Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Procjena parametara. Zadatak 4.1 Neka je X 1, X 2,..., X n slučajni uzorak iz populacije s konačnim očekivanjem µ i varijancom σ 2."

Transcript

1 4 Procjea parametara Neka je X slučaja varijabla čiju distribuciju proučavamo. Defiicija: Slučaji uzorak duljie za X je iz od ezavisih i jedako distribuiraih slučajih varijabli X 1, X,..., X koje imaju istu razdiobu kao i X. Za ω Ω je x 1 = X 1 (ω), x = X (ω),..., x = X (ω) jeda realizacija slučajog uzorka i zovemo je uzorak. Statistika je fukcija slučajog uzorka. Razdioba slučaje varijable X je često opisaa parametrima koje pokušavamo procijeiti. Defiicija: Procjeitelj T = f (X 1,..., X ) je epristrai procjeitelj za parametar τ ako vrijedi ET = τ. Zadatak 4.1 Neka je X 1, X,..., X slučaji uzorak iz populacije s koačim očekivajem µ i varijacom σ. Pokažite da je (a) X := X X epristrai procjeitelj za µ, (b) S := 1 1 (X i X ) epristrai procjeitelj za σ. Rješeje: =µ =µ X1 + + X EX EX (a) E[X ] = E = 1 = µ

2 4. PROCJENA PARAMETARA (b) E[S ] = E 1 (X i X ) = E Xi X X i + X = = 1 1 E Xi X + X = 1 1 E Xi X = = 1 1 E Xi 1 ( X i ) = 1 E[Xi 1 ] 1 E[( X i ) ] = = 1 1 = 1 1 [Var X i +(EX i ) ] 1 [Var( X i ) +( E[ σ =µ = Var X i σ + µ 1 [σ + (µ) ] X i ] ) ] = = EX i = 1 1 ( 1)σ = σ. 4.1 Metoda maksimale vjerodostojosti Neka je (x 1,..., x ) opažei uzorak za slučaju varijablu X s gustoćom f(x θ), gdje je θ = (θ 1,..., θ k ) Θ R k epozati parametar. Defiiramo fukciju vjerodostojosti L: Θ R sa Vrijedost ˆθ = ˆθ(x 1,..., x ) Θ za koju je L(θ) := f(x 1 θ) f(x θ), θ Θ. L(ˆθ) = max θ Θ L(θ) zovemo procjea metodom maksimale vjerodostojosti. Statistika ˆθ(X 1,..., X ) je procjeitelj metodom maksimale vjerodostojosti ili kraće MLE. Zadatak 4. Neka je X 1, X,..., X slučaji uzorak iz geometrijske razdiobe s parametrom p 0, 1. Nadite MLE za p. Rješeje: X G(p) P(X = k) = (1 p) k 1 p, k N f(x p) = (1 p) x 1 p, x N 0, iače

3 4. PROCJENA PARAMETARA 3 Neka je x 1, x,..., x opažei uzorak. Tada vrijedi x 1, x,..., x N i L(p) = f( p) = (1 p) p, p 0, 1 Fukcija x l x je strogo rastuća pa je dovoljo maksimizirati fukciju l(p) = l L(p) = l(1 p) + l p. Vrijedi l (p) = + 1 p p l (p) = 0 p = p = 1 p l (p) = pa fukcija l poprima maksimum u ˆp = (1 p) p < 0. Dakle, MLE za parametar p je 1 Zadatak 4.3 Neka je X 1, X,..., X slučaji uzorak iz Poissoove razdiobe s parametrom λ > 0. (a) Nadite MLE za λ. (b) Ispitajte je li MLE epristrai procjeitelj za λ. Rješeje: (a) Neka je x 1, x,..., x opažei uzorak. Tada je L(λ) = f( λ) = λ! e λ = X. λ x 1! x! e λ = c λ e λ, gdje c > 0 e ovisi o λ. Stoga je dovoljo maksimizirati fukciju x i l(λ) = l λ e λ = l λ λ, λ > 0.

