π ο χ ρ ε ω τ ι κ ά ίσες Αν, g, h είναι τρεις συναρτήσεις και ορίζεται η ho() go ορίζεται και η ()hog o και ισχύει : ho()() go hog o, τότε Τη συνάρτηση αυτή τη λέμε σύνθεση των, g και h και τη συμβολίζουμε με hogo Η σύνθεση συναρτήσεων γενικεύεται και για περισσότερες από τρεις συναρτήσεις

11 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Οι έννοιες γνησίως αύξουσα συνάρτηση, γνησίως φθίνουσα συνάρτηση είναι γνωστές από προηγούμενη τάξη Συγκεκριμένα, μάθαμε ότι: ΟΡΙΣΜΟΣ Μια συνάρτηση λέγεται0f() : γνησίως αύξουσα σ ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, με ισχύει: ()() γνησίως φθίνουσα σ ένα δ ι ά σ τ η μ α Δ του πεδίου ορισμού της, όταν για οποιαδήποτε, με ισχύει: ()() ( ) ( ) ( ) ( ) Ο Δ Ο Για να δηλώσουμε ότι η είναι γνησίως αύξουσα (αντιστοίχως γνησίως φθίνουσα) σε ένα διάστημα Δ, γράφουμε Δ (αντιστοίχως Δ) Αν μια συνάρτηση είναι γνησίως αύξουσα ή γνησίως φθίνουσα σ ένα διάστημα Δ του πεδίου ορισμού της, τότε λέμε ότι η είναι γνησίως μονότονη στο Δ Στην περίπτωση που το πεδίο ορισμού της είναι ένα διάστημα Δ και η είναι γνησίως μονότονη σ αυτό, τότε θα λέμε, απλώς, ότι η είναι γνησίως μονότονη Δ () Μια συνάρτηση λέγεται, απλώς,: αύξουσα σ ένα διάστημα Δ, όταν για οποιαδήποτε ) ( ) ( φθίνουσα σ ένα διάστημα Δ, όταν για οποιαδήποτε ) ( ) ( Δ, με Δ, με ισχύει ισχύει

12 Ακρότατα συνάρτησης ΟΡΙΣΜΟΣ Μια συνάρτηση με πεδίο ορισμού Α θα λέμε ότι: Παρουσιάζει στο 0 A (ολικό) μέγιστο, το () 0, όταν ()() 0 για κάθε A Παρουσιάζει στο 0 A (ολικό) ελάχιστο, το () 0 ()() για κάθε A 0, όταν ( 0 ) () () C 0 ( 0 ) 0 C ΠΑΡΑΤΗΡΗΣΕΙΣ Άλλες συναρτήσεις παρουσιάζουν μόνο μέγιστο, άλλες μόνο ελάχιστο, άλλες και μέγιστο και ελάχιστο και άλλες ούτε μέγιστο ούτε ελάχιστο Το (ολικό) μέγιστο και το (ολικό) ελάχιστο μιας συνάρτησης λέγονται (ολικά) ακρότατα της Συνάρτηση ΟΡΙΣΜΟΣ Μια συνάρτηση : A λέγεται συνάρτηση, όταν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν, τότε () ()() Με απαγωγή σε άτοπο αποδεικνύεται ότι: Μια συνάρτηση : A είναι συνάρτηση, αν και μόνο αν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν ()(), τότε

13 ΣΧΟΛΙΑ Από τον παραπάνω ορισμό προκύπτει ότι μια συνάρτηση είναι, αν και μόνο αν: Για κάθε στοιχείο του συνόλου τιμών της η εξίσωση () έχει ακριβώς μια λύση ως προς Δεν υπάρχουν σημεία της γραφικής της παράστασης με την ίδια τεταγμένη Αυτό σημαίνει ότι κάθε οριζόντια ευθεία τέμνει τη γραφική παράσταση της το πολύ σε ένα σημείο A B συνάρτηση - συνάρτηση όχι - Αν μια συνάρτηση είναι γνησίως μονότονη, τότε προφανώς, είναι συνάρτηση " " Έτσι, οι συναρτήσεις (), 0, (), 0, (), 0 και 4 () log, 0, είναι συναρτήσεις Υπάρχουν, όμως, συναρτήσεις που είναι αλλά δεν είναι γνησίως μονότονες, όπως για παράδειγμα η, 0 συνάρτηση g(), 0 Αντίστροφη συνάρτηση Έστω μια συνάρτηση : A Αν υποθέσουμε ότι αυτή είναι, τότε για κάθε στοιχείο του συνόλου τιμών, () A, της υπάρχει μοναδικό στοιχείο του πεδίου ορισμού της Α για το οποίο ισχύει () Επομένως ορίζεται μια συνάρτηση g:() A με την οποία κάθε () A αντιστοιχίζεται στο μοναδικό A για το οποίο ισχύει () Από τον τρόπο που ορίστηκε η g προκύπτει ότι: έχει πεδίο ορισμού το σύνολο τιμών () A της, =() =g()

