ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45: Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:"

Transcript

1 ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο έχει 0 μαθητές. Να βρείτε πόσοι είναι τα των μαθητών.. Αν τα των μαθητών ενός σχολείου είναι 0 μαθητές να βρεθεί πόσους μαθητές έχει το σχολείο.. Ένας βοσκός έχει γίδια και πρόβατ Από αυτά τα είναι γίδια και τα υπόλοιπα είναι πρόβατ Πόσα είναι τα γίδια και πόσα τα πρόβατ. Ένας οινοπώλης έχει κιλά κρασί και πούλησε τα. Πόσα κιλά κρασί πούλησε και πόσα του έμειναν.. Ο πατέρας του Νίκου πληρώνει ενοίκιο 00 ευρώ και τα χρήματα αυτά αποτελούν τα του μισθού του. Πόσος είναι ο μισθός του;. Σε μια τάξη με παιδιά τα είναι αγόρια και μάλιστα το των αγοριών είναι ψηλότερα από 0 m. Να βρεθούν πόσα είναι τα ψηλά αγόρι. Η μικρή Λουλού ζυγίζει κιλά που είναι τα του βάρους της μητέρας της. Να βρείτε πόσο ζυγίζει η μαμά Λουλού.

2 0. Ένα κατάστημα πώλησης αυτοκινήτων κάνει έκπτωση ίση με το της αρχικής αξίας του αυτοκινήτου. Για ένα αυτοκίνητο πληρώσαμε.00. Να υπολογίσετε Ποιο μέρος της αρχικής αξίας είναι τα.00. Πόσα ευρώ είναι η έκπτωση. Πόσο αξίζει το αυτοκίνητο χωρίς την έκπτωση.. Ένας υπάλληλος που έπαιρνε μισθό το μήνα πήρε αύξηση ίση με τα 0 του μισθού του. Πόσος είναι τώρα ο μισθός του; Αν ξοδεύει κάθε μήνα για διατροφή τα του νέου του μισθού πόσα χρήματα του απομένουν;. Ένα ενυδρείο έχει μήκος m πλάτος m και ύψος m. Αν το γεμίσουμε κατά τα του όγκου του με νερό να βρείτε το ύψος του νερού καθώς και το μέρος του ύψους που δεν καλύπτεται με νερό.. Μια δεξαμενή περιέχει 0 λίτρα πετρέλαιο και είναι γεμάτη κατά τα. Ποσά λίτρα πετρέλαιο χωράει η δεξαμενή όταν είναι γεμάτη;. Ποσά μέτρα είναι τα των 0 μέτρων;. Ένα Γυμνάσιο έχει 0 μαθητές. Απ αυτούς δήλωσαν συμμετοχή σε μια εκδρομή οι. Αν είναι γνωστό ότι για να πραγματοποιηθεί η εκδρομή πρέπει να δηλώσουν συμμετοχή τουλάχιστον τα των μαθητών να βρείτε αν μπορεί να πραγματοποιηθεί η εκδρομή.. Ο Κώστας είχε 0 ευρώ και δάνεισε στην αδελφή του τα. Από τα υπόλοιπα ξόδεψε τα. Του περίσσεψαν χρήματα και πόσα;. Δυο φίλοι ο Νίκος και ο Κώστας είχαν ο καθένας από 0 ευρώ. Ο Νίκος ξόδεψε τα και ο Κώστας τα των χρημάτων τους. Να βρεθεί ποιος από τους ξόδεψε τα περισσότερα και ποσά χρήματα περίσσεψαν στον καθέν. Από την συνέλευση των ιδιοκτητών μιας πολυκατοικίας απουσίαζε το των ιδιοκτητών. Αν οι παρόντες ήσαν να βρείτε Τι κλάσμα των ιδιοκτητών είναι οι παρόντες.

