ΘΕΜΑΤΑ. ψ ψ χ 8 20 χ
|
|
- Ἐφραίμ Νικόλας Λύτρας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος Α.Ον-επ ΘΕΜΑΤΑ Α[5 μονάδες] Να εξετάσετε αν οι παρακάτω πίνακες τιμών είναι πίνακες ανάλογων ποσών. Στην περίπτωση που είναι, να γράψετε τον συντελεστή αναλογίας κάτω από τον αντίστοιχο πίνακα. Αν δεν είναι, τοτε γράψτε το και πάλι κάτω από τον αντιστοιχο πίνακα. Πίνακας Η, μονάδες Πίνακας Θ, 3 μονάδες ψ ψ 7 9 χ 8 χ Β. [ 5μονάδες] Αν γνωρίζουμε ότι τα ποσά χ και ψ είναι ανάλογα, τότε να υπολογίσετε ποιους αριθμούς πρέπει να βάλλουμε στις θέσεις των γραμμάτων α,β,γ,δ,ε,ζ στον παρακάτω πίνακα: Αναλυση των 5 μονάδων 3 μονάδες μονάδες ψ α 3 γ 5,5 ζ χ 8 β δ ε 7,
2 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος Γ. Κάθε ημιευθεία στα παρακάτω σχέδια αναπαριστά μια σχέση αναλογίας. Γ. Ονομάστε σε κάθε ημιευθεία τα δύο σημεία(εκτός του (,)) και βρείτε τις συντεταγμένες τους. Γράψτε πάνω στο σχέδιο, π.χ. Μ(, ). Γ.Συμπληρώστε πάνω από κάθε σχέδιο τον συντελεστή αναλογίας (α = ). Γ3. Συμπληρώστε κάτω από κάθε σχέδιο από ποιον τύπο δίνεται η σχέση αναλογίας (ψ = ) και βρείτε για κάθε περίπτωση την τιμή του ψ, όταν η τιμή του χ είναι,5. Συντ. αναλογίας α = Συντ. αναλογίας α = Συντ. αναλογίας α = Β(,) Α(,) Γ(,) (,) Ζ(,3) Ε(,,5) 5 τύπος: ψ = τύπος: ψ = τύπος: ψ = αν χ =, 5 τότε ψ = αν χ =, 5 τότε ψ = αν χ =, 5 τότε ψ = [Γ- μονάδα, Γ-μονάδες, Γ3-μονάδες]. Δ.[5 μονάδες] Η αίθουσα που βρήκαν οι μαθητές του ου Γυμνασίου Ρεθύμνου για τη διοργάνωση της εκδήλωσης για την αποφοίτησή τους νοικιαζόταν στις αρχές του χρόνου 56. Όμως, τη στιγμή που πήγαν να κλείσουν τη συμφωνία, 9 Φεβρουαρίου, ο Πυθαγόρας, ιδιοκτήτης της αίθουσας, τους είπε ότι η τιμή είχε αυξηθεί κατά %. Βρείτε την νέα αυξημένη τιμή.