4 4 4. PROCJENA PARAMETARA Vrijedi l (λ) = λ l (λ) = 0 λ = l (λ) = λ 0 pa fukcija l poprima maksimum u ˆλ = i MLE za λ je X. (b) Prema zadatku 4.1 je E[X ] = EX 1 = λ X je epristrai procjeitelj za λ. Napomea: Ako je ˆθ MLE za θ i g : Θ g(θ) eka fukcija, oda je g(ˆθ) MLE za g(θ). Zadatak 4.4 Nadite MLE parametara θ = (µ, σ ) ormalog modela N(µ, σ ). Ispitajte epristraost procjeitelja. Rješeje: Stavimo θ 1 = µ i θ = σ. Neka je x 1, x,..., x opažei uzorak. Tada je L(θ 1, θ ) = f( θ 1, θ ) = 1 e ( θ 1 ) θ = c θ θ π e 1 (x θ i θ 1 ) za (θ 1, θ ) R 0, +. Budući da je c > 0 i fukcija x l x strogo rastuća, dovoljo je maksimizirati fukciju l(θ 1, θ ) = l θ e 1 (x θ i θ 1 ) = l θ 1 ( θ 1 ). θ Vrijedi l θ 1 = 1 θ l = θ θ θ ( θ 1 ) = 0 θ 1 = ( θ 1 ) = 0 θ = ( θ 1 )

5 4. PROCJENA PARAMETARA 5 Zbog prethode apomee stavimo ˆθ 1 = Budući da je Hesseova matrica Hl(ˆθ 1, ˆθ ) = 1ˆθ = x, ˆθ = ( x) = 1 s. ṋ 1ˆθ (x θ i ˆθ 1 ) ( ˆθ 1 ) ( ˆθ = 1 ) 1 ˆθ 1ˆθ3 egativo defiita, MLE za µ je X, a MLE za σ je 1 S. Prema zadatku 4.1 slijedi ṋ 0 θ 0 E[X ] = µ i E[ 1 S ] = 1 E[S ] = 1 σ = σ Dakle, X je epristrai procjeitelj za µ, ali 1 S ije epristrai procjeitelj za σ. Zadatak 4.5 Neka je X 1,..., X slučaji uzorak iz modela s fukcijom gustoće 0, x t f(x t) = e (x t), x > t. Nadite MLE za parametar t R. Rješeje: Neka je x 1, x,..., x opažei uzorak. Tada je +t L(t) = f( t) = e, x(1) > t. 0, iače Fukcija t L(t) strogo raste a, x (1), a dalje je jedaka 0. Stoga se maksimum postiže u ˆt = x (1) i MLE za t je X (1) = mi{x 1,..., X }. Zadatak 4.6 Neka je X 1, X,..., X slučaji uzorak iz diskrete uiforme razdiobe a skupu {1,,..., m}, m N. (a) Nadite MLE za m. (b) Ispitajte je li MLE epristrai procjeitelj za m. 1 ˆθ

6 6 4. PROCJENA PARAMETARA Rješeje: (a) Neka je x 1, x,..., x opažei uzorak. Vrijedi 1, x {1,..., m} f(x m) = m 0, iače pa je L(m) = f( m) = 1, m x () m. 0, iače Fukcija m L(m) strogo pada a [x (), +, a iače je jedaka 0. Stoga se maksimum postiže u ˆm = x () pa je MLE za m jedak X () = max{x 1,..., X }. (b) MLE ije epristrai procjeitelj za m jer je E[X () ] = E[max{X 1,..., X }] = = P(max{X 1,..., X } k) = = = k=1 (1 P(max{X 1,..., X } < k)) = k=1 m (1 P(X 1 < k,..., X < k)) = k=1 m (1 P(X 1 < k) P(X < k)) = k=1 m m 1 (1 P(X 1 < k) ) = (1 P(X 1 k) ) = k=1 4. Metoda momeata k=0 m 1 k=0 k 1 < m. m Procjeitelje metodom momeata dobivamo izjedačavajem momeata razdiobe s odgovarajućim uzoračkim mometima. Zadatak 4.7 Neka je X 1,..., X slučaji uzorak za X Γ(α, β), α, β > 0. Nadite procjeitelje za α i β metodom momeata. Rješeje: Neka je x 1, x,..., x opažei uzorak. Prema zadatku.7 je EX = αβ i Var X = αβ. Izjedačavajem populacijskog i uzoračkog očekivaja, te populacijske i uzoračke varijace, dobivamo pa je αβ = x αβ = s α = x s, β = s x. Dakle, procjeitelj za α metodom momeata je X, a procjeitelj za β je S S X.