14 4 έχει σύνολο τιμών το πεδίο ορισμού Α της και ισχύει η ισοδυναμία: ()() g Αυτό σημαίνει ότι, αν η αντιστοιχίζει το στο, τότε η g αντιστοιχίζει το στο και αντιστρόφως Δηλαδή η g είναι η αντίστροφη διαδικασία της Για το λόγο αυτό η g λέγεται αντίστροφη συνάρτηση της και συμβολίζεται με A g()= g (A) =() Επομένως έχουμε ()() οπότε (()), A και (()),() A Ας πάρουμε τώρα μια συνάρτηση και ας θεωρήσουμε τις γραφικές παραστάσεις C και C των και της στο ίδιο σύστημα αξόνων Επειδή ()(), αν ένα σημείο M (,) ανήκει στη γραφική C παράσταση C της, τότε το σημείο (,) = θα ανήκει στη γραφική παράσταση C της και αντιστρόφως Τα σημεία, όμως, αυτά είναι συμμετρικά ως προς την ευθεία που διχοτομεί τις γωνίες και Επομένως: Οι γραφικές παραστάσεις C και C των συναρτήσεων και είναι συμμετρικές ως προς την ευθεία που διχοτομεί τις γωνίες και C M(α,β) M (β,α)

15 5 ΑΣΚΗΣΕΙΣ Α ΠΕΔΙΟ ΟΡΙΣΜΟΥ-ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ-ΙΣΟΤΗΤΑ- ΠΡΑΞΕΙΣ ) Να βρεθεί το πεδίο ορισμού των συναρτήσεων: α) () β) () ln γ) () δ) () ε) () στ) () ln() e ) Να βρεθεί το πεδίο ορισμού των συναρτήσεων: α) () β) () 4 4 γ) () δ) () 9 ε) () ln στ) () ln ζ) () ln η) () ln ) Να βρεθεί το πεδίο ορισμού των συναρτήσεων: α) () γ) () 9 log β) () 4 δ) () log( ln) ε) () ln στ) () ln 4 ζ) ()( ) η) () θ) ()() 4) Δίνεται η συνάρτηση ()=-, να υπολογιστούν οι παραστάσεις: i) ()+() ii) (+) iii) ()-() iv) (-) v) ()() vi) () vii) ( ) viii) (()) 5) Δίνεται η συνάρτηση me ()= ()+(), για κάθε,, να αποδείξετε ότι : i) ()=0 ii) (/) =-(), 0 iii) (/)= () -(),, 0 iv) ( )=() 0 6) Να βρεθούν τα σημεία τομής της συνάρτησης () 8 με τους άξονες

16 6 7) Να βρεθούν τα σημεία τομής της συνάρτησης με () e με τους άξονες 8) Να βρεθούν τα σημεία τομής της συνάρτησης με 5 6 () με τους άξονες 9) Να βρεθούν τα κοινά σημεία της συνάρτησης () συνάρτηση g() 0) Να βρεθούν τα κοινά σημεία της συνάρτησης () με τη συνάρτηση g() 7 με τη ) Να βρεθούν τα κοινά σημεία της συνάρτησης () 5 4 με τη συνάρτηση g() ) Δίνεται η συνάρτηση ln, να βρεθεί ο αριθμός α ώστε η γραφική παράσταση της συνάρτησης να διέρχεται απ το σημείο Μ(, 5) ) Δίνεται η συνάρτηση () a a a 5 να βρεθούν οι τιμές του α έτσι ώστε η γραφική παράσταση της να διέρχεται απ το σημείο Μ(,-6) 4) Δίνεται η συνάρτηση () a να βρεθούν οι τιμές των α και β έτσι ώστε η γραφική παράσταση της να διέρχεται απ το σημείο Μ(,) και να τέμνει τον άξονα στο σημείο Α με τεταγμένη 5) Να βρεθούν τα κοινά σημεία της συνάρτησης () με τη συνάρτηση g(), και να αποδείξετε ότι τα κοινά τους σημεία είναι κορυφές τριγώνου με εμβαδόν Ε=τμ 6) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, όταν: () 4, 7) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, όταν: (), 8) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τον άξονα, όταν: () e 9) Να βρεθούν τα διαστήματα στα οποία η γραφική παράσταση της συνάρτησης με () είναι πάνω απ τον χ χ