3 Πόσοι είναι οι απόντες; Πόσοι είναι όλοι οι ιδιοκτήτες;. Από τρεις βρύσες η α γεμίζει μια δεξαμενή σε ώρες η β βρύση σε ώρες και η γ σε ώρες. Τι μέρος της δεξαμενής γεμίζει σε μια ώρα κάθε βρύση; Τι μερος της δεξαμενης γεμίζουν σε μια ώρα και οι τρεις βρύσες όταν λειτουργούν ταυτόχρονα; 0. Σε μια τάξη μαθητών μαθητές πήραν στο διαγώνισμα των Μαθηματικών βαθμό άριστ Να βρείτε το μέρος των μαθητών που πήρε βαθμό άριστ Σε μια άλλη τάξη 0 μαθητών μαθητές πήραν βαθμό άριστ Να βρείτε το μερος των μαθητών που πήρε βαθμό άριστ Ισοδύναμα κλάσματα. Να βρείτε ποια από τα παρακάτω κλάσματα είναι ίσα 0. Να εξετάσετε ποια από τα παρακάτω κλάσματα είναι ισοδύναμα 0. Να απλοποιηθούν τα κλάσματα 0 δ. ε. στ. ζ. η.. Να απλοποιήσετε τα κλάσματα μετατρέψετε σε ισοδύναμα με και στη συνέχεια να τα παρονομαστή αριθμητή.. Να μετατρέψετε τα κλάσματα παρονομαστή το. σε ισοδύναμα με. Το κλάσμα να τραπεί σε ισοδύναμο κλάσμα που να έχει παρονομαστή τον αριθμό 0 δ. 0 ε. στ.

4 . Το καθένα από τα παρακάτω κλάσματα να τραπεί σε ισοδύναμο με παρονομαστή το Το καθένα από τα παρακάτω κλάσματα να τραπεί σε ισοδύναμο με παρονομαστή το Να λυθούν οι εξισώσεις ε. α x α = = = δ. = γ β = στ. = ζ. = x x 0. Αφού γίνουν οι πράξεις στους όρους των κλασμάτων να τα απλοποιήσετε Α = 0 Β = Γ = 0 Δ = Σύγκριση κλασμάτων. Να συγκρίνετε τα παρακάτω κλάσματα 0 και και 0. Να συγκρίνετε τα κλάσματα. Να συγκριθούν τα κλάσματα στις παρακάτω ομάδες 0

5 . Να γράψετε τα παρακάτω κλάσματα από το μικρότερο προς το μεγαλύτερο. Να γράψετε τα παρακάτω κλάσματα από το μικρότερο προς το μεγαλύτερο. Να συγκρίνετε με την μονάδα τα κλάσματα. Να συγκρίνετε με το τα κλάσματα.. Να βρείτε κλάσμα μεγαλύτερο από και μικρότερο από. Να βρεθεί ένα κλάσμα μεγαλύτερο από το και μικρότερο από το. 0. Να βρεθεί ένα κλάσμα μεγαλύτερο από το και μικρότερο από το.. Να συγκρίνετε τα παρακάτω κλάσματα Α = και Β =. Τρία συνεργεία εργατών ανέλαβαν να κατασκευάσουν ένα δρόμο. Το ο συνεργείο κατασκεύασε τα του δρόμου το ο το και το ο το υπόλοιπο. Ποιο συνεργείο κατασκεύασε το μεγαλύτερο μέρος του δρόμου; Πράξεις με κλάσματα. Να κάνετε τις πράξεις. Να υπολογιστούν οι παραστάσεις

6 . Να υπολογίσετε την τιμή της παράστασης Κ =. Να υπολογιστούν οι παραστάσεις δ. ε.. Να γίνουν οι παρακάτω διαιρέσεις δ. ε. στ.. Να υπολογίσετε την τιμή των παραστάσεων Α = Β = Γ = Δ = Ε =. Να βρεθούν οι αντίστροφοι των παρακάτω αριθμών.. Να γίνουν τα σύνθετα κλάσματα απλά. Να γίνουν οι παρακάτω πράξεις

7 δ. ε. 0. Να βρείτε τα του Α όταν Α =.

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5 Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ Α.1. Να γράψετε τις παρακάτω εκφράσεις με τη βοήθεια μιας μεταβλητής: i) Το πενταπλάσιο ενός αριθμού. ii) Το διπλάσιο

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα.

