Kertas soalan ini mengandungi 20 halaman bercetak.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Kertas soalan ini mengandungi 20 halaman bercetak."

Transcript

1 3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September Jam SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU MAKLUMAT UNTUK CALON 1. Kertas soalan ini dalam bahasa Melayu sahaja. 2. Calon dikehendaki membaca maklumat di halaman belakang kertas soalan ini. Untuk kegunaan Pemeriksaan Soalan Markah Penuh Markah Diperolehi JUMLAH 80 Kertas soalan ini mengandungi 20 halaman bercetak.

2 3472/1 5 Jawab semua soalan Rajah 1 Berdasarkan gambar rajah anak panah dalam Rajah 1, nyatakan (a) imej bagi 1, (b) objek bagi 4, (c) julat hubungan itu. Jawapan : (a). (b) (c). 2. Diberi fungsi f : x 6x + 2 dan g : x x 2 2x + 4, cari gf(x). Jawapan :

3 3472/ Diberi fungsi h : x 2x 3, cari h -1 (x). Jawapan : [2 markah] 4. Persamaan kuadratik x 2 + 2px + 1 = x mempunyai dua punca yang sama. Cari nilainilai yang mungkin bagi p. Jawapan :

4 3472/ Cari julat nilai x bagi x < 9x. Jawapan : 6. Selesaikan persamaan 9 y+1 = 45. Jawapan :

5 3472/ Rajah 2, menunjukkan graf fungsi kuadratik bagi f(x) = 2(x m) 2 3. f(x) (-1, 5) (3, 5) 0 x Rajah 2 Cari (a) nilai m, (b) persamaan paksi simetri, (c) koordinat titik minimum. Jawapan : (a) (b) (c)

6 3472/1 9 Jawapan : 8. Selesaikan persamaan : log 2 9x log 2 (16 x) = log 2 3. [4 markah] 9. Tiga sebutan pertama suatu janjang aritmetik ialah 3h, k, h + 2. (a) Ungkapkan k dalam sebutan h, (b) Cari hasil tambah 20 sebutan pertama bagi janjang itu dalam sebutan h. [4 markah] Jawapan : (a) (b)

7 3472/ Dalam suatu janjang geometri, sebutan pertama ialah 64 dan sebutan keempat ialah 27. Hitungkan (a) nisbah sepunya, (b) hasil tambah sebutan-sebutan janjang itu hingga ketakterhinggaan. Jawapan: (a) (b) 11. Bucu-bucu sebuah segitiga adalah A(6, 3), B(4, 8) dan C(p, -4). Diberi bahawa luas segitiga adalah 17 unit 2, cari nilai-nilai p. Jawapan :

8 3472/ Titik B(h, 2) membahagi dalam garis lurus A(3, -5) dan C(6, k) dengan nisbah 1 : 2. Carikan nilai h dan nilai k. Jawapan : 13. Diberi OP = 5x + 2y dan OQ = kx y, ungkapkan PQ dalam sebutan x dan y. [2 markah] Jawapan:

9 3472/ Rajah 3 menunjukkan sebuah segiempat selari, OPQR, dilukis pada satah Cartesan. y R Q P O Rajah 3 x Diberi bahawa OP = 6i + 4j dan PQ = -4i + 5j. Carikan PR. Jawapan :

10 3472/1 15. y x 13 (1, k) (h, 4) Rajah 4 x 2 Rajah 4 menunjukkan graf garis lurus x y melawan x 2. Diberi y = -x x, cari nilai k dan nilai h. Jawapan :

11 3472/ Diberi tan Ѳ = t, 0º < Ѳ < 90º, ungkapkan dalam sebutan t, (a) kot Ѳ (b) sin (90º Ѳ) Jawapan : (a) (b) 17. Selesaikan persamaan tan 2 x + sek x 5 = 0 untuk 0º x 360º. [4 markah] Jawapan :

