MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)"

Transcript

1 1. (ukupo 8 bodova) MJERA I INTEGRAL završi ispit 4. srpja 216. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte p za ekspoete p [1, +. (b) (6 bodova) Dokažite da p zadovoljava ejedakost trokuta za svaki p [1, +. Pritom smijete pretpostaviti da je Hölderova ejedakost pozata. Rješeje: (a) Pogledajte predavaja/skriptu: Za prostor mjere (X, F, µ) je p : L p [, + defiiraa formulom ( ) 1 f p := f p p dµ. (b) Pogledajte predavaja/skriptu: To je ejedakost Mikowskog (teorem 9.13). Slučaj p = 1 se dokazuje direkto ili se obrazloži zašto se može iščitati izmedu redaka dokaza. X

2 2. (ukupo 8 bodova + 2 dodata boda) Neka je (X, F) općeiti izmjerivi prostor i eka su u daljjem f, g reale fukcije a X. Dokažite ili opovrgite svaku od sljedećih tvrdji. (a) (2 boda) Ako su f i g F-izmjerive, tada f + g mora takoder biti F-izmjeriva. (b) (2 boda) Ako su f + g i f g F-izmjerive, tada f i g moraju takoder biti F-izmjerive. (c) (2 boda) Ako su f + g i fg F-izmjerive, tada f i g moraju takoder biti F-izmjerive. (d) (2 boda) Ako je f F-izmjeriva, tada f mora takoder biti F-izmjeriva. (e) (2 dodata boda) Ako f poprima samo pozitive vrijedosti i ako je f f F-izmjeriva, tada f mora takoder biti F-izmjeriva. U slučaju da tvrdja vrijedi morate dati je detalja dokaz, a u slučaju da tvrdja e vrijedi trebate dati protuprimjer. Napomee: Na kodomei R se uvijek podrazumijeva Borelova σ-algebra B(R). Fukcija f f je defiiraa formulom (f f )(x) := f(x) f(x). Rješeje: (a) Tvrdja vrijedi; pogledajte predavaja ili vježbe (daa su dva različita dokaza). Npr. za svaki α R imamo (b) Tvrdja vrijedi jer imamo {f + g > α} = {f > q} {g > α q} F. }{{}}{{} q Q F F f = 1 2 (f + g) + 1 (f g), 2 g = 1 2 (f + g) 1 (f g), 2 a lieara kombiacija izmjerivih fukcija je opet izmjeriva fukcija. (c) Tvrdja općeito e vrijedi. Pretpostavimo da je izmjerivi prostor takav da je F = P(X), uzmimo eki skup A P(X) \ F te stavimo f := 1 A + 21 A c, g := 21 A + 1 A c. Fukcije f + g i fg su redom kostato jedake 3 i 2 pa svakako jesu izmjerive, ali f i g isu izmjerive zbog f 1 ({1}) = A F, g 1 ({2}) = A F. (d) Tvrdja općeito e vrijedi. Uzmimo eki skup A P(X) \ F te stavimo f := 1 A 1 A c. Fukcija f je kostato jedaka 1 pa svakako jest izmjeriva, ali f ije izmjeriva zbog f 1 ({1}) = A F. (e) Tvrdja općeito e vrijedi. Uzmimo eki skup A P(X) \ F. Ispirirai jedakošću ( 1 ) 1/2 ( 1 1/4 = 2 4) stavimo f := A A c. Fukcija f f je kostata pa svakako jest izmjeriva, ali f ije izmjeriva zbog f 1({ 1 2}) = A F.