7 4. PROCJENA PARAMETARA Pouzdai itervali za parametre ormale razdiobe Defiicija: Neka su L = l (X 1,..., X ) i D = d (X 1,..., X ) statistike slučajog uzorka X 1,..., X. Za [L, D ] kažemo da je (1 α) % pouzdai iterval za parametar τ ako vrijedi P(L τ D ) 1 α, α 0, 1. Napomea: Neka su X i N(µ, σ ), i = 1,..., ezavise slučaje varijable. Tada je: X µ N(0, 1) σ (4.1) ( 1)S χ ( 1) σ (4.) X µ t( 1) S (4.3) (X i µ) χ () σ (4.4) Zadatak 4. Neka je X 1,..., X slučaji uzorak iz ormale razdiobe s varijacom i epozatim očekivajem µ. Aritmetička sredia uzorka je x = 4.7. Nadite 95% pouzdai iterval za parametar µ. Rješeje: Budući da je X 1,..., X N(µ, ), prema 4.1 je Z := X µ N(0, 1). Iz 1 α = 0.95 dobivamo dau pouzdaost α = Iz tablice ormale distribucije odredimo z α = z 0.05 = 1.96 za koji vrijedi P( z 0.05 Z z 0.05 ) = α z α/ z α/

8 4. PROCJENA PARAMETARA Stoga je odoso P P 1.96 X µ 1.96 = 0.95, X 1.96 µ X = Dakle, 95% pouzdai iterval za parametar µ je X 1.96, X Aritmetička sredia uzorka je x = 4.7 pa je procjea 95% pouzdaog itervala za µ a osovi opažeog uzorka , = [4.14, 43.5]. Zadatak 4.9 Razvijea je ova slitia metala za izgradju svemirskih letjelica. Izvršeo je 15 mjereja koeficijeta apetosti te je izračuata sredia uzorka x = 39.3 i stadarda devijacija s =.6. Pretpostavljamo da je mjerea veličia ormalo distribuiraa. Nadite 90% pouzdai iterval za očekivaje populacije. Rješeje: Budući da je X 1,..., X 15 N(µ, σ ), prema 4.3 je T := X 15 µ S t(14). Iz 1 α = 0.90 dobivamo dau pouzdaost α = Iz tablice t-distribucije odredimo t α ( 1) = t 0.05(14) = za koji vrijedi P( t 0.05 (14) T t 0.05 (14)) = α t α/ t α/

9 4. PROCJENA PARAMETARA 9 Stoga je odoso P X 15 µ = 0.90, S 15 S 15 P X µ X S15 = Dakle, 90% pouzdai iterval za parametar µ je X S 15 15, X S Uvrštavajem aritmetičke sredie uzorka x = 39.3 i stadarde devijacije uzorka s =.6 dobivamo da je procjea 90% pouzdaog itervala za µ a osovi opažeog uzorka jedaka , = [3.1, 40.4]. Zadatak 4.10 Na slučajom uzorku od 5 elemeata iz ormale razdiobe izračuata je varijaca uzorka s = 1.5. Procijeite 90% pouzdai iterval za varijacu populacije. Rješeje: Budući da je X 1,..., X 5 N(µ, σ ), prema 4. je V := 4 S 5 σ χ (4). Za dau pouzdaost α = 0.10, iz tablice χ -distribucije odredimo za koje vrijedi χ α ( 1) = χ 0.05 (4) = i χ 1 α ( 1) = χ 0.95 (4) = 13.4 P(χ 0.95 (4) V χ 0.05 (4)) = α χ 1 α/ χ α/