17 7 0) Να βρεθούν τα διαστήματα στα οποία η γραφική παράσταση () ln e είναι πάνω απ τον χ χ της συνάρτησης με ) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g, όταν: () και g() ) Για ποιές τιμές του η γραφική παράσταση της συνάρτησης βρίσκεται πάνω από τη γραφική παράσταση της συνάρτησης g, όταν: () και g() ) Να βρεθούν τα διαστήματα στα οποία η γραφική παράσταση της συνάρτησης με () 5 6 είναι πάνω απ τη γραφική παράσταση της συνάρτησης g() 4) Να βρεθούν τα διαστήματα στα οποία η γραφική παράσταση της συνάρτησης με () είναι κατώ απ τη γραφική παράσταση της συνάρτησης g() 5) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις είναι g Στις περιπτώσεις που είναι g αλλά έχουν τον ίδιο τύπο, να προσδιορίσετε το ευρύτερο δυνατό υποσύνολο του στο οποίο ισχύει : ()() i) () ii) () iii) () iv) () g και και g()() g() και g() και g() 6) Να βρείτε τις συναρτήσεις g, g, g,όπου 4 () 5 και g() 7) Δίνονται οι συναρτήσεις () και g() Να βρείτε τις συναρτήσεις g, g, και g 8) Δίνονται οι συναρτήσεις () ln και g() 4 Να βρείτε τις συναρτήσεις g, g, -, g και g

18 8 9) Να βρείτε τις συναρτήσεις g, g, () και g() 0) Να βρείτε τις συναρτήσεις g, g, g,όπου g,όπου () και g() ) Αν οι συναρτήσεις, g έχουν πεδίο ορισμού το και για κάθε ισχύει: g g g, να αποδείξετε ότι : g ) Αν οι συναρτήσεις, g έχουν πεδίο ορισμού το και για κάθε ισχύει: g g g 4 5 να αποδείξετε ότι : g, ) Να Δίνεται η συνάρτηση (), 0 α) να βρεθεί το πεδίο ορισμού της β) να βρεθούν οι τιμές (-), (), (5), (0) γ) να γίνει η γραφική παράσταση της 4) Να Δίνεται η συνάρτηση α) να βρεθεί το πεδίο ορισμού της () 6 β) να γίνει η γραφική παράσταση της γ) να βρεθεί το σύνολο τιμών της 5) Να παραστήσετε γραφικά τη συνάρτηση: i) (), ii) (),, iii) () iv) () ln, Και από τη γραφική παράσταση να προσδιορίσετε το σύνολο των τιμών της σε καθεμιά περίπτωση 6) Να παραστήσετε γραφικά τη συνάρτηση: ημ ημ i) (), ii) (), [0, π] Από τη γραφική παράσταση της να προσδιορίσετε το σύνολο τιμών της σε καθεμιά περίπτωση

19 9 7) Να παραστήσετε γραφικά τη συνάρτηση: (),, 8) Να παραστήσετε γραφικά τη συνάρτηση: (),, 9) Να παραστήσετε γραφικά τη συνάρτηση:, 0 (), 0 40) Να παραστήσετε γραφικά τη συνάρτηση: ln,0 e (), e 4) Να παραστήσετε γραφικά τη συνάρτηση: 4, 0 (),0, e, 0 4) Να παραστήσετε γραφικά τη συνάρτηση: (),0 e, e 4) Να χαράξετε τη γραφική παράσταση της συνάρτησης ()= - και να βρεθούν τα σημεία τομής της C με την ευθεία =4 44) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) () ln, ii) g() ln, iii) h() ln 45) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) () e, ii) g() e, iii) h() e 46) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) () ln e, ii) g() ln e 47) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) (), ii) g(), iii) h()

20 0 iv) t() v) s() h 48) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) (), ii) g() iii) h, () iv) t v) s() h () 49) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) () e, ii) g() e, iii) h() e iv) t() e 50) Να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων : i) () ln, ii) g() ln( ), iii) h() ln iv) t() ln( ) 5) Οι ανθρωπολόγοι εκτιμούν ότι το ύψος του ανθρώπου δίνεται από τις συναρτήσεις: A(),89 70,64 (για τους άνδρες) και Γ(),75 7,48 (για τις γυναίκες) όπου σε εκατοστά, το μήκος του βραχίονα Σε μία ανασκαφή βρέθηκε ένα οστό από βραχίονα μήκους 0,45 m α) Αν προέρχεται από άνδρα ποιο ήταν το ύψος του; β) Αν προέρχεται από γυναίκα ποιο ήταν το ύψος της; 5) Σύρμα μήκους 0 cm κόβεται σε δύο κομμάτια με μήκη cm και (0) cm Με το πρώτο κομμάτι σχηματίζουμε τετράγωνο και με το δεύτερο ισόπλευρο τρίγωνο Να βρείτε το άθροισμα των εμβαδών των δύο σχημάτων ως συνάρτηση του 5) Να προσδιορίσετε τη συνάρτηση της οποίας η γραφική παράσταση είναι: i) ii) iii) 4