12 3472/ Q 3 cm 0.6 rad R O P Rajah 5 Rajah 5 menunjukkan sebuah semi bulatan OPQR. Diberi lengkuk PQ mempunyai panjang 3 cm, cari (a) panjang, dalam cm, jejari itu. (b) panjang, dalam cm, lengkuk QR. [Guna π = 3.142] Jawapan: [4 markah] (a) (b)

13 3472/ Fungsi kecerunan suatu lengkung ialah kx 5, dengan keadaan k ialah pemalar. Lengkung itu melalui titik (1, 2) dan titik (3, m) dan mempunyai kecerunan 1 pada titik (1, 2). Cari nilai k dan nilai m. [4 markah] Jawapan Diberi k Jawapan: k f ( x) dx = 4 dan [ f ( x) 3] dx = 5, cari nilai k. 5

14 3472/ Satu set tujuh nombor mempunyai min 10. (a) Cari x. (b) Apabila satu nombor k ditambah kepada set nombor ini, min baharu ialah 9. Cari nilai bagi k. Jawapan: (a) (b) 22. Semua huruf dalam perkataan KOLEKSI disusun dalam satu baris untuk membentuk satu perkataan. Cari (a) bilangan perkataan berlainan yang boleh dibentuk. (b) bilangan perkataan yang bermula dan berakhir dengan huruf vokal. [4 markah] Jawapan: (a) (b)

15 3472/ Sebuah kotak mengandungi 20 biji coklat. 5 daripadanya adalah perisa coklat hitam manakala 15 lagi itu adalah perisa coklat putih. Dua biji coklat diambil secara rawak dari kotak itu. Cari kebarangkalian bahawa (a) kedua-dua biji coklat adalah coklat hitam. (b) coklat yang diambil mempunyai perisa yang berlainan. [4 markah] Jawapan: (a) (b) 24. Di suatu kawasan tertentu, kebarangkalian bahawa hujan turun pada sesuatu hari ialah 3. Hitung kebarangkalian bahawa hujan akan turun kurang daripada 3 hari dalam 4 satu minggu. Jawapan:

16 3472/ Diberi X ialah pemboleh ubah rawak suatu taburan normal dengan min 140 dan varians 25. Cari P(130 < X < 148). Jawapan: KERTAS SOALAN TAMAT

17 3472/1 20 MAKLUMAT UNTUK CALON 1. Kertas soalan ini mengandungi 25 soalan. 2. Jawab semua soalan. 3. Tulis jawapan anda dalam ruang yang disediakan dalam kertas soalan. 4. Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. 5. Sekiranya anda hendak menukar jawapan, batalkan jawapan yang telah dibuat. Kemudian tulis jawapan yang baru. 6. Rajah yang mengiringi soalan tidak dilukis mengikut skala kecuali dinyatakan. 7. Markah yang diperuntukkan bagi setiap soalan ditunjukkan dalam kurungan. 8. Satu senarai rumus disediakan di halaman 2 hingga Sebuah buku sifir matematik empat angka disediakan. 10. Anda dibenarkan menggunakan kalkulator saintifik. 11. Serahkan kertas soalan ini kepada pengawas peperiksaan di akhir peperiksaan. Disediakan oleh: Disemak oleh:. (RAMLAH BT DININ)..

18 3472/2 MATEMATIK TAMBAHAN Kertas 2 September ½ Jam SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU MAKLUMAT UNTUK CALON 1. Kertas soalan ini dalam bahasa Melayu sahaja. 2. Calon dikehendaki membaca maklumat di halaman belakang kertas soalan ini. 3. Calon dikehendaki menceraikan halaman 14 dan ikat bersama-sama dengan kertas jawapan sebagai muka hadapan. Kertas soalan ini mengandungi 15 halaman bercetak. 3472/2 [Lihat sebelah]