3 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος β.ον-επ. β[5 μονάδες]. Να εξετάσετε αν οι παρακάτω πίνακες τιμών είναι πίνακες ανάλογων ποσών. Στην περίπτωση που είναι, να γράψετε τον συντελεστή αναλογίας κάτω από τον αντίστοιχο πίνακα. Αν δεν είναι, τοτε γράψτε το και πάλι κάτω από τον αντιστοιχο πίνακα. Πίνακας Σ, μονάδες Πίνακας Τ, 3 μονάδες ψ 8 ψ χ χ β[5 μονάδες]. Αν γνωρίζουμε ότι τα ποσά χ και ψ είναι ανάλογα, τότε να υπολογίσετε ποιους αριθμούς πρέπει να βάλλουμε στις θέσεις των γραμμάτων κ,λ,μ,ν,ξ,π στον παρακάτω πίνακα: Αναλυση των 5 μονάδων 3 μονάδες μονάδες ψ κ 3 μ 5,5 π χ 8 6 λ ν ξ 9,6
4 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος β3. Κάθε ημιευθεία στα παρακάτω σχέδια αναπαριστά μια σχέση αναλογίας. 3.. Ονομάστε σε κάθε ημιευθεία τα δύο σημεία(εκτός του (,)) και βρείτε τις συντεταγμένες τους. Γράψτε πάνω στο σχέδιο, π.χ. Μ(, ). 3..Συμπληρώστε πάνω από κάθε σχέδιο τον συντελεστή αναλογίας (α = ) [μονάδες] 3.3. Συμπληρώστε κάτω από κάθε σχέδιο από ποιον τύπο δίνεται η σχέση αναλογίας (ψ = ) και βρείτε για κάθε περίπτωση την τιμή του ψ, όταν η τιμή του χ είναι,5 [μονάδες] Συντ. αναλογίας α = Συντ. αναλογίας α = Συντ. αναλογίας α = 6 Κ(,3) Λ(,6) Ν(3,) 5 Ξ(6,) Π(,) Ρ(,) O τύπος: ψ = τύπος:ψ= τύπος: ψ = αν χ =, 5 τότε ψ = αν χ =, 5 τότε ψ = αν χ =, 5 τότε ψ = Δ.[5 μονάδες] Η αίθουσα που βρήκαν οι μαθητές του ου Γυμνασίου Ρεθύμνου για τη διοργάνωση της εκδήλωσης για την αποφοίτησή τους νοικιαζόταν στις αρχές του χρόνου 65. Όμως, τη στιγμή που πήγαν να κλείσουν τη συμφωνία, 9 Φεβρουαρίου, ο Πυθαγόρας, ιδιοκτήτης της αίθουσας, τους είπε ότι η τιμή είχε αυξηθεί κατά %. Βρείτε την νέα αυξημένη τιμή. *ακολουθούν ενδεικτικές λύσεις
5 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος Α.Ον-επ Α[5 μονάδες] Να εξετάσετε αν οι παρακάτω πίνακες τιμών είναι πίνακες ανάλογων ποσών. Στην περίπτωση που είναι, να γράψετε τον συντελεστή αναλογίας κάτω από τον αντίστοιχο πίνακα. Αν δεν είναι, τοτε γράψτε το και πάλι κάτω από τον αντιστοιχο πίνακα. Πίνακας Η, μονάδες Πίνακας Θ, 3 μονάδες ψ ψ 7 9 χ 8 χ Πίνακας Η: Δεν είναι πίνακας αναλόγων ποσών γιατί: =,5 = 8 Πίνακας Θ: Είναι πίνακας αναλόγων ποσών γιατί: 7 9 =, =, = Συντελεστής αναλογίας: 8 Β. [ 5μονάδες] Αν γνωρίζουμε ότι τα ποσά χ και ψ είναι ανάλογα, τότε να υπολογίσετε ποιους αριθμούς πρέπει να βάλλουμε στις θέσεις των γραμμάτων α,β,γ,δ,ε,ζ στον παρακάτω πίνακα: Αναλυση των 5 μονάδων 3 μονάδες μονάδες ψ α 3 γ 5,5 ζ χ 8 β δ ε 7, Ποσά ανάλογα, κλάσματα ίσα, «χιαστί» γινόμενα ίσα. Χρησιμοποιούμε το σύμβολο «*» για τον πολλαπλασιασμό. *α=*8, επομένως α=, *β=*3, επομένως β=, *=*γ, επομένως γ=5 *δ=*5, επομένως δ=6, *ε=*,5, επομένως ε=5 *7,=*ζ, επομένως ζ=8 Διαφορετικά: Για το α: τα κλάσματα α, είναι ίσα, το διπλασιάστηκε, επομένως α=*= 8 Για το β: τα κλάσματα 3, β είναι ίσα, το τριπλασιάστηκε, επομένως β=*3= Για το γ: τα κλάσματα γ, είναι ίσα, το πολλαπλασιάστηκε επί =,5 για να γίνει, επομένως γ=*,5=5 κλπ