10 90 4. PROCJENA PARAMETARA Stoga je odoso P S = 0.90, σ 4 S P σ 4 S 5 = Dakle, 90% pouzdai iterval za parametar µ je 4 S , 4 S Uvrštavajem varijace uzorka s = 1.5 dobivamo da je procjea 90% pouzdaog itervala za σ a osovi opažeog uzorka jedaka , = [.4, 1.66] Napomea: (a) Za t-distribucija se asimptotski poaša kao jediiča ormala distribucija pa za velike (u praksi 31) umjesto t α () možemo uzeti z α iz tablice ormale distribucije. (b) Neka je alpha=0.05. U R-u z α dobijemo aredbom > qorm(1-alpha) [1] Neka je alpha=0.05 i = 14. Tada t α () dobivamo aredbom > qt(1-alpha,) [1] Neka je sada alpha=0.05 i = 4. Naredbe za χ α() i χ 1 α() su redom: > qchisq(1-alpha,) [1] > qchisq(alpha,) [1]

11 4. PROCJENA PARAMETARA Aproksimativi pouzdai itervali Defiicija: Niz statistika {Z : N} je asimptotski ormala ako kovergira po distribuciji slučajoj varijabli Z N(0, 1), odoso ako je Pišemo: Z AN(0, 1). lim P(Z x) = Φ(x), x R. Napomea: Neka je X 1,..., X slučaji uzorak s koačim očekivajem µ = EX 1 i varijacom σ = Var X 1, te eka je S := X X. Prema cetralom graičom teoremu vrijedi odakle slijedi S ES Var S AN(0, 1), X µ σ Defiicija: Procjeitelj T je (slabo) kozisteta ako je AN(0, 1). (4.5) (P) lim T = τ, tj. ε > 0 lim P( T τ > ε) = 0. Napomea: (a) S je kozisteta procjeitelj za stadardu devijaciju σ. (b) Ako je ˆσ kozisteta procjeitelj za stadardu devijaciju σ, tada vrijedi X µ ˆσ AN(0, 1). (4.6) Zadatak 4.11 Nadite 95% pouzdai iterval za epozati parametar θ iz Exp(θ), θ > 0, modela ako je mjere uzorak duljie = 190 i 190 = daa. Rješeje: Budući da je X 1,..., X 190 Exp(θ), vrijedi µ = EX 1 = 1 i θ σ = Var X 1 = 1. θ Prema 4.5 je Z := X 190 µ 190 AN(0, 1). σ Za dau pouzdaost α = 0.05 je z α = z 0.05 = 1.96 i vrijedi P( z 0.05 Z z 0.05 ) Stoga je P 1.96 X θ 1 θ ,

12 9 4. PROCJENA PARAMETARA odoso 1.96/ P θ 1.96/ X 190 X 190 Dakle, aproksimativi 95% pouzdai iterval za parametar θ je 1.96/ , 1.96/ X 190 Aritmetička sredia uzorka je x = 190 X 190 = = pa je procjea tog pouzdaog itervala za θ a osovi opažeog uzorka 1.96/ , 1.96/ = [0.0040, ] Zadatak 4.1 Obavljeo je mjereja težie čokoladih pločica od grama. Dobivei su podaci: tezia u g frekvecija Nadite 95% pouzdai iterval za očekivau težiu čokoladih pločica. Rješeje: Neka je µ očekivaje distribucije težie čokoladih pločica. Budući da je = velik, prema prethodoj apomei vrijedi Z := X µ S AN(0, 1). Za dau pouzdaost α = 0.05 je z α = z 0.05 = 1.96 i vrijedi P( z 0.05 Z z 0.05 ) Stoga je P 1.96 X µ , S

13 4. PROCJENA PARAMETARA 93 odoso P X 1.96 S µ X S Dakle, aproksimativi 95% pouzdai iterval za parametar µ je X 1.96 S, X S Aritmetičku srediu i varijacu uzorka račuamo kao u zadatku 1.5. Širia razreda je c =, a refereta vrijedost x 0 = 9.5. Tablica frekvecija glasi: i I i f i d i = ( x 0 )/c f i d i f i d i 1 [91.5, [93.5, [95.5, [97.5, [99.5, [101.5, [103.5, Σ Sada je x = c 1 s = c 1 k f i d i + x 0 = k f i d i = 9.56 k f i d i = = 7.7 s =.79 pa je procjea aproksimativog 95% pouzdaog itervala za parametar µ a osovi opažeog uzorka , = [9.01, 99.11]. Zadatak 4.13 U 400 izvedeih pokusa dogadaj A astupio je 0 puta. Procijeite 95% pouzdai iterval za p = P(A). Rješeje: Budući da je X 1,... X 400 slučaji uzorak iz Beroullijevog modela s parametrom p, slijedi µ = EX 1 = p i σ = Var X 1 = p(1 p). Daa pouzdaost je α = 0.05 i z α 0.05 = 1.96.