19 3472/2 5 Bahagian A [40 markah] Jawab semua soalan. 1. Selesaikan persamaan serentak x 2y = x 2 + 4y 2 30 = 7. [6 markah] 2. Rajah menunjukkan susunan berterusan bagi tiga segiempat tepat yang pertama. Segiempat tepat yang pertama mempunyai x cm panjang dan y cm lebar. Ukuran panjang dan lebar bagi setiap segiempat tepat yang seterusnya adalah separuh daripada ukuran yang pertama. x y (a) Buktikan luas segiempat tepat-segiempat tepat itu membentuk janjang geometri dan tentukan nisbah sepunyanya [2 markah] (b) Diberi x = 160 cm dan y = 80 cm. 25 (i) Kenal pasti segiempat tepat yang mempunyai luas cm (ii) Cari jumlah luas semua segiempat tepat itu sehingga ketakterhinggaan, dalam cm 2. [2 markah] 3472/2 [Lihat sebelah]

20 3472/ (a) Lakarkan graf bagi y = 3kos 2x + 2 untuk 0 x π. [4 markah] (b) Seterusnya, dengan menggunakan paksi yang sama, lakar satu garis lurus yang sesuai untuk mencari bilangan penyelesaian bagi persamaan 3πkos 2x + 2π = 3x untuk 0 x π. Nyatakan bilangan penyelesaian itu. 4. Suatu lengkung mempunyai fungsi kecerunan kx 6, dengan keadaan k ialah pemalar. Diberi titik minimum bagi lengkung itu ialah(3, -5), cari (a) nilai k (b) cari persamaan bagi lengkung itu. 5. Jadual1 menunjukkan taburan kekerapan umur sekumpulan pelancong yang melawat Muzium Negara. Umur Kekerapan m Jadual 1 (a) Diberi bahawa kuartil pertama umur bagi taburan itu ialah Kira nilai m. (b) Dengan menggunakan skala 2 cm kepada 5 unit pada paksi-x dan 2 cm kepada 2 unit pada paksi-y, lukiskan sebuah histogram. Seterusnya, tentukan mod umur. 3472/2 [Lihat sebelah]

21 3472/ Rajah menunjukkan segi tiga ABC. Garis lurus AQ bersilang dengan garis lurus BR di P. C R Q P A B Diberi bahawa AR = 3RC, BQ = 3 2 BC, AB = 3x dan AC = 4y. (a) Ungkapkan dalam sebutan x dan y: (i) BC (ii) AQ (b) Diberi bahawa AP = haq dan AP = AR + krb, dengan keadaan h dan k ialah pemalar. Cari nilai h dan nilai k. [5 markah] 3472/2 [Lihat sebelah]

22 3472/2 8 Bahagian B [40 markah] Jawab mana-mana empat soalan daripada bahagiam ini. 7. Gunakan kertas graf untuk menjawab soalan ini. Jadual 2 menunjukkan nilai-nilai eksperimen dua pembolehubah x dan y. x y Jadual 2 Diberi bahawa x dan y dihubungkan oleh persamaan y = ax 2 + bx, dengan keadaan a dan b ialah pemalar. (a) Plot x y melawan x, dengan menggunakan skala 2 cm kepada 1 unit pada paksi-x dan 2 cm kepada 5 unit pada paksi- x y. Seterusnya, lukis garis penyuaian terbaik. [4 markah] (b) Gunakan graf anda di 7(a) untuk mencari nilai (i) a, (ii) b. [6 markah] 8. Penyelesaian secara lukisan berskala tidak diterima. y B 5 A(3, 4) O D(q, 2) x C(-3, p) Rajah /2 [Lihat sebelah]