6 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος Γ. Κάθε ημιευθεία στα παρακάτω σχέδια αναπαριστά μια σχέση αναλογίας. Γ. Ονομάστε σε κάθε ημιευθεία τα δύο σημεία(εκτός του (,)) και βρείτε τις συντεταγμένες τους. Γράψτε πάνω στο σχέδιο, π.χ. Μ(, ). Γ.Συμπληρώστε πάνω από κάθε σχέδιο τον συντελεστή αναλογίας (α = ). Γ3. Συμπληρώστε κάτω από κάθε σχέδιο από ποιον τύπο δίνεται η σχέση αναλογίας (ψ = ) και βρείτε για κάθε περίπτωση την τιμή του ψ, όταν η τιμή του χ είναι,5. Συντ. αναλογίας α = Συντ. αναλογίας α =,5 Συντ. αναλογίας α =,5 Β(,) Α(,) Γ(,) (,) Ζ(,3) Ε(,,5) 5 τύπος: ψ = χ τύπος: ψ =,5χ τύπος: ψ =,5χ αν χ =, 5 τότε ψ = 3 αν χ =, 5 τότε ψ =,75 αν χ =, 5 τότε ψ =,5 [Γ- μονάδα, Γ-μονάδες, Γ3-μονάδες]. Δ.[5 μονάδες] Η αίθουσα που βρήκαν οι μαθητές του ου Γυμνασίου Ρεθύμνου για τη διοργάνωση της εκδήλωσης για την αποφοίτησή τους νοικιαζόταν στις αρχές του χρόνου 56. Όμως, τη στιγμή που πήγαν να κλείσουν τη συμφωνία, 9 Φεβρουαρίου, ο Πυθαγόρας, ιδιοκτήτης της αίθουσας, τους είπε ότι η τιμή είχε αυξηθεί κατά %. Βρείτε την νέα αυξημένη τιμή. ποσά ανάλογα, κλάσματα ίσα, χιαστί γινόμενα ίσα Τιμή πριν την αύξηση 56 αύξηση χ χ= και 56+=67, χ= = ή άμεσα: 56 = 56, = 67 *εικόνα από το scratch
7 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος β.ον-επ. β[5 μονάδες]. Να εξετάσετε αν οι παρακάτω πίνακες τιμών είναι πίνακες ανάλογων ποσών. Στην περίπτωση που είναι, να γράψετε τον συντελεστή αναλογίας κάτω από τον αντίστοιχο πίνακα. Αν δεν είναι, τοτε γράψτε το και πάλι κάτω από τον αντιστοιχο πίνακα. Πίνακας Σ, μονάδες Πίνακας Τ, 3 μονάδες ψ 8 ψ χ χ Πίνακας Σ: Δεν είναι πίνακας αναλόγων ποσών γιατί: 8 = =,5 Πίνακας Τ: Είναι πίνακας αναλόγων ποσών γιατί: =, =, = Συντελεστής αναλογίας: 7 β[5 μονάδες]. Αν γνωρίζουμε ότι τα ποσά χ και ψ είναι ανάλογα, τότε να υπολογίσετε ποιους αριθμούς πρέπει να βάλλουμε στις θέσεις των γραμμάτων κ,λ,μ,ν,ξ,π στον παρακάτω πίνακα: Αναλυση των 5 μονάδων 3 μονάδες μονάδες ψ κ 3 μ 5,5 π χ 8 6 λ ν ξ 9,6 Ποσά ανάλογα, κλάσματα ίσα, «χιαστί» γινόμενα ίσα. Χρησιμοποιούμε το σύμβολο «*» για τον πολλαπλασιασμό. 8*κ=*6, επομένως κ=, *λ=8*3, επομένως λ=, *=8*μ, επομένως μ=5 *ν=8*5, επομένως ν=, *ξ=8*,5, επομένως ξ= *9,6=8*π, επομένως π= Διαφορετικά: Για το κ: τα κλάσματα κ, είναι ίσα, το 8 διπλασιάστηκε, επομένως κ=*= 8 6 Για το λ: τα κλάσματα 3, 8 λ είναι ίσα, το τριπλασιάστηκε, επομένως λ=8*3= Για το μ: τα κλάσματα μ, είναι ίσα, το 8 πολλαπλασιάστηκε επί =, 5 για να γίνει, 8 8 επομένως μ=*,5=5 κλπ