14 94 4. PROCJENA PARAMETARA 1. Prema 4.5 je pa vrijedi X 400 µ σ 400 AN(0, 1) X 400 p P 400 p(1 p) Kvadrirajem dobivamo da uz 95% pouzdaosti vrijedi odoso (X 400 p) p(1 p), (X 400 X 400p + p ) (p p ) 0. Uvrštavajem x = 0/400 = 0.7 i rješavajem kvadrate jedadžbe p ( ) p( ) , dobivamo da je procjea 95% pouzdaog itervala za p jedaka [0.653, 0.743].. X je kozisteta procjeitelj za p pa je ˆσ = X (1 X ) kozisteta procjeitelj za σ = p(1 p). Prema 4.6 je X 400 µ ˆσ AN(0, 1), pa je odoso P 1.96 X 400 p , ˆσ 400 P X ˆσ p X ˆσ , odakle uvrštavajem x = 0.7 i ˆσ 400 = dobivamo da je procjea 95% pouzdaog itervala za p jedaka [0.655, 0.745].

15 4. PROCJENA PARAMETARA Zadaci za vježbu 4.14 Neka je X U(0, τ), τ > 0. Pokažite da je X epristrai procjeitelj za τ Neka je X 1,..., X sl. uzorak iz Beroullijevog modela s parametrom P(X i = 1) = p i 3. Nadite epristrai procjeitelj za: (a) τ(p) = p(1 p) i (b) τ(p) = p (1 p) Neka je X 1,..., X sl. uzorak iz Beroullijevog modela s parametrom P(X i = 1) = p 0, 1. Nadite MLE za p Neka je X U(τ, τ + ), τ > 0. Odredite sve procjee za τ metodom ML. 4.1 Neka je X 1,..., X sl. uzorak iz ekspoecijalog modela s parametrom λ > 0. (a) Nadite MLE procjeitelj za λ. (b) Nadite bar jeda epristrai procjeitelj za λ. (c) Nadite bar jeda epristrai procjeitelj za λ Nadite MLE procjeitelj parametra θ = (α, β) za model Γ(α, β), α, β > 0. Uputa: fukcija f : R + R + defiiraa sa f(x) = l x Γ (x) je bijekcija. Γ(x) 4.0 Neka je X 1,..., X sl. uzorak iz Beroullijevog modela s parametrom P(X i = 1) = p. Nadite procjeitelj metodom momeata za: (a) p, (b) p(1 p) i (c) cos p. 4.1 Da bi se ispitala čvrstoća jede vrste čelika, obavljeo je mjereje prijelome sile a 4 epruveta. Pretpostavljamo da je prijeloma sila ormalo distribuiraa. Rezultati mjereja daju x = 70. i s = Nadite 95% pouzdai iterval za parametar µ, očekivaje populacije. 4. Promatra je slučaja uzorak od stabala izmedu jih 1546 a ekoj farmi i izmjerea aritmetička sredia x = 59. te stadarda devijacija s = Odredite 95% pouzdai iterval za sredju visiu svih stabala a toj farmi. 4.3 Na uzorku od 0 elemeata dobivee su sljedeće vrijedosti ormale varijable: Procijeite 0% p. i. za: (a) očekivaje populacije i (b) stadardu devijaciju populacije. 4.4 Nadite 95% pouzdai iterval za epozati parametar λ Poissoovog modela P (λ) ako je mjereje slučajog uzorka duljie = 61 dalo izos od 61 = U 40 bacaja ovčića 4 puta je palo pismo. Odredite 95% pouzdai iterval za očekivai broj pisama u eograičeom broju bacaja ovčića. Rješeja: (a) S, (b) 0 {X 1 =1,X =1,X 3 =0} X [x (), x (1) ] 4.1. Uz ozaku Y = X X : (a) /Y, (b) ( 1)/Y, (c) ( 1)( )/Y ˆα = f 1 (l X ( l X i )/), ˆβ = X / ˆα 4.0. (a) X, (b) X (1 X ), (c) cos X [67.3, 73.1] 4.. [57.4, 61.0] 4.3. (a) [7.43, 73.56], (b) [1.5,.41] [.33,.57] 4.5. [0.45, 0.74]