23 3472/2 9 Rajah 2 menunjukkan sebuah segitiga ABC dengan titik D terletak pada garis AC dan B terletak pada paksi-y. (a) Diberi bahawa AD : DC = 1 : 2. Cari nilai p dan nilai q. (b) Hitung luas, dalam unit 2, segitiga ABC. [2 markah] (c) Cari persamaan garis lurus yang melalui titik B dan selari dengan garis AC. [2 markah] (d) Titik P bergerak dengan keadaan jaraknya dari titik A adalah sentiasa malar dan melalui titik D. Cari persamaan lokus bagi P. 9. Rajah menunjukkan sebuah bulatan berpusat O dan berjejari 10 cm terterap dalam sektor APB bagi sebuah bulatan berpusat P. Garis lurus AP dan garis lurus BP adalah tangen kepada bulatan masing-masing di titik Q dan titik R. A 10 cm OO O B Q R 60º P [Guna π = 3.142] Hitung (a) panjang, dalam cm, lengkok AB. (b) luas, dalam cm 2, kawasan berlorek. [5 markah] [5 markah] 3472/2 [Lihat sebelah]

24 3472/ (a) Dalam satu kajian yang dijalankan ke atas penduduk di sebuah kampung, di dapati 60% penduduknya berpendapatan kurang daripada RM2000 sebulan. Jika 7 orang penduduk kampong itu dipilih secara rawak, hitung kebarangkalian bahawa (i) tepat 3 orang penduduk berpendapatan kurang daripada RM2000 sebulan. (ii)lebih daripada 3 orang penduduk berpendapatan kurang daripada RM2000 sebulan. [5 markah] (b) Jisim badan murid Tahun 1 di sebuah bandar adalah mengikut satu taburan normal dengan min 30 kg dan sisihan piawai 16 kg. Seorang murid Tahun 1 dengan jisim badan yang melebihi 36 kg di anggap sebagai obes. (i)seorang murid Tahun 1 dipilih secara rawak dari bandar itu. Cari kebarangkalian bahawa jisim murid itu adalah antara 20 kg dengan 32 kg. (ii)didapati bahawa 535 orang murid Tahun 1 di bandar itu adalah obes. Cari jumlah bilangan murid Tahun 1 di bandar itu. [5 markah] 11. (a) Rajah menunjukkan rantau berlorek yang dibatasi oleh lengkung y = g(x), paksi-x dan garis lurus x = 6. y x = x y = g(x) Diberi bahawa luas rantau berlorek ialah 18 unit 2. Cari (i) g ( x) dx, 2 (ii) [ x 3g( x)] dx. 3 [4 markah] 3472/2 [Lihat sebelah]

25 3472/2 11 (b) y y = x 2 6x + 10 A B y = 10 - x 0 C x Rajah menunjukkan lengkung y = x 2 6x + 10 dan garis lurus y = 10 x. Tentukan koordinat A, B dan C. Seterusnya, hitung luas rantau berlorek. [6 markah] Bahagian C [20 markah] Jawab dua soalan daripada bahagian ini. 12. Jadual 3 menunjukkan harga dan indeks harga bagi lima komponen yang digunakan untuk membuat suatu perkakas. Rajah 2 menunjukkan carta pai yang mewakili kuantiti relatif bagi penggunaan komponen itu. Indeks harga Komponen Harga(RM) pada tahun pada berasas 2005 A B x C D y E Jadual 3 Rajah 2 (a) Cari nilai x dan nilai y. [2 markah] (b) Hitung indeks gubahan bagi kos penghasilan perkakas itu pada tahun 2008 berasaskan tahun (c) Harga setiap komponen meningkat 25% dari tahun 2008 ke tahun Diberi kos penghasilan satu perkakas itu pada tahun 2005 ialah RM120. Hitung purata kos penghasilan bagi tahun 2008 dan tahun [5 markah] 3472/2 [Lihat sebelah] 120º E A 70º D 50º B C