21 54) Ένα κουτί κυλινδρικού σχήματος έχει ακτίνα βάσης cm και όγκο 68 cm Το υλικό των βάσεων κοστίζει 4 δρχ ανά cm, ενώ το υλικό της κυλινδρικής επιφάνειας,5 δρχ ανά cm Να εκφράσετε το συνολικό κόστος ως συνάρτηση του Πόσο κοστίζει ένα κουτί με ακτίνα βάσης 5 cm, και ύψος 8 cm; Ε 55) Στο διπλανό σχήμα είναι AB, ΑΓ και Ν ΓΔ Να εκφράσετε το εμβαδόν του γραμμοσκιασμένου χωρίου ως συνάρτηση του AM, όταν το Μ διαγράφει το ευθύγραμμο τμήμα ΑΓ 56) Ένα ορθογώνιο ΚΛΜΝ ύψους cm είναι εγγεγραμμένο σε ένα τρίγωνο ΑΒΓ βάσης BΓ 0cm και ύψους ΑΔ 5cm Να εκφράσετε το εμβαδό Ε και την περίμετρο Ρ του ορθογωνίου ως συνάρτηση του 57) Οι πολεοδόμοι μιας πόλης εκτιμούν ότι, όταν ο B N K πληθυσμός Ρ της πόλης είναι εκατοντάδες χιλιάδες άτομα, θα υπάρχουν στην πόλη N 0 ( ) χιλιάδες αυτοκίνητα Έρευνες δείχνουν ότι σε t έτη από σήμερα ο πληθυσμός της πόλης θα είναι t 4 εκατοντάδες χιλιάδες άτομα i) Να εκφράσετε τον αριθμό Ν των αυτοκινήτων της πόλης ως συνάρτηση του t ii) Πότε θα υπάρχουν στην πόλη 0 χιλιάδες αυτοκίνητα; Β ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ: 58) Αν () και g() να βρείτε τις τιμές g, g, g 0 59) Αν (), και g () τιμή g 4 60) Αν () να αποδείξετε ότι : A M B, να βρείτε την 0 6) Αν η συνάρτηση έχει πεδίο ορισμού το Α=[5, 8], να βρεθεί το πεδίο ορισμού της συνάρτησης h με h()=(+8)+ (9- ) 6) Αν η συνάρτηση έχει πεδίο ορισμού το Α=[-, ], να βρεθεί το πεδίο ορισμού της συνάρτησης h με h()=(- ) 6) Αν () και g() ln να βρείτε τις συναρτήσεις g και g A Δ Ε Δ Γ Μ Λ Γ

22 64) Έστω οι συναρτήσεις () και g() Να βρείτε τις συναρτήσεις: i) go ii) og iii) o 65) Έστω οι συναρτήσεις () g() Να βρείτε τις συναρτήσεις: i) go ii) og iii) o και 66) Έστω οι συναρτήσεις () ln και g() Να βρείτε τις συναρτήσεις: i) go ii) og 67) Να προσδιορίσετε τη συνάρτηση go, αν g(), () π 68) Να προσδιορίσετε τη συνάρτηση go, αν () 4 g() εφ 69) Αν () και g() να βρείτε τις συναρτήσεις g και g 70) Αν () 5 και g() να βρείτε τις συναρτήσεις g και g 7) Αν () και g() να βρείτε τη συνάρτηση g 7) Αν () και g() να βρείτε τη συνάρτηση g 7) Αν (), να ορίσετε τη συνάρτηση o, και να χαράξετε τη γραφική της παράσταση 74) Αν (), g(), h() ln,να ορίσετε τη συνάρτηση: h(g) 75) Αν () και g() 4 9 να αποδείξετε ότι g =g 76) Αν () και g() να βρεθεί ο α για τον οποίο ισχύει g =g 77) Αν () και g() να βρεθεί ο α για τον οποίο ισχύει g =g 78) Αν () 5 6 και g() a να βρεθεί ο α για τον οποίο ισχύει g =g 79) Αν () Να αποδείξετε ότι, για κάθε χ στο πεδίο ορισμού της 80) Δίνονται οι συναρτήσεις: () α β, με β α και α g() Να αποδείξετε ότι: και και

23 α) (()), για κάθε { α} β) g(()) g, για κάθε [0,] 8) Δίνονται οι συναρτήσεις: () g () ln e και e, και g, για Να αποδείξετε ότι: κάθε 8) Αν (), g() g, για κάθε,να αποδείξετε ότι 8) Αν (), να βρεθεί η αριθμός α ώστε η συνάρτηση o, να είναι ταυτοτική στο -{} 84) Αν g() και g να βρεθεί η συνάρτηση και η g 85) Αν g() και g 4 να βρεθεί η συνάρτηση και η g 86) Αν g() και 6 g να βρεθεί η 6 συνάρτηση 87) Αν () και g 5 να βρεθεί η συνάρτηση g και η g 88) Αν () και g 6 9e να βρεθεί η συνάρτηση g και η g 89) Αν g() και g 4 να βρεθεί η συνάρτηση και η g 90) Αν () και g 4 να βρεθεί η συνάρτηση g και η g 9) Αν () και g να βρεθεί η συνάρτηση g και η g 9) Να βρείτε συνάρτηση τέτοια, ώστε να ισχύει: ()() og, αν g() 9) Να βρείτε συνάρτηση τέτοια, ώστε να ισχύει: ()() go συν 94) Αν g() και η g, αν g() και g να βρεθεί η συνάρτηση