Ασκήσεις. Πρέπει να ξέρω ότι: Οτιδήποτε χωρίζεται σε ίσα μέρη είναι μια ακέραιη μονάδα. Μάθημα 8 ο Ασκήσεις. Συμπλήρωσε τα παρακάτω κενά : Η Κυριακή έκοψε ένα μήλο σε ίσα μέρη Το μήλο είναι η ακέραιη μονάδα. Χωρίστηκε σε τέσσερα () ίσα μέρη. Τι μέρος του μήλου αντιπροσωπεύει κάθε κομμάτι

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

Λυμένες ασκήσεις. Ο κ. Πέτρος αγόρασε ένα βαρέλι κρασί. Γέμισε δύο μπουκάλια. Το πρώτο μπουκάλι χώρεσε το 1 5

Λυμένες ασκήσεις. Ο κ. Πέτρος αγόρασε ένα βαρέλι κρασί. Γέμισε δύο μπουκάλια. Το πρώτο μπουκάλι χώρεσε το 1 5 23 ο Κεφάλαιο 44 Λυμένες ασκήσεις εκτός βιβλίου Ο κ. Πέτρος αγόρασε ένα βαρέλι κρασί. Γέμισε δύο μπουκάλια. Το πρώτο μπουκάλι χώρεσε το 1 5 του βαρελιού, ενώ το δεύτερο χώρεσε το 0,3 του βαρελιού. Άδειασε

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 21 26) Πηγή πληροφόρησης: e-selides 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ - κεφ. 21 26 Συμπληρώνουμε σωστά τον παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4

Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4 Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ : Μετρήσεις Μεγεθών Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Η κλασματική γραμμή είναι η πράξη της διαίρεσης. όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν

Διαβάστε περισσότερα

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C.

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C. Ασκήσεις Μάθημα 25 ο 1. Ένα προϊόν πωλείται σε 3 διαφορετικά καταστήματα στις παρακάτω τιμές : 18, 20 και 22. Ποια είναι η μέση τιμή πώλησης του προϊόντος ; Κατάστημα Α Β Γ Τιμές 18 20 22 Μ.Ο. 18 20 22

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.

2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457. 1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3 THE G C SCHOOL OF CAREERS UΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 3 Χρόνος: 1 ώρα και 30 λεπτά UΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στο

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Πότε δύο ποσά λέγονται ανάλογα; Ποια είναι η σχέση που συνδέει δύο ανάλογα ποσά x, y; Τι είναι ο συντελεστής αναλογίας; Πάνω σε τι σχήµα βρίσκονται τα ζεύγη (x, y) για δύο ανάλογα ποσά x, y; Πότε δύο ποσά

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου Κεφ 5 ο - Ποσοστά. Μέρος Α Θεωρία 1. Πως ονομάζεται το σύμβολο α% και με τι είναι ίσο; 2. Πως μπορούμε να υπολογίσουμε το α% του β; 3. Τι είναι ο ΦΠΑ και πως τον υπολογίζουμε; Μέρος

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ Σχολική Χρονιά ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Τάξη: Β Χρόνος: 2 ώρες Υπογραφή Καθηγητή :...

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ Σχολική Χρονιά ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Τάξη: Β Χρόνος: 2 ώρες Υπογραφή Καθηγητή :... ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ Σχολική Χρονιά 0-0 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 0 Μάθημα: Μαθηματικά Βαθμολογία:... Ημερομηνία: /0/0 Ολογράφως:... Τάξη: Β Χρόνος: ώρες Υπογραφή Καθηγητή :..... Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις

Μαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια.

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά * Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. * Ο βαθμός για την κάθε

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος, . ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να

Διαβάστε περισσότερα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 2 Περιεχόμενα Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Σελίδα 22: Α Γυμνασίου,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ

1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ 1 1.4 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΜΕ ΤΗΝ ΧΡΗΣΗ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για τη λύση του προβλήµατος : ιαβάζουµε µε µεγάλη προσοχή το πρόβληµα Ξεχωρίζουµε τα δεδοµένα από τα ζητούµενα Συµβολίζουµε τον άγνωστο µε µία µεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí ÊåöÜëáéï ï Ôá êëüóìáôá âéâëéïììüèçìá : -Ç Ýííïéá ôïõ êëüóìáôïò -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí âéâëéïììüèçìá 2: -Ðñüóèåóç êëáóìüôùí -Áöáßñåóç êëáóìüôùí

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α

ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α 1 2 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος και πότε σύνθετος; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 2; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Α. Να αναφέρετε ποια είναι τα είδη των

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΠΡΟΣΟΜΟΙΩΣΗ Προσομοιωμένο διαγώνισμα απολυτήριων εξετάσεων στα Μαθηματικά της Γ Γυμνασίου ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 01-01 ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να συμπληρώσετε