26 3472/2 13. Rajah 2 menunjukkan sebuah segitiga ABC. ADC dan BEC ialah garis lurus. A 12 D 110º Rajah 2 B E C Diberi bahawa AB = 20 cm, AC = 24 cm, BE = 10 cm, EC = 8 cm, BED = 110º. (a) Hitung ACB. (b) Cari panjang DE, dalam cm. (c) (i) Hitung luas, dalam cm 2, segitiga ABC itu. (ii) Seterusnya, cari jarak serenjang, dalam cm, dari A ke BC. [4 markah] 14. Satu zarah bergerak di sepanjang suatu garis lurus dan melalui satu titik tetap O. Halaju, v ms -1, diberi oleh v = t t 2, dengan keadaan t ialah masa dalam saat selepas melalui O. (a) Cari halaju awal, dalam ms -1, zarah itu. [1 markah] (b) Cari halaju maksimum, dalam ms -1, zarah itu. (c) Cari nilai t apabila zarah itu berehat seketika. [2 markah] (d) Hitung jumlah jarak, dalam m, yang dilalui oleh zarah itu dalam 7 saat pertama selepas melalui O. [4 markah] 3472/2 [Lihat sebelah]

27 3472/2 15. Gunakan kertas graf untuk menjawab soalan ini. 13 Sebuah kilang menghasilkan dua jenis lilin, P dan Q. Pada satu hari tertentu, kilang itu menghasilkan x kotak lilin P dan y kotak lilin Q. Keuntungan daripada jualan sekotak lilin P ialah RM18 dan sekotak lilin Q ialah RM15. Penghasilan lilin itu dalam sehari adalah berdasarkan kekangan yang berikut: I : Jumlah bilangan lilin yang dihasilkan adalah selebih-lebihnya 400 kotak. II : Bilangan kotak lilin P yang dihasilkan tidak melebihi empat kali bilangan kotak lilin Q. III : Jumlah keuntungan minimum daripada kedua-dua jenis lilin itu ialah RM2880. (a) Tulis tiga ketaksamaan, selain x 0 dan y 0, yang memenuhi semua kekangan di atas. (b) Dengan menggunakan skala 2 cm kepada 50 kotak lilin pada kedua-dua paksi, bina dan lorek rantau R yang memenuhi semua kekangan di atas. (c) Dengan menggunakan graf yang dibina di 15(b), cari (i) (ii) bilangan minimum lilin Q yang dihasilkan jika bilangan lilin P yang dihasilkan pada satu hari tertentu ialah 110 kotak. jumlah keuntungan maksimum sehari. [4 markah] 3472/2 [Lihat sebelah]

28 3472/2 NAMA :. TINGKATAN :. Arahan Kepada Calon Tulis nama dan tingkatan anda pada ruang yang disediakan. 2. Tandakan ( ) untuk soalan yang dijawab. 3. Ceraikan helaian ini dan ikatkan bersama-sama dengan kertas jawapan sebagai muka hadapan. Kod Pemeriksa Bahagian Soalan Soalan Dijawab Markah Penuh Markah Diperolehi (Untuk Kegunaan Pemeriksa) A B C Jumlah 3472/2 [Lihat sebelah]

29 3472/2 15 MAKLUMAT UNTUK CALON 1. Kertas soalan ini mengandungi tiga bahagian: Bahagian A, Bahagian B dan Bahagian C. 2. Jawab semua soalan dalam Bahagian A, mana-mana empat soalan daripada Bahagian B dan mana-mana dua soalan daripada Bahagian C. 3. Jawapan anda hendaklah ditulis di atas kertas jawapan anda. 4. Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. 5. Rajah yang mengiringi soalan tidak dilukiskan mengikut skala kecuali dinyatakan. 6. Markah yang diperuntukkan bagi setiap soalan dan ceraian soalan ditunjukkan dalam kurungan. 7. Satu senarai rumus disediakan di halaman 2 hingga Anda dibenarkan menggunakan kalkulator saintifik yang tidak boleh deprogram atau buku sifir matematik empat angka. 9. Ikat helaian tambahan dan kertas graf bersama-sama dengan kertas jawapan anda dan serahkan kepada pengawas peperiksaan pada akhir peperiksaan. Disediakan oleh :. (RAMLAH BT DININ) Disemak oleh: /2 [Lihat sebelah]