3 3. (ukupo 8 bodova) (a) (3 boda) Pokažite da za proizvolju fukciju f : R R vrijedi: f je ijekcija ako i samo ako za svaki x R vrijedi {x} σ(f). Napomea: Na kodomei R promatramo Borelovu σ-algebru B(R), a σ(f) ozačava ajmaju σ-algebru a domei R obzirom a koju je fukcija f izmjeriva. (b) (2 boda) Ozačimo s λ (jedodimezioalu) Lebesgueovu mjeru. Odredite λ f 1 za fukciju f : R [, dau s f(x) := x, tj. odredite čemu je jedako λ (f 1 (B)) za svaki B B ([, ). (c) (3 boda) Odredite općeiti oblik Lebesgue-Stieltjesove fukcije F δ δ kocetriraoj u točki R. pripade Diracovoj mjeri Rješeje: (a) Neka je f ijektiva. Uzmimo x R i ozačimo y := f(x). Vrijedi {y} B(R) te, zbog ijektivosti od f i izmjerivosti u paru (σ(f), B(R)), imamo {x} = f 1 ({y}) σ(f). Obrato, eka f ije ijektiva, tj. eka su x 1, x 2 R takvi da je x 1 x 2 i f(x 1 ) = f(x 2 ). Promotrimo familiju F defiirau F := { f 1 (B) : B R }. Očigledo je F σ-algebra a domei R; pr. to je pokazao a vježbama jer F je zapravo praslika σ-algebre P(R), koju smo još ozačavali f 1( P(R) ). Kako posebo za svaki B B(R) vrijedi f 1 (B) F, zaključujemo da je f izmjeriva u paru (F, B(R)) te, po defiiciji od σ(f), vrijedi σ(f) F. Tvrdimo {x 1 } F, iz čega oda slijedi {x 1 } σ(f). Kada bismo imali {x 1 } F, oda bi postojao skup B R takav da bi bilo {x 1 } = f 1 (B), što bi začilo a to je u kotradikciji s f(x 1 ) = f(x 2 ). f(x 1 ) B, f(x 2 ) B, (b) Uočimo da je za svaki skup B [, + zapravo f 1 (B) = B ( B) = B { x : x B}. Za a < b vrijedi f 1 ( a, b]) = [ b, a a, b] pa je λ ( f 1 ( a, b]) ) = ( a ( b)) + b a = 2(b a) = 2λ ( a, b]). Po jedistveosti mjera a π-sustavu koji geerira promatrau σ-algebru (precizije, po korolaru 4.6) slijedi jedakost λ ( f 1 (B) ) = 2λ (B) za sve B B ([, ).

4 (c) Ako je a, b < ili a, b >, oda vrijedi F δ (b) F δ (a) = δ ( a, b]) =, odoso F δ (b) = F δ (a). Nadalje, za a < vrijedi F δ () F δ (a) = δ ( a, ]) = 1, odakle dobivamo F δ () = F δ (a)+1. Zbog eprekidosti zdesa vrijedi F δ () = F δ (x) = x F δ (b) za sve b >. Prema tome, oviso o vrijedosti C := F δ ( ) = F δ (x), pripada x Lebesgue-Stieltjesova fukcija je oblika { C za x <, F δ (x) = C + 1 [, (x) = C + 1 za x.

5 4. (ukupo 8 bodova) (a) (4 boda) Izračuajte x 1 + x dx. (b) (4 boda) Neka su 1 p < q < r < + takvi da vrijedi 1 = Dokažite da vrijedi q 3p 3r te da je L p L r L q. f q f 1 3 p f 2 3 r, Rješeje: (a) Primjeom metode parcijale itegracije dobije se x 1 + x dx = 2( + 1) + x (1 + x) dx = 2 = x +1 dx = ( ) + 1 (1 + x) 2 Promatrajmo prostor mjere ([, 1], B([, 1]), λ), gdje je λ Lebesgueova mjera. fukcije f : [, 1] R sa f (x) := x (1 + x). 2 Vrijedi: Defiirajmo (i) f (x) 1 =: g(x) za svaki N i x [, 1]. (1+x) 2 (ii) Fukcija g je eprekida a [, 1], radi čega je i Riema-itegrabila pa je i Lebesgueitegrabila te vrijedi gdλ = g(x)dx < +. [,1] (iii) f (x) = = za svaki x [, 1. Za x = 1 imamo +1 (1+x) 2 f (1) = 1. 4 Ako defiiramo f : [, 1] R sa f(x) =, iz pokazaog slijedi da je f = f λ-g.s. x +1 Sve pretpostavke LTDK teorema za fukcije f su ispujee pa imamo x (1 + x) dx = f 2 (x)dx fukcije f su Riema-itegrabile a [, 1] pa su i Lebesgue-itegrabile = f dλ LTDK = fdλ = dλ =. [,1] [,1] Vratimo se a ( ) i dobijemo da je [,1] x 1 + x dx = ( ) = = 1 2. Napomeimo da ije bilo moguće direkto primijeiti LTDK a polazi itegral (jer ema itegrabile domiirajuće fukcije), što pokazuje čijeica da bismo zamjeom esa i itegrala dobili pogreša rezultat. (b) Pogledajte zadatak 8.2. s vježbi uz t = 1 3.