24 4 95) Αν () ln και g να βρεθεί η συνάρτηση g και η g 96) Αν () και g να βρεθεί η συνάρτηση g και η g 97) Έστω συνάρτηση : για την οποία ισχύει (-)=(-), για κάθε χ Να βρεθούν οι τιμές () και (+) 98) Αν (), 0, να βρεθούν τα α,β ώστε για κάθε να ισχύει 99) Έστω συνάρτηση : [,+) για την οποία ισχύει 4, για κάθε, να βρεθεί η 00) Αν ln, και g h για την οποία ισχύει :,να βρείτε τη συνάρτηση h g 0) Έστω συνάρτηση : για την οποία ισχύει ()()=4-, για κάθε χ Να αποδείξετε ότι ()= 0) Έστω συνάρτηση : για την οποία ισχύει ()()=-, για κάθε χ Να αποδείξετε ότι ()= Γ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ 0) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση: 04) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση: ln 05) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση: e 06) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση:, με 07) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση: 5 08) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση: e,με 0 09) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση:,με 0

25 5 0) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση:,με α>0 ) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση:, με α>0 ) Να μελετηθεί ως προς τη μονοτονία η συνάρτηση:,με α<0 ) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η είναι άρτια και η g περιττή τότε οι g και g, είναι άρτιες 4) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι περιττές τότε οι g και g, είναι περιττές 5) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι περιττές τότε και η +g είναι περιττή 6) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι άρτιες τότε και η +g είναι άρτια 7) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι γν αύξουσες τότε και η +g είναι γν αύξουσα 8) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι γν φθίνουσες τότε και η +g είναι γν φθίνουσα 9) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι γν αύξουσες τότε οι g και g, είναι γν αύξουσες 0) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η είναι γν αύξουσα και η g γν φθίνουσα τότε οι g και g, είναι γν φθίνουσες ) Δίνονται οι συναρτήσεις, g: Να αποδείξετε ότι αν η και η g είναι γν φθίνουσες τότε οι g και g, είναι γν αύξουσες ) Δίνεται η γνησίως αύξουσα συνάρτηση,, να λυθεί η () ανίσωση: 4 ) Δίνεται η συνάρτηση 5 5 α) Να αποδείξετε ότι η είναι γνησίως φθίνουσα στο β) Να λύσετε την εξίσωση 4 5 Δ ΣΥΝΑΡΤΗΣΗ «-» & ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 4) Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι " ", και για όσες αντιστρέφονται να βρείτε την αντίστροφή της i) () ii) () iii) ()( )( )

26 6 v) () ln() vi) () e iv) () viii) () 5) Δίνεται η συνάρτηση, α) Να αποδείξετε ότι η είναι «-» β) Να βρείτε την αντίστροφη συνάρτηση - της γ) Να βρείτε το σύνολο τιμών της δ) Να κάνετε τη C με τη βοήθεια της γραφικής παράστασης της 6) Δίνεται η συνάρτηση, α) Να αποδείξετε ότι η είναι «-» β) Να βρείτε την αντίστροφη συνάρτηση - της γ) Να βρείτε το σύνολο τιμών της και της - e 7) Δίνεται η συνάρτηση,χ Να αποδείξετε ότι e η συνάρτηση είναι αντιστρέψιμη και να βρείτε την αντίστροφή της 8) Να αποδειχτεί ότι η συνάρτηση () e είναι και να βρεθεί η αντίστροφή της 9) Δίνεται η συνάρτηση e 5,χ Να αποδείξετε ότι η συνάρτηση είναι αντιστρέψιμη και να βρείτε την αντίστροφή της 0) Δίνεται η συνάρτηση e,χ Να αποδείξετε ότι η συνάρτηση είναι αντιστρέψιμη και να βρείτε την αντίστροφή της ) Δίνεται η συνάρτηση ln,χ Να αποδείξετε ότι η συνάρτηση είναι αντιστρέψιμη και να βρείτε την αντίστροφή της e ) Δίνεται η συνάρτηση ln,χ Να αποδείξετε e ότι η συνάρτηση είναι αντιστρέψιμη και να βρείτε την αντίστροφή της ) Δίνεται η συνάρτηση, ορισμένη στο διάστημα [0,+) Να εξετάσετε αν η συνάρτηση είναι αντιστρέψιμη, και αν είναι αντιστρέψιμη να βρείτε την αντίστροφή της 4) Δίνεται η συνάρτηση : με την ιδιότητα a, για κάθε χ, με α0 Να αποδείξετε ότι: α) η είναι «-» β) (0)=0