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN 2007 2 2 1 jam LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 MATEMATIK Kertas 2 Dua jam tiga puluh minit JANGAN

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

Jawab semua soalan. P -1 Q 0 1 R 2

Jawab semua soalan. P -1 Q 0 1 R 2 Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua

Διαβάστε περισσότερα

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

tutormansor.wordpress.com

tutormansor.wordpress.com Nama: Sekolah: FASILITATOR PUAN ZALEHA BT TOMIJAN PUAN CHE RUS BT HASHIM ENCIK WAN MOHD SUHAIMI B WAN IBRAHIM PUAN NORAINI BT SALDAN PUAN FAUDZILAH BT MEHAT 1 Syarikat Cepat Sampai menyediakan perkhidmatan

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

KEMENTERIAN PELAJARAN MALAYSIA

KEMENTERIAN PELAJARAN MALAYSIA KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

EAG 345/2 - Analisis Geoteknik

EAG 345/2 - Analisis Geoteknik UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden BAB 4 ANALISIS DAN PENEMUAN KAJIAN Bab ini akan menerangkan hasil keputusan kajian yang diperolehi oleh pengkaji melalui borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

HMT FONETIK DAN FONOLOGI BAHASA MALAYSIA LANJUTAN

HMT FONETIK DAN FONOLOGI BAHASA MALAYSIA LANJUTAN UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2007/2008 Oktober/November 2007 HMT 501 - FONETIK DAN FONOLOGI BAHASA MALAYSIA LANJUTAN Masa 3 jam Sila pastikan bahawa kertas peperiksaan

Διαβάστε περισσότερα

EAL 572/4 Rekabentuk dan Perancangan Lebuhraya

EAL 572/4 Rekabentuk dan Perancangan Lebuhraya UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari / Mac 2003 EAL 572/4 Rekabentuk dan Perancangan Lebuhraya Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

SENARAI KANDUNGAN HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN

SENARAI KANDUNGAN HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN vii SENARAI KANDUNGAN BAB PERKARA MUKA SURAT HALAMAN JUDUL PENGAKUAN DEDIKASI PENGHARGAAN ABSTRAK ABSTRACT KANDUNGAN SENARAI JADUAL SENARAI RAJAH SENARAI SINGKATAN SENARAI LAMPIRAN i ii iii iv v vi vii

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

KEMAHIRAN HIDUP BERSEPADU KT/ERT/PN/PK

KEMAHIRAN HIDUP BERSEPADU KT/ERT/PN/PK KEMAHIRAN HIDUP BERSEPADU KT/ERT/PN/PK ISI KANDUNGAN BIL 4.1 Pengenalpastian masalah. TAJUK i. Menyatakan masalah yang hendak diselesaikan dengan jelas ii. Menyenaraikan sekurang-kurangnya tiga produk

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

HMT Morfologi dan Sintaksis Lanjutan

HMT Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2001/2002 Februari/Mac 2002 HMT 504 - Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

TH3813 Realiti Maya. Membina Dunia VRML. Struktur asas VRML. Teknik asas. Memahami header. Contoh fail VRML. Fail VRML mengandungi

TH3813 Realiti Maya. Membina Dunia VRML. Struktur asas VRML. Teknik asas. Memahami header. Contoh fail VRML. Fail VRML mengandungi TH3813 Realiti Maya Membina Objek Membina Dunia VRML 1 2 Teknik asas Struktur asas VRML untuk bangunkan sebuah dunia VRML, bina dahulu cebisan- cebisan objek dalam satu fail, seperti dinding, tiang dan

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008

SEMINAR KEBANGSAAN PENDIDIKAN SAINS DAN MATEMATIK OKT 2008 TAHAP KEFAHAMAN KEMAHIRAN KOMUNIKASI DAN MENGEKSPERIMEN DALAM KALANGAN PELAJAR TAHUN DUA PENDIDIKAN FIZIK MERENTAS PROGRAM PENGAJIAN HANIZAH BINTI MISBAH Fakulti Pendidikan Universiti Teknologi Malaysia