6 5. (ukupo 8 bodova) Pretpostavimo da je V eki vektorski potprostor prostora svih omedeih Borel-izmjerivih fukcija sa [, 1] u R koji sadrži karakterističu fukciju 1 I svakog itervala I [, 1] te još ima svojstvo: Ako je (f ) =1 iz eegativih fukcija iz V koji raste i po točkama kovergira prema omedeoj fukciji f : [, 1] R, tada mora biti f V. Dokažite da V sadrži svaku omedeu Borel-izmjerivu fukciju sa [, 1] u R. Uputa: Koristite Lebesgueovu idukciju. Rješeje: Dokaz provodimo u četiri koraka. 1. korak: Žeo pokazati da je 1 B V za sve B B ([, 1]). Ozačimo Uočimo: D := {B B ([, 1]) : 1 B V}. Vrijedi [, 1] D jer je 1 [,1] V po pretpostavci zadatka uz izbor I = [, 1]. Ako su A, B D, A B, oda zbog zatvoreosti od V a lieare kombiacije imamo 1 B\A = 1 B 1 A V pa je B \ A D. Neka je (A ) =1 rastući iz skupova iz D. Uočimo da je (1 A ) =1 rastući iz eegativih fukcija iz V koji raste prema omedeoj fukciji 1 =1 A pa po svojstvu avedeom u zadatku vrijedi 1 =1 A V, odakle zaključujemo da je =1A D. Time smo dobili da je D Dykiova klasa koja sadrži π-sustav C := {I [, 1] : I je iterval}. Iz Dykiovog teorema slijedi D D(C) = σ(c) = B([, 1]) pa zaključujemo D = B ([, 1]). Time smo zapravo dobili da je 1 B V za sve B B ([, 1]). 2. korak: Promatramo jedostave Borel-izmjerive fukcije sa [, 1] u R. Neka je f = c i 1 Ai za eki N te za eke c 1, c 2,..., c R i eke A 1, A 2,..., A B ([, 1]). Po 1. koraku slijedi 1 Ai V za i {1, 2,..., }, a oda i f V jer je V vektorski prostor. 3. korak: Neka je f proizvolja eegativa omedea Borel-izmjeriva fukcija. Tada po teoremu 5.15 s predavaja postoji rastući iz (f ) =1 eegativih jedostavih Borel-izmjerivih fukcija koji po točkama kovergira prema f. Po 2. koraku zamo da je f V za sve N pa, zbog daog svojstva prostora V, slijedi f V. 4. korak: Koačo, eka je f proizvolja omedea Borel-izmjeriva fukcija. Možemo zapisati f = f + f pri čemu je f + pozitivi, a f egativi dio fukcije f. Po 3. koraku vrijedi f +, f V, a oda je i f = f + f V jer je V vektorski prostor. Napomeimo da je ovaj zadatak posebi slučaj tzv. teorema o mootooj klasi za fukcije. i=1

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom: Nizovi Defiicija Niz je fukcija Ozake: (a ) ili a } a: R Zadatak Napišite prvih ekoliko člaova izova zadaih općim člaom: a = a = ( ) (c) a = Zadatak Odredite opće člaove izova: 3 5 7 9 ; 3 7 5 3 ; (c)

Διαβάστε περισσότερα

Mjera i integral. bilješke s vježbi ak. god /13. Aleksandar Milivojević

Mjera i integral. bilješke s vježbi ak. god /13. Aleksandar Milivojević Mjera i itegral vježbe bilješke s vježbi ak. god. 202./3. atipkali i uredili Aleksadar Milivojević Saji Ružić Sveučiliste u Zagrebu Prirodoslovo-matematički fakultet Matematički odsjek (skripta e može

Διαβάστε περισσότερα

Integral i mjera. Braslav Rabar. 13. lipnja 2007.