Διαβάστε περισσότερα

Συμπέρασμα: μεγαλύτερος είναι ο δεκαδικός αριθμός γιατί, τα κλάσματα έχουν ίδιους παρονομαστές και μεγαλύτερο είναι αυτό που έχει

Συμπέρασμα: μεγαλύτερος είναι ο δεκαδικός αριθμός γιατί, τα κλάσματα έχουν ίδιους παρονομαστές και μεγαλύτερο είναι αυτό που έχει Κώστας Γ. Σάλαρης Στη μαθηματικ πόλη έχουν δημιουργηθεί εδώ και πολλά χρόνια, τρεις ομάδες νέων ανεξάρτητες μεταξύ τους. Τα μέλη κάθε ομάδας έχουν δικούς τους κανόνες επικοινωνίας και σκέψης. Έχουν δημιουργσει

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε.

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε. Επίλυση προβλημάτων με τη χρήση εξισώσεων 1. Ένας πατέρας είναι σήμερα 38 ετών και η κόρη του είναι 6 ετών. Έπειτα από πόσα χρόνια η ηλικία της κόρης θα είναι ίση με μ το 1 3 της πατέρα. ηλικίας του Απάντηση:

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εξισώσεις & Ανισώσεις

Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εξισώσεις & Ανισώσεις Α Λ Γ Ε Β Ρ Α - Κ Ε Φ Α Λ Α Ι Ο Εξισώσεις & Ανισώσεις Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα σχολικά βιβλία του ΟΕΔΒ

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. Μια πόλη του Μεξικού με κατοίκους πρέπει να εκκενωθεί προληπτικά, γιατί απειλείται

ΑΣΚΗΣΕΙΣ. Μια πόλη του Μεξικού με κατοίκους πρέπει να εκκενωθεί προληπτικά, γιατί απειλείται ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α 1 Α. Να δώσετε τον ορισμό της Ευκλείδειας Διαίρεσης και της Τέλειας Διαίρεσης δύο Φυσικών Αριθμών. Β. Πότε ένας φυσικός αριθμός διαιρείται: α: με το 5; β: με το 3; γ: με

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 02

ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 02 . Το εμβαδόν του παρακάτω σχήματος είναι ίσο με: 5α β. 6α γ. 9α δ. 4α ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 0 α 3α α α. Αν το εμβαδόν του ορθογωνίου ΑΒΓΔΕΖ είναι 5m και το εμβαδόν του ορθογωνίου ΗΘΙΚ είναι 9m, πόσα

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0 Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν Να λύσετε τις παρακάτω πράξεις σύµφωνα µε τo παράδειγµα : 85,25 : 6,2 = 8 5, 2 5 6, 2 0 8 5 2 ' 5 ' 6 2 0 6 2 0 2 1 3 1 2 5 1 3, 7 5 1 8 6 0 = 4 6 5 0 4 3 4 0 = 3 1 0 0

Διαβάστε περισσότερα

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10 20 Φεβρουαρίου 2010 1. Σ ένα ημερολόγιο διαγράφουμε τις ημερομηνίες του μηνός Ιουλίου 2004 οι οποίες περιέχουν ένα τουλάχιστον περιττό ψηφίο. Ποιος είναι ο αριθμός των ημερών που μένουν; Α: 9 Β: 10 Γ:

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ ΚΛΑΣΜΑΤΩΝ ΠΑΡΑΓΡΑΦΟΣ Β. ΕΝΝΟΙΑ ΚΛΑΣΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Εδικοί στόχοι: Σεντελέ Καίτη Μαθηματικός Σ.Δ.Ε. Ιωαννίνων Να δουν οι εκπαιδευόμενοι το κλάσμα ως επανάληψη κλασματικής μονάδας Να δουν ακόμη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Β Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 4η έκδοση 3/6/15

Διαβάστε περισσότερα

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών. ΜΕΡΟΣ Α 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ 185 4.5 ΜΕΣΗ ΤΙΜΗ-ΔΙΑΜΕΣΟΣ Μέση τιμή Για να βρούµε τη µέση τιµή ενός συνόλου παρατηρήσεων, προσθέτουµε όλες τις παρατηρήσεις και διαιρούµε µε το πλήθος των παρατηρήσεων αυτών.