8 διαγα//--6//ο Γυμνάσιο Ρεθύμνου//Σωκράτης Ντριάνκος β3. Κάθε ημιευθεία στα παρακάτω σχέδια αναπαριστά μια σχέση αναλογίας. 3.. Ονομάστε σε κάθε ημιευθεία τα δύο σημεία(εκτός του (,)) και βρείτε τις συντεταγμένες τους. Γράψτε πάνω στο σχέδιο, π.χ. Μ(, ). 3..Συμπληρώστε πάνω από κάθε σχέδιο τον συντελεστή αναλογίας (α = ) [μονάδες] 3.3. Συμπληρώστε κάτω από κάθε σχέδιο από ποιον τύπο δίνεται η σχέση αναλογίας (ψ = ) και βρείτε για κάθε περίπτωση την τιμή του ψ, όταν η τιμή του χ είναι,5 [μονάδες] Συντ. αναλογίας α =3 Συντ. αναλογίας α = 3 Συντ. αναλογίας α = 6 Κ(,3) Λ(,6) Ν(3,) 5 Ξ(6,) Π(,) Ρ(,) O τύπος: ψ = 3χ τύπος: ψ = χ τύπος: ψ = χ 3 αν χ =, 5 τότε ψ =,5 αν χ =, 5 τότε ψ =,5 αν χ =, 5 τότε ψ =,5 Δ.[5 μονάδες] Η αίθουσα που βρήκαν οι μαθητές του ου Γυμνασίου Ρεθύμνου για τη διοργάνωση της εκδήλωσης για την αποφοίτησή τους νοικιαζόταν στις αρχές του χρόνου 65. Όμως, τη στιγμή που πήγαν να κλείσουν τη συμφωνία, 9 Φεβρουαρίου, ο Πυθαγόρας, ιδιοκτήτης της αίθουσας, τους είπε ότι η τιμή είχε αυξηθεί κατά %. Βρείτε την νέα αυξημένη τιμή. ποσά ανάλογα, κλάσματα ίσα, χιαστί γινόμενα ίσα Τιμή πριν την αύξηση 65 αύξηση χ χ= και 65+3=78, χ= = 3 ή άμεσα: 65 = 65, = 78 *εικόνα από το scratch
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Αριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Ρητοί Αριθμοί - Η ευθεία των αριθμών
ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις
ΓΥΜΝΑΣΙΟ ΜΟΝΕΜΒΑΣΙΑΣ 2016-17 Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΛΓΕΒΡΑΣ-λύσεις Άσκηση 1. Να εξετάσετε ποιες από τις παρακάτω ισότητες παριστάνουν Ευκλείδειες διαιρέσεις α) 80 = 9 8 +8 β)
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ
Προαγωγικές εξετάσεις στα Μαθηματικά της Α Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 214-215 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑ 1 ο Α. ΘΕΩΡΙΑ Α. Να γράψετε με πιο σύντομο τρόπο τις επόμενες
Χημικές αντιδράσεις Χημικές εξισώσεις Στοιχειομετρικοί υπολογισμοί
Χημικές αντιδράσεις Χημικές εξισώσεις Στοιχειομετρικοί υπολογισμοί Εκπαιδευτική βαθμίδα: Γυμνάσιο Προαπαιτούμενες γνώσεις: Καθαρές ουσίες, άτομα, μόρια, προσομοιώματα ατόμων και μορίων, σύμβολα των συνηθισμένων
Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Ποσοστά (Π%) Π % = Εξάσκηση: Μετατρέψτε τα ποσοστά σε ανάγωγα κλάσματα και δεκαδικούς ποσοστό 1) 20% 2) 25% 3) 30% βασική έννοια
βασική έννοια Ποσοστά (Π%) Π % = Τα ποσοστά είναι μια διαφορετική αναπαράσταση των κλασμάτων και των δεκαδικών! Α. Μετατροπή του δεκαδικού 0,35 σε ποσοστό Β. Μετατροπή του κλάσματος σε ποσοστό 0, 35 00
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 2 Α. 2.1. Όταν ένα μέγεθο ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα
Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Γ ΓΥΜΝΑΣΙΟΥ. Εισαγωγή : Λόγοι που επιβάλλουν τη διδασκαλία της ομοιοθεσίας
ΥΜΝΑΣΙΟΥ ΣΧΔΙΟ ΜΑΘΗΜΑΤΟΣ Κοντογιάννης Δημήτριος, Σύμβουλος του Π.Ι. & Αργυράκης Δ., Βουργάνας Π., Μεντής Κ., Τσικοπούλου Σ. & Χρυσοβέργης Μ. (Συγγραφική Ομάδα) ΔΙΔΑΚΤΙΚΗ ΝΟΤΗΤΑ: Ομοιοθεσία ισαγωγή : Λόγοι
7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.
ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ)
ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ ΓΙΑ ΤΙΣ ΓΙΟΡΤΕΣ (ΑΡΙΘΜΗΤΙΚΗ) 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 04/06/2014
ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 04/06/2014 ΤΑΞΗ: Α ΧΡΟΝΟΣ: 2 ώρες (7:45 9:45) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
Φύλλο εργασίας Νο1. Ορθοκανονικό Σύστημα Ημιαξόνων, Συντεταγμένες Σημείου. Το ορθοκανονικό σύστημα αποτελείται από δύο ημιευθείεςοχ και Οy ώστε:
9 ο Γυμνάσιο Αθηνών ΜΑΘΗΜΑΤΙΚΑΑ ΓΥΜΝΑΣΙΟΥ Κεφάλαιο 6: ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕΔΟ Φύλλο εργασίας Νο1 1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Ορθοκανονικό Σύστημα Ημιαξόνων,
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις (το υλικό ανανεώνεται συνεχώς) ΓΥΜΝΑΣΙΟ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΧΟΛΙΚΟ ΕΤΟΣ:2010-2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ I. ΘΕΩΡΙΑ
Εξίσωση 1 η 1 ο μέλος 2 ο μέλος
1 Παραδείγματα (επανάληψη) Συντελεστής του αγνώστου x. Εξίσωση 1 η 1 ο μέλος 2 ο μέλος Ε ξ ι σ ώ σ εις 1 ο υ β α θ μ ο ύ 2x + 2 = x - 1 Άγνωστος x Γνωστός Eπίλυση 1 ος τρόπος Μπορούμε να γράψουμε την εξίσωση
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποια κλάσματα λέγονται ισοδύναμα; Με ποιους τρόπους μπορούμε να φτιάξουμε ισοδύναμα κλάματα; Ποια διαδικασία ονομάζουμε απλοποίηση ενός κλάσματος; Πότε ένα κλάσμα λέγεται ανάγωγο; Ποια κλάσματα λέγονται
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ
6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014
ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ 06 / 06 / 2014 ΤΑΞΗ Α ΧΡΟΝΟΣ 2 ΩΡΕΣ ΑΡΙΘΜΟΣ ΣΕΛΙΔΩΝ 8 ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ...ΑΡ.
MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. πότε ίσο με το 1. Δώστε από ένα παράδειγμα
49 0 ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-2012 Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 22 ΜΑΪΟΥ 2012 ΘΕΩΡΙΑ 1 η : Να γράψετε πότε ένα κλάσμα είναι μικρότερο,
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί
Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ
ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014-2015 Γ Ρ Α Π Τ Ε Σ Π Ρ Ο Α Γ Ω Γ Ι Κ Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ ΘΕΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: 08/06/2015 ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες (10:30 12:30) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ:..
3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Φυλλάδιο Ασκήσεων 1 Διανύσματα
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΑΝΑΤΟΙΜΟΥ Β ΥΚΕΙΟΥ 07-8 Φυλλάδιο Διανύσματα ο ΓΕ Αγίων Αναργύρων Μαθηματικά Προσανατολισμού Φυλλάδιο Ασκήσεων Διανύσματα Β υκείου ύνθεση Άσκηση Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σημεία Α, Β, Γ είναι
Θεωρία και ασκήσεις στα κλάσματα
Θεωρία Θεωρία και ασκήσεις στα κλάσματα. Πως λέγονται οι όροι ενός κλάσματος. Ο αριθμός που βρίσκεται πάνω από την γραμμή του κλάσματος λέγεται αριθμητής ενώ ο αριθμός που βρίσκεται κάτω από αυτήν λέγεται
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 06 version -6-06 Παρακάτω υπάρχουν θέματα θεωρίας και ασκήσεις που καλύπτουν πιστεύω σε μεγάλο βαθμό την εξεταστέα ύλη. Εχουν στόχο να μας βοηθήσουν να θυμηθούμε την
Στην Ε τάξη μάθαμε...