Integral i mjera. Braslav Rabar. 13. lipnja 2007. Itegral i mjera Braslav Rabar 13. lipja 2007. Def 1 Neka je X skup tada familiju F podskupova od X zovemo σ-algebra a X ako je X uutra te je zatvorea a komplemetiraje i prebrojive uije tada urede par (X,

Διαβάστε περισσότερα

Centralni granični teorem i zakoni velikih brojeva

Centralni granični teorem i zakoni velikih brojeva Poglavlje 8 Cetrali graiči teorem i zakoi velikih brojeva 8.1 Cetrali graiči teorem Lema 8.1 Za 1/ x 1 vrijedi Dokaz: Stavimo log1 + x x x. fx := log1 + x x, x [ 1/, 1]. Očito f0 = 0. Nadalje, po teoremu

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.)

DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.) DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješeja 1. kolokvija (16. studeog 2015.) Zadatak 1 (20 bodova) Neka je fukcija d: R 2 R 2 R daa formulom { x 1 + y d(x, y) = 1, ako je x y, 0, ako je

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

MJERA I INTEGRAL. Bilješke s predavanja (Prof. dr. sc. Hrvoje Šikić) akademska godina 2010./2011. Natipkao i uredio: Ivan Krijan

MJERA I INTEGRAL. Bilješke s predavanja (Prof. dr. sc. Hrvoje Šikić) akademska godina 2010./2011. Natipkao i uredio: Ivan Krijan MJERA I INTEGRAL Bilješke s predavaja (Prof. dr. sc. Hrvoje Šikić) akademska godia 2010./2011. Natipkao i uredio: Iva Krija Zagreb, 23. 05. 2011. Sadržaj Sadržaj 1 UVOD 3 2 PRSTEN SKUPOVA 8 3 MJERE NA

Διαβάστε περισσότερα

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza. 2. NIZOVI 1 / 78 Niz i podiz 2 / 78 Niz i podiz Defiicija Svaku fukciju a : N S zovemo iz u S. Za N pišemo a() = a i azivamo -tim člaom iza. Ozaka za iz je (a ) N ili (a ) ili samo (a ). Kodomea iza može

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 1. kolokvij 29. travnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) MJERA I INTEGRAL 1. kolokvij 29. travnja 2016. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je I kolekcija svih ograničenih jednodimenzionalnih intervala

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

1 Neprekidne funkcije na kompaktima

1 Neprekidne funkcije na kompaktima Neprekide fukcije a kompaktima.. Teorem. Neka je K kompakta podskup metričkog prostora X, a f : X Y eprekido preslikavaje u metrički prostor Y. Tada je slika f(k) kompakta skup u Y..2. Zadatak. Neka su

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

MATEMATIČKA STATISTIKA

MATEMATIČKA STATISTIKA MATEMATIČKA STATISTIKA Bilješke s predavaja (prof. dr. sc. Miljeko Huzak akademske godie 04./05. Natipkao i uredio: Kristija Kilassa Kvaterik Ova skripta služi samo kao pomoć u praćeju predavaja iz istoimeog

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Teorem o prostim brojevima

Teorem o prostim brojevima Sveučilište u Rijeci - Odjel za matematiku Preddiplomski sveučiliši studij Matematika Zlatko Durmiš Teorem o prostim brojevima Završi rad Rijeka, 22. Sveučilište u Rijeci - Odjel za matematiku Preddiplomski

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Slučajni procesi Prvi kolokvij travnja 2015.

Slučajni procesi Prvi kolokvij travnja 2015. Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA II

MATEMATIČKA ANALIZA II MATEMATIČKA ANALIZA II primjeri i zadaci Ilja Gogić, Ate Mimica 6. siječja. Sadržaj Derivacija 5. Tehika deriviraja............................... 5. Derivacija iverzih i implicito zadaih fukcija..............