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

STATISTIKA. 1. Osnovni pojmovi

STATISTIKA. 1. Osnovni pojmovi STATISTIKA. Osovi pojmovi Matematička statistika se bavi proučavajem skupova sa velikim brojem elemeata, koji su jedorodi u odosu a jedo ili više zajedičkih kvalitatitvih ili kvatitativih svojstava. Kako

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić

(BIO)STATISTIKA. seminari. smjer: Prehrambena tehnologija i Biotehnologija. pripremila: dr.sc. Iva Franjić (BIO)STATISTIKA seminari smjer: Prehrambena tehnologija i Biotehnologija pripremila: dr.sc. Iva Franjić Sadržaj DESKRIPTIVNA STATISTIKA 4. Grafički prikaz podataka..................... 4. Srednje vrijednosti

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači

STATISTIKA. KONCEPTI : POPULACIJA i UZORAK. Primjer: svi glasači, samo neki glasači STATISTIKA KONCEPTI : POPULACIJA i UZORAK Primjer: svi glasači, samo neki glasači populacija uključuje sve podatke, a uzorak samo dio, slučajno izabranih kako procjeniti reprezentativni element? MJERE

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

1. Slučajni dogad aji

1. Slučajni dogad aji VEROVATNOĆA Teorija verovatoće je matematička disciplia koja se bavi izučavajem slučajih pojava, tj. takvih empirijskih feomea čiji ishodi isu uvek strogo defiisai. Osovi model u teoriji verovatoće je

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

6. poglavlje (korigirano) PRIMJENA DERIVACIJA

6. poglavlje (korigirano) PRIMJENA DERIVACIJA 6 Primjea derivacija (sa svim korekcijama) 6 poglavlje (korigirao) PRIMJENA DERIVACIJA U ovom poglavlju: Tageta i ormala Stacioare točke ukcije Tablica mootoosti, ekstremi, koveksost i kokavost, ileksije

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).

Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ). Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος που υπολογίζονται από τα δεδοµένα που έχουν συλλεχθεί, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, χρησιµοποιούνται για την εκτίµηση

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Ορισμός (Συνάρτηση Κατανομής Πιθανότητας). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) της τ.μ. Χ την: F(x) = P(X x), x. ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Ορισός (Τυχαία Μεταβλητή). Οοάζουε τυχαία εταβλητή (τ..) κάθε απεικόιση Χ: Ω για τη οποία το σύολο { ω Ω : Χ(ω) x} έχει προσδιορίσιη πιθαότητα για κάθε x. Τούτο σηαίει ότι η ατίστροφη

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu

Διαβάστε περισσότερα

Rje²enje doma e zada e 2. Inºenjerska matematika 1

Rje²enje doma e zada e 2. Inºenjerska matematika 1 Uiverzitet u Sarajevu Elektrotehi ki fakultet Rje²eje doma e zada e Iºejerska matematika Haru iljak Decembar 009. Zad. U sljede em izrazu izvr²ite sve aza ee operacije u skupu kompleksih brojeva: cis π

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ Φουσκάκης- Ασκήσεις στην Εκτιµητική ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΤΙΚΗ ) Έστω Χ,, Χ και Υ,,Υ ανεξάρτητα τµ από πληθυσµούς µε µέση τιµή θ και γνωστές διασπορές σ και σ είξτε ότι για c [0,] η U = c X +(-c) Y είναι

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0.