Διαβάστε περισσότερα

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών

Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Ασκήσεις 1) Να βρεθεί το εμβαδόν του σχήματος, όταν ΑΒ=250 cm, ΓΔ=48 dm και ΒΓ=1,6 m

Ασκήσεις 1) Να βρεθεί το εμβαδόν του σχήματος, όταν ΑΒ=250 cm, ΓΔ=48 dm και ΒΓ=1,6 m 1 1 004-005 Θεωρία Θέμα 1 ο : α) Με ποια σειρά κάνουμε τις πράξεις σε μια αριθμητική παράσταση που έχει παρενθέσεις; β) Να βάλετε σε κατάλληλη θέση παρενθέσεις ώστε να ισχύει η ισότητα +18.4 +1 = 100 Θέμα

Διαβάστε περισσότερα

Κλασματικές μονάδες. αριθμητής. παρονομαστής. Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Κλασματικές μονάδες. αριθμητής. παρονομαστής. Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Μαθηματικά Ε Τεύχος οο ΑΡΒΑΝΙΤΙΔΗΣ ΘΕΟΔΩΡΟΣ ΣΠΥΡΙΔΩΝΙΔΗΣ ΑΝΤΩΝΙΟΣ ΑΚΡΙΒΟΠΟΥΛΟΥΥ ΓΕΩΡΓΙΑ Μάθημα 8 ο Κλασματικές μονάδες όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Πρόβλημα 1. Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά!

Πρόβλημα 1. Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά! Πρόβλημα 1 Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά! Ο Τάκης έδωσε τα Αριάδνη τα από το χαρτζιλίκι του και η από το δικό της. Ποιος από τους

Διαβάστε περισσότερα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα

Τεύχος 6. Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Περιεχόμενα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 6 Περιεχόμενα Σελίδα 5: Σελίδα 17: Α Γυμνασίου, Μέρος Α, Κεφάλαιο 7, Θετικοί και Αρνητικοί Αριθμοί, Α.7.8. Δυνάμεις

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Α ΓΥΜΝΑΣΙΟΥ

Α Λ Γ Ε Β Ρ Α Α ΓΥΜΝΑΣΙΟΥ Α Λ Γ Ε Β Ρ Α Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Κ.1.1 ΕΝΟΤΗΤΑ : Φυσικοί αριθμοί Διάταξη Στρογγυλοποίηση Τάξη : A Γυμνασίου.

Διαβάστε περισσότερα

Τάξη Α Γραπτές ανακεφαλαιωτικές εξετάσεις περιόδου Μαΐου - Ιουνίου στα Μαθηματικά. Θεωρία. Ασκήσεις

Τάξη Α Γραπτές ανακεφαλαιωτικές εξετάσεις περιόδου Μαΐου - Ιουνίου στα Μαθηματικά. Θεωρία. Ασκήσεις Τάξη Α Γραπτές ανακεφαλαιωτικές εξετάσεις περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Θεωρία Θέμα 1 ο : α) Με ποια σειρά κάνουμε τις πράξεις σε μια αριθμητική παράσταση που έχει παρενθέσεις;.β) Να βάλετε σε

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ! THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΚΑΛΗ ΕΠΙΤΥΧΙΑ! Χρόνος: 1 ώρα και 30 λεπτά Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις,

Διαβάστε περισσότερα

Μαθηματικά Στ Δημοτικού

Μαθηματικά Στ Δημοτικού Μαθηματικά Στ Δημοτικού Τετράδιο εργασιών β τεύχος 0-07_MATHIMATIKA_B_TEU_ST_DHM.indd // : PM ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚΔΟΣΗΣ ΣYΓΓPAΦEIΣ ΚΡΙΤΕΣ-ΑΞΙΟΛΟΓΗΤΕΣ ΕΙΚΟΝΟΓΡΑΦΗΣΗ ΦΙΛΟΛΟΓΙΚΗ ΕΠΙΜΕΛΕΙΑ ΥΠΕΥΘΥΝΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2

ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2 THE G C SCHOOL OF CAREERS UΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ 2 Χρόνος: ώρα και 30 λεπτά UΜΑΘΗΜΑΤΙΚΑ Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Πεδίο ορισμού. Να βρείτε τα πεδία ορισμού των παρακάτω συναρτήσεων: i) f ( ) 5 6 ii) f ( ) 7 iii) iv) f( ) 4 f( ) 8 v) f ( ) 6 vi) f ( ) 0 5. Να βρείτε τα πεδία ορισμού των παρακάτω

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1. Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι

Διαβάστε περισσότερα