27 7 5) Δίνεται η συνάρτηση : Αν η είναι γνησίως αύξουσα 4 4 στο, να λυθεί η εξίσωση: 6) Δίνεται η συνάρτηση : με την ιδιότητα 0 0 0, για κάθε χνα αποδείξετε ότι: α) η είναι «-» β) η είναι αντιστρέψιμη 7) Δίνεται η συνάρτηση : με την ιδιότητα, για κάθε χ, Να αποδείξετε ότι: α) η είναι «-» β) να βρεθεί η αντίστροφη της 8) Δίνεται η συνάρτηση : με την ιδιότητα, για κάθε χ, Να αποδείξετε ότι: 0 α) η είναι «-» β) η αντίστροφη της είναι ίση με την αντίθετη της 9) Δίνεται η συνάρτηση : με την ιδιότητα, για κάθε χ α) Να αποδείξετε ότι: η είναι «-» 4 β) να λυθεί η εξίσωση 40) Δίνονται οι συναρτήσεις, g: Αν η συνάρτηση g είναι «-», α) να αποδείξετε ότι και η g είναι «-» g g β) Να λύσετε την εξίσωση 4) Αν, g:, είναι συναρτήσεις «-» να αποδείξετε ότι και οι συναρτήσεις g και g, είναι επίσης «-» 4)Αν για τη συνάρτηση :, ξέρουμε ότι η είναι αντιστρέψιμη, να αποδείξετε ότι και η είναι αντιστρέψιμη 4) Δίνονται οι συναρτήσεις, g:, για τις οποίες υποθέτουμε ότι: g g g για κάθε χ Αν η είναι συνάρτηση «-» να αποδείξετε ότι και η g είναι «-» 44) Δίνεται η συνάρτηση :, για την οποία ισχύει για κάθε χ Να αποδείξετε ότι: α) η είναι συνάρτηση είναι «-» β) (0)=0 για κάθε χ γ) 45) Να βρεθεί η συνάρτηση : *, αν γνωρίζουμε ότι είναι 0 «-» και για κάθε 0 ισχύει, 46) Να αποδείξετε ότι η συνάρτηση δεν είναι «-»

28 8 47) Να αποδείξετε ότι η συνάρτηση δεν είναι «-» ) Δίνεται η συνάρτηση :, για την οποία ισχύει 000 για κάθε χ Να αποδείξετε ότι η δεν αντιστρέφεται 49) Δίνεται η συνάρτηση :, για την οποία ισχύει για κάθε χ α) Να αποδείξετε ότι: ()= β) Αν g για κάθε χ, να υπολογίσετε το g(0) και να δείξετε ότι η g δεν είναι συνάρτηση «-» 50) Δίνεται η συνάρτηση :, για την οποία ισχύει 5 9 για κάθε χ α) Να αποδείξετε ότι: ()= β) Αν g για κάθε χ, να δείξετε ότι η g δεν είναι συνάρτηση «-», α) να μελετήσετε τη συνάρτηση ως προς τη μονοτονία της β) να βρείτε το διάστημα στο οποίο η γραφική παράσταση της συνάρτησης g()=( ) βρίσκεται πάνω από τη γραφική παράσταση της 5) Δίνεται η συνάρτηση γ) να λύσετε την εξίσωση 4 5) Δίνεται η συνάρτηση, α) να μελετήσετε τη συνάρτηση ως προς τη μονοτονία της β) να λυθεί η ανίσωση γ) να λύσετε την εξίσωση 5) Δίνεται η συνάρτηση :, για την οποία γνωρίζουμε ότι είναι γνησίως φθίνουσα στο Να λυθεί η εξίσωση 4 4 καθώς και η εξίσωση 54) Η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης :, διέρχεται απ τα σημεία Α(5,9) και Β(,) α) Η συνάρτηση είναι γνησίως αύξουσα ή γνησίως φθίνουσα; (Δικαιολογήστε την απάντησή σας) β) Να λυθεί η εξίσωση 9