ΦΡΟΝΤΙΣΤΗΡΙΟ 11. β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο λ 0. ΦΡΟΝΤΙΣΤΗΡΙΟ Άσκηση Έστω X, X,..., X d τυχαίες μεταβλητές με ~ Posso ( ), Να εξάγετε α) τη συνάστηση πιθανοφάνειας στις 3 μορφές τις και β) τον εκτιμητή μέγιστης πιθανοφάνειας για την άγνωστη παράμετρο

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

RIJEŠENI ZADACI IZ MATEMATIKE

RIJEŠENI ZADACI IZ MATEMATIKE RIJEŠENI ZADACI IZ MATEMATIKE Ovi zadaci namijenjeni su studentima prve godine za pripremu ispitnog gradiva za kolokvije i ispite iz matematike. Pripremljeni su u suradnji i po uputama predmetnog nastavnika

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΜΙΝΑΡΙΟΥ ΠΙΣΤΟΠΟΙΗΣΗΣ ΤΥΠΟΣ ΠΙΣΤΟΠ. 1 ΛΥΣΣΑΝΔΡΗ ΣΟΦΙΑ ΧΑΜΠΗΣ Α1 108400011 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΑΠΟΤΥΧΩΝ/ΟΥΣΑ _ 2 ΓΙΑΝΝΙΟΣ ΝΙΚΟΛΑΟΣ ΜΙΧΑΗΛ Α1 108400021 ΑΠΟΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ _ 3 ΤΣΙΜΠΛΑΚΟΥ ΕΛΕΝΗ ΠΑΝΑΓΙΩΤΗΣ Α1 108400031 ΕΠΙΤΥΧΩΝ/ΟΥΣΑ ΕΠΙΤΥΧΩΝ/ΟΥΣΑ

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

STOHASTIČKI SISTEMI I ESTIMACIJE. Predavanje 9: Linearna parametarska estimacija

STOHASTIČKI SISTEMI I ESTIMACIJE. Predavanje 9: Linearna parametarska estimacija STOHASTIČKI SISTEMI I ESTIMACIJE Predavanje 9: Linearna parametarska estimacija Vanr.prof.Dr. Lejla Banjanović- 1 Sadržaj Linearna parametarska estimacija Metoda najmanjih kvadrata (LS metoda) primjenjena

Διαβάστε περισσότερα

Μέθοδος της µέγιστης πιθανοφάνειας και µέθοδος των ϱοπών

Μέθοδος της µέγιστης πιθανοφάνειας και µέθοδος των ϱοπών Κεφάλαιο 7 Μέθοδος της µέγιστης πιθανοφάνειας και µέθοδος των ϱοπών Στα Κεφάλαια 4, 5 και 6 δόθηκε έµφαση στους αποδοτικούς εκτιµητές και τους ΑΟΕ εκτιµητές, η αναζήτηση των οποίων έχει ως αφετηρία το

Διαβάστε περισσότερα

MATEMATIKA 3. (vjerojatnost - zadaća)

MATEMATIKA 3. (vjerojatnost - zadaća) http://www.fsb.hr/matematika/ MATEMATIKA 3 (vjerojatnost - zadaća) Vjerojatnost. Kolika je vjerojatnost da bacanjem dviju kockica dobijemo zbroj veći od 6? 2. Strijelac A i strijelac B ga daju metu 3 puta.

Διαβάστε περισσότερα

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem Dirichletov princip Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem obliku glasi ovako: Dirichletov princip: Ako n + 1 predmet rasporedimo kako

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

UREĐAJU NA SKUPU REALNIH BROJEVA

UREĐAJU NA SKUPU REALNIH BROJEVA **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/16 Πρόβλημα 1 (βιβλίο σελίδα 146) Να υπολογιστεί ο ML της

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

MERE DISPERZIJE ( VARIJABILNOSTI )

MERE DISPERZIJE ( VARIJABILNOSTI ) MERE DISPERZIJE ( VARIJABILNOSTI ) 1. RASPON VARIJACIJE 2.KVARTILNO ODSTUPANJE 3.PROSEČNO ODSTUPANJE 4.STANDARDNA DEVIJACIJA 5.KORELACIJA 6.STATISTIČKI POSTUPCI PRI BAŽDARENJU MERE DISPERZIJE Pokazatelji