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

1 FUNKCIJE. Pretpostavljamo poznavanje prirodnih brojeva N = {1, 2, 3,... },

1 FUNKCIJE. Pretpostavljamo poznavanje prirodnih brojeva N = {1, 2, 3,... }, FUNKCIJE Pretpostavljamo pozavaje prirodih brojeva N = {,, 3,... }, cijelih brojeva Z = {...,,, 0,,,... }, racioalih brojeva Q = { m : m Z, N}. Nećemo defiirati reale brojeve R jer bi as to odvelo previše

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Diferencijalni račun funkcija više varijabli

Diferencijalni račun funkcija više varijabli Diferecijali raču fukcija više varijabli vježbe uredio Matija Bašić Sveučilište u Zagrebu Prirodoslovo-matematički fakultet Matematički odsjek (skripta e može zamijeiti vježbe) Sadržaj 1 Struktura ormiraog

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadaća iz kolegija Metrički prostori 2013./2014.

Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić

Διαβάστε περισσότερα

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2. 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Definicija: Beskonačni niz realnih brojeva je funkcija a : N R. Umjesto zapisa a(1), a(2),,a(n), može se koristiti zapis a 1,

Definicija: Beskonačni niz realnih brojeva je funkcija a : N R. Umjesto zapisa a(1), a(2),,a(n), može se koristiti zapis a 1, Defiicija: Beskoači iz realih brojeva je fukcija a : N R i Umjesto zapisa a(), a(),,a(), može se koristiti zapis a, a,,a, Broj a zove se opći čla iza, a cijeli iz se kratko ozačuje (a ). Niz je : -rastući

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

INŽENJERSKA MATEMATIKA 1. P r e d a v a n j a z a d e s e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010. godini) G L A V A 5

INŽENJERSKA MATEMATIKA 1. P r e d a v a n j a z a d e s e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010. godini) G L A V A 5 INŽENJERSKA MATEMATIKA NOTA BENE Dobro zapamti. Imaj a umu. Ne zaboravi. P r e d a v a j a z a d e s e t u s e d m i c u a s t a v e (u akademskoj 9/. godii) G L A V A 5 DIFERENCIJALNI RAČUN REALNIH FUNKCIJA

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

Mjera i Integral Vjeºbe

Mjera i Integral Vjeºbe Mjera i Integral Vjeºbe September 8, 2015 Chapter 1 σ-algebre 1.1 Osnovna svojstva i prvi primjeri Najprije uvodimo pojmove algebre i σ-algebre 1 skupova. Za skup, familiju svih njegovih podskupova zovemo

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Izrada Domaće zadaće 4

Izrada Domaće zadaće 4 Uiverzitet u Sarajevu Elektrotehički fakultet Predmet: Ižejerska matematika I Daa: 76006 Izrada Domaće zadaće Zadatak : Izračuajte : si( ) (cos( )) L 0 a) primjeom L'Hospitalovog pravila; b) izravom upotrebom

Διαβάστε περισσότερα

2. Konvergencija nizova

2. Konvergencija nizova 6 2. KONVERGENCIJA NIZOVA 2. Konvergencija nizova Niz u skupu X je svaka funkcija x : N X. Vrijednost x(k), k N, se zove opći ili k-ti član niza i obično se označava s x k. U skladu s tim, niz x : N X

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

VJEROJATNOST 1. kolokvij studenog 2013.

VJEROJATNOST 1. kolokvij studenog 2013. Zadatak 1 (10 bodova (a (5 bodova Iskažite i dokažite teorem o strukturi vjerojatnosti na partitivnom skupu prebrojivog skupa. Zašto u slučaju prebrojivog skupa možemo promatrati samo vjerojatnosti definirane

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim. 1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Ivan Ivec SOBOLJEVLJEVE NEJEDNAKOSTI I PRIMJENE

Ivan Ivec SOBOLJEVLJEVE NEJEDNAKOSTI I PRIMJENE Sveučilište u Zagrebu PMF Matematički odjel Ivan Ivec SOOLJEVLJEVE NEJEDNAKOSTI I PRIMJENE Diplomski rad Voditelj rada: doc. dr. sc. Nenad Antonić Zagreb, siječnja 001. Zahvaljujem svojem mentoru doc.

Διαβάστε περισσότερα