Διαβάστε περισσότερα

BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN. terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif kajian, iaitu;

BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN. terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif kajian, iaitu; BAB KEEMPAT ANALISIS DAN DAPATAN KAJIAN 4.1 Pengenalan Dalam bab keempat ini, pengkaji mengemukakan dapatan dan analisis kajian secara terperinci. Dapatan kajian ini dibincangkan menurut susunan objektif

Διαβάστε περισσότερα

HMT 504 Morfologi dan Sintaksis Lanjutan

HMT 504 Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY (SGHU 2313) CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK

HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK Angka Giliran: No. Tempat Duduk: _ UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2006/2007 Oktober/November 2006 HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK Masa: 3 jam Sila

Διαβάστε περισσότερα

KEMENTERIAN PENDIDIKAN MALAYSIA

KEMENTERIAN PENDIDIKAN MALAYSIA KEMENTERIAN PENDIDIKAN MALAYSIA Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran MATEMA TEMATIK TIK TAMB AMBAHAN AHAN TINGKATAN AN 45 KEMENTERIAN PENDIDIKAN MALAYSIA Kurikulum Bersepadu Sekolah

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I

SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.

Διαβάστε περισσότερα

BAB III METODOLOGI. memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data,

BAB III METODOLOGI. memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data, BAB III METODOLOGI 3.0 Pengenalan Bahagian ini akan menerangkan secara mendalam tentang reka bentuk kajian, memberi gambaran profil pelajar, instrumen yang digunakan, kaedah pungutan data, teknik statistik

Διαβάστε περισσότερα

BAB 9 PENENTUAN KEDUDUKAN

BAB 9 PENENTUAN KEDUDUKAN Pengenalan BAB 9 PENENTUAN KEDUDUKAN Penentuan Kedudukan Tujuan Penentuan Kedudukan Titik persilangan antara 2 garis Mendapatkan kedudukan bot atau titik di mana kedalaman akan diambil Stn 3 Stn 1 Stn

Διαβάστε περισσότερα

FIZIK. Pengenalan Kepada Fizik TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan. Bab 1. SMK Seri Mahkota, Kuantan. SMK Changkat Beruas, Perak

FIZIK. Pengenalan Kepada Fizik TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan. Bab 1. SMK Seri Mahkota, Kuantan. SMK Changkat Beruas, Perak FIZIK TINGKATAN 4 Bab 1 Pengenalan Kepada Fizik Disunting oleh Cikgu Desikan SMK Changkat Beruas, Perak Cikgu Khairul Anuar Dengan kolaborasi bersama SMK Seri Mahkota, Kuantan FIZIK TINGKATAN 4 2016 Bab

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

KEMENTERIAN PENDIDIKAN MALAYSIA

KEMENTERIAN PENDIDIKAN MALAYSIA KEMENTERIAN PENDIDIKAN MALAYSIA Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran MATEMA TEMATIK TIK TAMB AMBAHAN AHAN TINGKATAN AN 5 KEMENTERIAN PENDIDIKAN MALAYSIA Kurikulum Bersepadu Sekolah

Διαβάστε περισσότερα

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian KOD KURSUS SCE3105 MATA KREDIT : 3 (2 + 1) PENGENALAN Kursus ini meneroka idea dan amalan fizik

Διαβάστε περισσότερα

Tahap Kognitif Pelajar Tingkatan Empat Di Sekolah Menengah Di Dalam Daerah Kluang Johor Berdasarkan Taksonomi Bloom Dalam Mata Pelajaran Sains