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan

Διαβάστε περισσότερα

Κατανοµές-Λυµένα Παραδείγµατα. 2. Ποια είναι η πιθανότητα µεταξύ 12:00 και 12:10 να µπουν ακριβώς 4 πελάτες µεταξύ 12:02-12:03 και 12:05-12:06;

Κατανοµές-Λυµένα Παραδείγµατα. 2. Ποια είναι η πιθανότητα µεταξύ 12:00 και 12:10 να µπουν ακριβώς 4 πελάτες µεταξύ 12:02-12:03 και 12:05-12:06; Τµήµα Επιστήµης των Υλικών 1 Μάθηµα: Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες ιδάσκων: Κ. Πετρόπουλος Κατανοµές-Λυµένα Παραδείγµατα Παράδειγµα 1. Σε ένα κατάστηµα µπαίνουν κατά µέσο όρο 6 πελάτες

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Statistika sažetak i popis formula

Statistika sažetak i popis formula Stattka ažetak pop formula Dekrptva tattka Artmetčka reda brojeva,,, : + + + = + + 3 + 4 + 5 5 Na prmjer, artmetčka reda brojeva,,3,4,5 je broj = = 3 5 5 Frekvecja ekog podatka je broj pojavljvaja tog

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

1 2 3 4 C n a k max 1 = 92% max 1 = 70% max 1 = 60% max 1 = 50% min(p) = 180 max(p) = 180 min(p) = 90 max(p) = 145 min(p) = 0 max(p) = 90 min(w) = w q min(w) = 2 w q min(w) = 3 w q 1 2 3 X L R Z δ

Διαβάστε περισσότερα

+ 1 n 5 (η) {( 1) n + 1 m

+ 1 n 5 (η) {( 1) n + 1 m Κεφάλαιο Τοπολογία του. Στοιχεία Θεωρίας Ορισµός Αν α και ɛ > ονοµάζουµε ɛ-περιοχή του α ή περιοχή κέντρου α και ακτίνας ɛ και συµβολίζουµε N α (ɛ) το σύνολο όλων των αριθµών που έχουν απόσταση από το

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

JAVA podrška za simpleks metodu

JAVA podrška za simpleks metodu Sveučilište u Zagrebu PMF - Matematički odjel Juraj Ivančić JAVA podrška za simpleks metodu Diplomski rad Zagreb, siječanj 2005. Sveučilište u Zagrebu PMF - Matematički odjel Juraj Ivančić JAVA podrška

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I.

ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΠΡOΣΚΛΗΣΗ ΕΚΔHΛΩΣΗΣ ΕΝΔΙΑΦEΡΟΝΤΟΣ - ΣΥΜΒΑΣΙΟYΧΟΙ ΥΠΑΛΛΗΛΟΙ ΟΜΑΔΑ ΚΑΘΗΚΟΝΤΩΝ I - ΟΔΗΓΟΙ (ΑΝΔΡΕΣ/ΓΥΝΑΙΚΕΣ) EPSO/CAST/S/8/2014 I. ΕΙΣΑΓΩΓΗ Κατόπιν αιτήματος των θεσμικών οργάνων της Ευρωπαϊκής Ένωσης, η Ευρωπαϊκή

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ

Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΗΡΟΤΡΟΦΙΑΣ ΚΑΙ ΜΕΛΙΣΣΟΚΟΜΙΑΣ Πασχάλης Χαριζάνης Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 1. Κερί Σύμφωνα με την Εθνική Στατιστική Υπηρεσία της Ελλάδος η παραγωγή κεριού για

Διαβάστε περισσότερα

7. ELEMENTARNE FUNKCIJE

7. ELEMENTARNE FUNKCIJE Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική Δημήτρης Παναγόπουλος Προσοχή: Σημειώσεις για το Μάθημα Θεωρίας Πιθανοτήτων και Στατιστικής του Τμήματος Μηχανικών Πληροφορικής Τ.Ε. του ΤΕΙ Πελοπονήσου 1. οι σημειώσεις

Διαβάστε περισσότερα