7 Στην Ε τάξη μάθαμε... Αριθμοί και Πράξεις (1) Παραδείγματα 1. Να εκτελέσετε τις πράξεις νοερά. (α) 42 + 36 (β) 15 + 17 (γ) 199 + 199 (δ) 403-299 (ε) 342-143 Λύση: (α) 42 + 36 = 40 + 2 + 30 + 6 = 40 +
Αντιστρόφως ανάλογα ποσά
Αντιστρόφως ανάλογα ποσά Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α
1 2 α. Πως προσθέτουμε δύο ομόσημους ρητούς αριθμούς ; β. Πως προσθέτουμε δύο ετερόσημους ρητούς αριθμούς ; α. Πότε δύο γωνίες ονομάζονται εφεξής ; β. Πότε δύο γωνίες ονομάζονται κατακορυφήν ; Να βρείτε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΟΓΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΟΓΙΑ ΤΑ ΓΕΝΕΘΛΙΑ ΤΟΥ ΔΗΜΗΤΡΗ Ο Δημήτρης υπολογίζει Εκφώνηση Το φυλλάδιο περιλαμβάνει 8 δραστηριότητες που θα σας βοηθήσουν να καταλάβετε, να βελτιώσετε και να διορθώσετε 3 Σενάρια στο
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
R={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Γ Ρ Α Π Τ Η Ε Ξ Ε Τ Α Σ Η
Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο:210-61.24.000, http://www.akadimos.gr Γ Ρ Α Π Τ Η Ε Ξ Ε Τ Α Σ Η ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Μάθημα Προσανατολισμού Γ ΛΥΚΕΙΟΥ Επιμέλεια Θεμάτων:
ΛΧ1004 Μαθηματικά για Οικονομολόγους
ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
B Γυμνασίου. Ενότητα 9
B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση
Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής
Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..
Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :
Προγραμματιστικό Περιβάλλον
Προγραμματιστικό Περιβάλλον Προγραμματίζοντας τις βασικές αριθμητικές πράξεις 2 ο Γυμνάσιο Παλλήνης Καθηγήτρια: Ευφροσύνη Σκιαδά Πρόσθεση Αφαίρεση Πολλαπλασιασμός Σύμβολα αριθμητικών πράξεων Διαίρεση Τι
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ
ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012
ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
ΠΑΡ. 5.2: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ
ΠΑΡ. 5.2: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ 1. ιδακτικοί στόχοι: Ο µαθητής πρέπει: α) Να ανακαλύψει τους παράγοντες από τους οποίους εξαρτάται η κινητική ενέργεια. β) Να συσχετίσει την κινητική ενέργεια µε την µάζα και
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Διαγώνισμα Προσομοίωσης ΟΜΑΔΑ Α Για τις παρακάτω προτάσεις από Α.1. μέχρι και Α.5. να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό,
Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ
Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ
Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ Α.1.2. ΠΡΑΞΕΙΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 12+ 7 = 19 Οι αριθμοί 12 και 7 ονομάζονται ενώ το 19 ονομάζεται.. 3+5 =, 5+3 =...
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΥΛΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α.7.9. Δυνάμει ρητών αριθμών
Α Γυμνασίου, Μέρο Α, Άλγεβρα, Κεφάλαιο, Θετικοί και Αρνητικοί Αριθμοί, Α..8. Δυνάμει ρητών αριθμών με εκθέτη φυσικό, Α..9. Δυνάμει ρητών αριθμών με εκθέτη ακέραιο Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου
Μαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2010 ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα
AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται
ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος
Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
β β β ή ή γ Ορισμοί Έννοιες Ρίζος Γιώργος «επιστρέφοντας στην άσκηση του διαγωνισμού, διαβάζουμε πως ο λόγος τον διεθνή Μαθηματικό Διαγωνισμό 4».
Χρησιμοποιώντας τις αναλογίες σε προβλήματα της καθημερινής ζωής Ρίζος Γιώργος Ορισμοί Έννοιες Σ τον διεθνή Μαθηματικό Διαγωνισμό TIMSS δόθηκε η παρακάτω ά- σκηση: Μία τάξη έχει 28 μαθητές. Αν ο λόγος
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
n, C n, διανύσματα στο χώρο Εισαγωγή
Θα περιοριστούμε σε διανύσματα των οποίων τα στοιχεία προέρχονται από τον χώρο και τον C, χωρίς καμία δυσκολία όμως μπορούν να αναχθούν σε οποιοδήποτε χώρο K Το πρώτο διάνυσμα: Τέρματα που έχουν πέτυχει
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;