Tahap Kognitif Pelajar Tingkatan Empat Di Sekolah Menengah Di Dalam Daerah Kluang Johor Berdasarkan Taksonomi Bloom Dalam Mata Pelajaran Sains Tahap Kognitif Pelajar Tingkatan Empat Di Sekolah Menengah Di Dalam Daerah Kluang Johor Berdasarkan Taksonomi Bloom Dalam Mata Pelajaran Sains Seth Sulaiman & Mohd Zawawi Mohd Razali Fakulti Pendidikan,

Διαβάστε περισσότερα

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011 Pemerihalan Data Pemerihalan Data PM DR KMISH OSMN Sukatan kecenderungan memusat Sukatan kedudukan Sukatan serakan Sukatan serakan relatif Ukuran korelasi G603 1 G603 Pengenalan Mengeluarkan maklumat daripada

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

SULIT 4541/1 4541/1 Kimia Kertas 1 Ogos ¼ jam BAHAGIAN SEKOLAH KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SPM 2006

SULIT 4541/1 4541/1 Kimia Kertas 1 Ogos ¼ jam BAHAGIAN SEKOLAH KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SPM 2006 4541/1 4541/1 Kimia Kertas 1 Ogos 2006 1¼ jam BAHAGIAN SEKOLAH KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SPM 2006 KIMIA http://cikguadura.wordpress.com/ Kertas 1 Satu jam lima belas minit JANGAN

Διαβάστε περισσότερα

Institut Pendidikan Guru, Kampus Tuanku Bainun, Bukit Mertajam, Pulau Pinang. Diterima untuk diterbitkan pada: 1 April 2012

Institut Pendidikan Guru, Kampus Tuanku Bainun, Bukit Mertajam, Pulau Pinang. Diterima untuk diterbitkan pada: 1 April 2012 41 PERBANDINGAN KAEDAH MENGGUNAKAN KAD PERMAINAN DAN BUKU BESAR BAGI MENINGKATKAN PENCAPAIAN MURID TAHUN 4 DALAM TOPIK PENYESUAIAN TUMBUHAN TERHADAP CUACA MELAMPAU 1 Lim Carol Amir Hamzah Sharaai 1 Institut

Διαβάστε περισσότερα

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH Pemeriksa SULIT 6 Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. 1 Rajah 1.1 menunjukkan sejenis alat pengukur yang terdapat

Διαβάστε περισσότερα

BAB 4 DAPATAN KAJIAN. 7. Pada bahagian pertama huraian adalah berdasarkan statistik dekriptif yang

BAB 4 DAPATAN KAJIAN. 7. Pada bahagian pertama huraian adalah berdasarkan statistik dekriptif yang BAB 4 DAPATAN KAJIAN 4.0 Pendahuluan Bab ini membincangkan dapatan kajian berdasarkan analisis data yang telah ditetapkan. Data yang diperolehi telah dianalisis dengan menggunakan tiga perisian, iaitu

Διαβάστε περισσότερα

1 Bahan manakah yang TIDAK merupakan makromolekul (molekul raksasa)? 2 Bahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena).

1 Bahan manakah yang TIDAK merupakan makromolekul (molekul raksasa)? 2 Bahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena). ahagian 1 ahan manakah yang TIK merupakan makromolekul (molekul raksasa)? selulosa kanji getah asli garam biasa 2 ahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena). dekana sikloheksena

Διαβάστε περισσότερα

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan

Διαβάστε περισσότερα

KEMENTERIAN PENDIDIKAN MALAYSIA. Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran

KEMENTERIAN PENDIDIKAN MALAYSIA. Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran KEMENTERIAN PENDIDIKAN MALAYSIA Kurikulum Bersepadu Sekolah Menengah Huraian Sukatan Pelajaran MATEMA TEMATIK TIK TINGKATAN AN 4 PUSAT PERKEMBANGAN KURIKULUM KEMENTERIAN PENDIDIKAN MALAYSIA 2001 KEMENTERIAN

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

ACCEPTANCE SAMPLING BAB 5

ACCEPTANCE SAMPLING BAB 5 ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot

Διαβάστε περισσότερα