29 9 55) Η γραφική παράσταση μιας γνησίως μονότονης συνάρτησης :, διέρχεται απ τα σημεία Α(,) και Β(5,9) α) Η συνάρτηση είναι γνησίως αύξουσα ή γνησίως φθίνουσα; (Δικαιολογήστε την απάντησή σας) β) Να λυθεί η εξίσωση γ) Να λυθεί η εξίσωση ) Δίνεται η συνάρτηση :, για την οποία γνωρίζουμε ότι είναι γνησίως μονότονη στο α) Να δείξετε ότι η συνάρτηση είναι «-» β) Αν η γραφική παράσταση C της συνάρτησης διέρχεται απ τα σημεία Α(,005) και Β(-,), να λύσετε την εξίσωση ) Δίνεται η συνάρτηση 5 α) Να αποδείξετε ότι η είναι γνησίως αύξουσα στο β) Να αποδείξετε ότι η αντιστρέφεται γ) Να βρεθούν τα κοινά σημεία των γραφικών παραστάσεων των και - 58) Δίνεται η συνάρτηση 5 α) Να αποδείξετε ότι η είναι γνησίως αύξουσα στο β) Να αποδείξετε ότι η αντιστρέφεται γ) Να λυθεί η εξίσωση - ()= 59) Δίνεται η συνάρτηση :, για την οποία γνωρίζουμε ότι είναι γνησίως μονότονη στο και, για κάθε, Να αποδείξετε ότι 60) Δίνεται η συνάρτηση : *, με την ιδιότητα έχει μοναδική ρίζα: α) να αποδείξετε ότι η αντιστρέφεται, για κάθε, Αν η εξίσωση 0 β) να λυθεί η εξίσωση: γ) αν επιπλέον ισχύει 0 για κάθε >, να αποδείξετε ότι η είναι γνησίως αύξουσα στο (0, +)

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ-ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Για τις Πανελλαδικές Εξετάσεις 07 ΚΕΦΑΛΑΙΟ ο : ΣΥΝΑΡΤΗΣΕΙΣ

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

<Πεδία ορισμού ισότητα πράξεις σύνθεση>

<Πεδία ορισμού ισότητα πράξεις σύνθεση> Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1.

Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. 1.i) 1.ii) 1.iii) 1.iv) Ποιο είναι το πεδίο ορισµού της συνάρτησης f(x) = ln(1. .. Ασκήσεις σχολικού βιβλίου σελίδας 45 48 A Οµάδας.i) Ποιο είναι το πεδίο ορισµού της συνάρτησης () + 3+ Οι ρίζες του τριωνύµου 3 + είναι και. Πρέπει 3 + 0 και Άρα D (, ) (, ) (, + ).ii) Ποιο είναι το

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2 ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

x y f (x). f(a) {y R x A : y f(x)}.

x y f (x). f(a) {y R x A : y f(x)}. ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της πραγματικής συνάρτησης ΟΡΙΣΜΟΣ Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα), με την οποία κάθε στοιχείο A αντιστοιχίζεται

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε, Δ, όπου Δ διάστημα του πεδίου ορισμού

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2002 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Έστω η συνάρτηση f, η οποία είναι συνεχής στο διάστημα [α,β] με f(α) f(β). Να αποδείξετε ότι για κάθε αριθμό η μεταξύ των f(α) και

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ 9η Κατηγορία: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Για να βρούμε τη μονοτονία μιας συνάρτησης ακολουθούμε την εξής διαδικασία: Θεωρούμε,, όπου Δ διάστημα του πεδίου ορισμού ή

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. Αντίστροφη συνάρτηση. ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση 1-1. Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΜΑΘΗΜΑ 5. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Συνάρτηση - Αντίστροφη συνάρτηση Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση :Α R λέγεται συνάρτηση, όταν για οποιαδήποτε, Α µε ισχύει

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ o Κεφάλαιο ΑΝΑΛΥΣΗ Ερωτήσεις του τύπου «Σωστό - Λάθος». * Η διαδικασία, µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σ ένα ακριβώς στοιχείο

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.

ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3. ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3. Αντίστροφη συνάρτηση Έστω μια συνάρτηση f : A.Αν υποθέσουμε ότι αυτή είναι - τότε για κάθε στοιχείο y του συνόλου τιμών f (A) της f υπάρχει μοναδικό στοιχείο του πεδίου ορισμού της Α για το οποίο

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 73 8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ρισμός της συνέχειας Έστω οι συναρτήσεις g h παρακάτω σχήματα των οποίων οι γραφικές παραστάσεις δίνονται στα C h 6 l ( C l g( C g l l (a Παρατηρούμε ότι:

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων

Περιορισμοί στο R. ln x,log. Β= ln Α Β Α Β Α. Σύνοψη γραφικών παραστάσεων στο R Πεδίο ορισμού συνάρτησης είναι η συναλήθευση των περιορισμών της συνάρτησης στο R, αν δεν έχει περιορισμούς λέμε ότι έχει πεδίο ορισμού το R. Όταν έχω πρέπει ν Α, Α Α Α Β Β ln Α, log Α Α> ln Β logα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό.

ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY. 0, τότε είναι και παραγωγίσιμη στο σημείο αυτό. ΕΡΩΤΗΣΕΙΣ Σ-Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟY Αν μια συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε είναι και συνεχής στο σημείο αυτό Αν μια συνάρτηση f είναι συνεχής σ ένα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας

ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =

Διαβάστε περισσότερα

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x . Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4. [ ] z, w. 3 f x, x 1,3 όπου 3 μιγαδικοί των οποίων οι εικόνες ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 1. i) Να δείξετε ότι υπάρχει μοναδικό 3 3 0 1, ώστε: 3 e, 1 ln 0 + 0 = 0 ii) Δίνεται ο μιγαδικός 3 z = ln + i, > 0 a) Να βρείτε την ελάχιστη απόσταση k της εικόνας του z από την αρχή

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η

Αν α θετικός πραγματικός αριθμός, σε κάθε x αντιστοιχεί η Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη α. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή

Διαβάστε περισσότερα

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ

ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ ΦΥΛΛΆΔΙΟ ΑΣΚΉΣΕΩΝ 2 ΣΥΝΑΡΤΗΣΕΙΣ 1. Να βρείτε τα πεδία ορισµού των συναρτήσεων µε τύπο: i) ii) iii) iv) v) 2. Δίνεται η συνάρτηση µε:. Να βρείτε µια περίοδο της. 3. Δίνεται η συνάρτηση µε:. Να αποδείξετε

Διαβάστε περισσότερα

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ

Mαθηματικά Θετικής - Τεχνολογικής Κατεύθυνσης Γ. Λυκείου Ανάλυση Κεφ. 1 ο ΣΥΝΑΡΤΗΣΕΙΣ Γ. Λυκείου Ανάλυση Κεφ. ο Γ / ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΛΥΣΗ ΚΕΦΑΛΑΙΟ Ο ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) =

1. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους. ii) f(x) = δ) f (x) = ζ) f (x) = ΣΥΝΑΡΤΗΣΕΙΣ 9o ΓΕΛ ΠΕΡΙΣΤΕΡΙΟΥ Α ΠΕΔΙΟ ΟΡΙΣΜΟΥ Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) () = 4 6 6 ii) () = iii) () = log ( ) iv) () = log ( log4(- )) v) vii) () 5 4 viii) () 5 log

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν

Α. ΘΕΩΡΙΑ Εστω μια συνάρτηση f και x. του πεδίου ορισμού της. Θα λέμε ότι η f είναι συνεχής στο x., όταν Α ΘΕΩΡΙΑ Εστω μια συνάρτηση και ένα σημείο του πεδίου ορισμού της Θα λέμε ότι η είναι συνεχής στο όταν Για παράδειγμα η συνάρτηση είναι συνεχής στο αφού Σύμφωνα με τον παραπάνω ορισμό μια συνάρτηση δεν

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος.. προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF:.4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ TEXΝΟΛΟΓ. 5... ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ ΜΙΓΑΔΙΚΟΙ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΜΑ Δίνεται η εξίσωση w w + i 0 () και το πολυώνυμο 3 P ( ) + a + β -,, R α) Να λύσετε την εξίσωση () β)αν ο αριθμός w που βρήκατε στο ερώτημα α) είναι ρίζα της εξίσωσης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos.

Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 1 Κατεύθυνση Κεφάλαιο 2 Κατεύθυνση σχολικές ασκήσεις 287 ασκήσεις και τεχνικές σε 18 σελίδες. Kglykos. Κώστας Γλυκός Γενικής κεφάλαιο Κατεύθυνση Κεφάλαιο Κατεύθυνση σχολικές ασκήσεις 87 ασκήσεις και τεχνικές σε 8 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / / 0 6 εκδόσεις Καλό

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Γ. Το µέτρο της διαφοράς δύο µιγαδικών αριθµών είναι ίσο µε την απόσταση των εικόνων τους στο µιγαδικό επίπεδο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι)

x 1 vii) f(x) 5 x 4 viii) 2 + γ) f (x) = στ) f (x) = e x -1 Β. Γραφική παράσταση Γ. Ίσες συναρτήσεις x 3 x 3 f(x), g(x) ιι) Α.Πεδίο ορισμού. Να προσδιορίσετε το πεδίο ορισμού των συναρτήσεων με τύπους ι) f() = v) f() 4 6 6 5 log 4 ii) f() = iii) f() = log ( ) iv) f() = log ( log 4(- )) vi) f() = 4 vii) f() 5 4 viii) f() ημ.

Διαβάστε περισσότερα

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ

Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Α Π Α Ν Τ Η Σ Ε Ι Σ - Υ Π Ο Δ Ε Ι Ξ Ε Ι Σ Σ Τ Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ 60 Κεφάλαιο ο Ι. ΣΥΝΑΡΤΗΣΕΙΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 0. i) Σ. Σ. Σ 0. ii) Σ 3. Σ 3. Σ. Σ 4. Λ 4. Λ. Λ 5.

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα