TOPIK 1 : KUANTITI DAN UNIT ASAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TOPIK 1 : KUANTITI DAN UNIT ASAS"

Transcript

1 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu saiz piawai perlu digunakan untuk membandingkan saiz-saiz yang berbeza bagi kuantiti yang sama. Saiz piawai bagi suatu kuantiti fizik disebut unit bagi kuantiti itu. Saiz piawai yang dipilih sebagai unit untuk sesuatu kuantiti mestilah (a) mudah diperoleh, (b) magnitudnya tidak boleh di ubah, dan (c) di persetujui oleh pihak antarabangsa. Unit untuk mengukur kuantiti-kuantiti asas ini disebut unit-unit asas. Unit-unit asas tidak bersandar kepada satu sama lain. Dalam Sistem Unit Antarabangsa, SI, kuantiti-kuantiti yang ditunjukkan dalam Jadual 1 dipilih sebagai kuantiti-kuantiti asas. Kuantiti Asas Simbol Kuantiti Asas Unit Asas (S.I) Simbol Unit Panjang l Meter m Jisim M Kilogram kg Masa t Saat s Suhu T Kelvin K Pertukaran Unit 10 mm = 1 cm 1000 mm = 1 m 100 cm = 1 m 1000 m = 1 km 1000 mg = 1 g 1000 g = 1 kg 1000 kg = 1 tan 60 s = 1 min 3600 s = 1 jam 60 min = 1 jam 24 jam = 1 hari 100 C = 212 F 100 C = K 0 C = 32 F 0 C = K Arus elektrik I ampere A 1000 ma = 1 A Jadual

2 Berikut adalah peralatan yang digunakan untuk mengukur kuantiti asas : Kuantiti Asas Peralatan Panjang Pembaris Angkup vernier Mikrometer Jisim Neraca timbang Neraca elektronik Masa Jam randik Suhu Termometer Arus elektrik Ammeter 2 1 7

3 KUANTITI TERBITAN DAN UNIT TERBITAN Kuantiti terbitan ialah kuantiti fizik yang diterbitkan daripada kuantiti-kuantiti asas secara pendaraban dan pembahagian Unit untuk kuantiti terbitan digelar unit terbitan Jadual 2 menunjukkan beberapa contoh kuantiti terbitan Kuantiti Terbitan Simbol Kuantiti Terbitan Rumus Penerbitan Unit SI Nama Khas Unit Luas A Panjang x lebar m 2 - Isipadu V Panjang x lebar x tinggi m 3 - Ketumpatan ρ Jisim Isipadu kg/m 3 - Halaju v Jarak Masa m/s - Pecutan a Halaju Masa m/s 2 - Momentum P Jisim x halaju kgm/s - Daya F Jisim x graviti kgm/s 2 Newton (N) Kerja W Daya x jarak kgm 2 /s 2 Pascal (Pa) Tenaga E Daya x jarak kgm 2 /s 2 Joule (J) Kuasa P Kerja Masa kgm 2 /s 3 Watt (W) Jadual

4 1.2 GANDAAN DARI HINGGA (PICO HINGGA TERA) Bagi tujuan merekod dan perbandingan, nombor yang mempunyai ukuran yang terlalu besar atau terlalu kecil, boleh diwakili dengan nombor piawai seperti Jadual 3. Dengan menggunakan nombor piawai, data akan kelihatan kemas, ringkas dan mudah. Imbuhan Simbol Nilai (Bentuk Piawai) Nilai (Nombor Nyata) Tera T x Giga G x Mega M x Kilo k x Hecto h x Deca da x Deci d x Centi c x Mili m x Micro µ x Nano n x Pico p x Jadual

5 1.3 PERTUKARAN UNIT Pertukaran Imbuhan Kepada Bentuk Piawai Apabila imbuhan ditukar kepada bentuk piawai, faktor pendaraban yang setara digunakan Contoh 1 : Faktor Pendaraban 100 cm = 100 x 10-2 m Unit asas tetap sama c adalah imbuhan m adalah unit asas Nilai Magnitud c = 10-2 (Rujuk Jadual 3, mukasurat 4) = ( 1 x 10 2 ) x 10-2 m ; ( 1 x 10 2 ) adalah bentuk piawai = 1 m Contoh 2 : 550 μs = 550 x 10-6 s = (5.5 x 10 2 ) x 10-6 s = 5.5 x 10-4 s Jawapan dalam Bentuk Piawai dan Unit S.I Pertukaran Bentuk Piawai Kepada Imbuhan Apabila bentuk piawai atau nombor nyata ditukar kepada bentuk imbuhan pula, magnitudnya mesti dibahagi dengan faktor pendaraban Contoh 1 : 0.07 m = cm c setara nilainya dengan

6 Maka, 0.07 m = = 7 cm Menggunakan kalkulator saintifik 0.07 Shift log +/- 2 = 7 atau 0.07 Exp +/- 2 = 7 Contoh 2 : 2 x 10-9 s = ns n setara nilainya dengan 10-9 Maka, 2 x 10-9 s = 2 x ns = 2 ns Menggunakan kalkulator saintifik 2 Exp +/- 9 Shift log +/- 9 = 2 atau 2 Exp +/- 9 Exp +/- 9 =

7 Tip Studi. Anda tidak perlu menghafal semua formula bagi kuantiti terbitan. Tetapi, anda kena menguasai kemahiran menerbitkan unitnya daripada formula yang diberi Lanjutan Pertukaran Imbuhan Untuk pertukaran bentuk imbuhan kepada imbuhan yang lain, unit asas dijadikan perantaraan Contoh 1 : Tukarkan 5.23 ms = ks Penyelesaian 5.23 ms = 5.23 x 10-3 s = 5.23 x 10-3 s 10 3 ks = 5.23 x 10-6 ks Tukar kpd unit asas Tukar kpd imbuhan yg dikehendaki Elakkan. Elakkan daripada menulis seperti berikut : 5.23 ms = 5.23 x 10-3 = 5.23 x 10-3 x 10-3 = 5.23 x 10-6 ks Unit atau imbuhan yg sesuai Kesimpulan x Faktor Pendaraban Imbuhan Asas Faktor Pendaraban 7 1 7

8 1.4 PERTUKARAN NOMBOR NYATA KEPADA BENTUK LAZIM DAN SEBALIKNYA Nombor Nyata Nombor-nombor nyata terdiri daripada semua nombor yang boleh diungkapkan melalui angka perpuluhan mahupun nisbah (pecahan). Contoh : Angka perpuluhan Nisbah Bentuk Piawai (Standard Forms) Bentuk Piawai: A x 10 n di mana 1 A < 10 dan n ialah integer. A ialah nombor 1 hingga 9 A x 10 n n ialah kuasa bagi 10 Contoh : 2589 ditulis sebagai x ditulis sebagai x Pertukaran nombor nyata kepada bentuk piawai Angka yang diberi Contoh 1 : Tips 2 : Gerakkan titik perpuluhan ke kiri, maka nilai n adalah positif 7400 = = 7.4 x = 7.4 x 1000 = 7.4 x 10 3 Tips 1 : Letak titik perpuluhan selepas angka pertama dari kiri. Untuk menentukan nombor kuasa bagi angka 10; kira bilangan angka dalam nombor tersebut, kemudian tolak 1. Tips 3 : Menggunakan kalkulator Setkan kalkulator kepada SCI MODE MODE MODE MODE MODE = Paparan menunjukkan x

9 Angka yang diberi < 1 Contoh 1 : Tips 2 : Gerakkan titik perpuluhan ke kanan, maka nilai n adalah negatif = = 3.6 x = = 3.6 x = 3.6 x = 3.6 x 10-2 Tips 1 : Letakkan titik perpuluhan kepada angka bukan sifar yang pertama dari kiri. Untuk menentukan nombor kuasa bagi angka 10, kira bilangan sifar sebelum angka bukan sifar yang pertama dan letakkan tanda negatif kepada nombor tersebut. Tips 3 : Menggunakan kalkulator Setkan kalkulator kepada SCI MODE MODE MODE MODE MODE = Paparan menunjukkan x Pertukaran bentuk piawai kepada nombor nyata Contoh 1 : 1.57 x 10 4 = 1.57 x = Tips 1 : Lihat n = 4 (positif) Jika n adalah positif, gerakkan titik perpuluhan ke kanan 1.57 x 10 4 = Contoh 2 : x 10-3 = 8.03 x = 8.03 x = = Tips 2 : Lihat n = - 3 (negatif) Jika n adalah negatif, gerakkan titik perpuluhan ke kiri 8.03 x 10-3 =

10 1.5 OPERASI MATEMATIK ( + - x ) DAN MENYATAKAN JAWAPANNYA DALAM BENTUK PIAWAI Ingat formula ini : a x 10 m a x 10 m + b x 10 m = (a + b) x 10 m - b x 10 m = (a - b) x 10 m 10 m x 10 n = 10 m + n 10 m 10 n = 10 m - n (10 m ) n = 10 m x n Contoh 1 : Pertukaran nombor nyata kepada bentuk piawai a. Operasi = = x 10 4 b. Operasi = = x 10 2 Menggunakan kalkulator : MODE MODE MODE MODE MODE 2 4 Menggunakan kalkulator : MODE MODE MODE MODE MODE = = Paparan menunjukkan x 10 4 Paparan menunjukkan x

11 c. Operasi x 26.7 x 0.6 = = x 10 1 d. Operasi = = 1.25 x 10-2 Menggunakan kalkulator : MODE MODE MODE MODE MODE 2 4 Menggunakan kalkulator : MODE MODE MODE MODE MODE x 0.6 = = Paparan menunjukkan x 10 1 Paparan menunjukkan 1.25 x Operasi Matematik ( + - x ) Contoh 2 : a. Operasi x x 10 4 = 3.1 x x 10-1 x 10 5 = 3.1 x x = 10-1 x 10 5 = ( ) x = 10-1 x 10 5 = 3.5 x 10 5 Menggunakan kalkulator MODE MODE MODE MODE MODE EXP EXP 4 = Paparan menunjukkan 3.5 x

12 b. Operasi - 7 x x 10-8 = 7 x x 10-2 x = 10-2 x 10-6 = 7 x x x 10-2 = = ( ) x 10-6 = x 10-6 MODE MODE MODE MODE MODE Menggunakan kalkulator EXP (-) (-) 8 = EXP Paparan menunjukkan x 10-6 c. Operasi x (2.4 x 10 3 ) x (9 x 10 7 ) = (2.4 x 9) x (10 3 x 10 7 ) = 21.6 x x 10 7 = = 2.16 x 10 1 x = 2.16 x 10 1 = 2.16 x Menggunakan kalkulator MODE MODE MODE MODE MODE 2 3 ( 2.4 EXP 3 ) x ( 9 EXP 7 ) = Paparan menunjukkan 2.16 x

13 d. Operasi 4.8 x x 10-5 = 4.8 x = 0.8 x = 8 x 10-1 x = 8 x = 8 x 10-1 = (-5) MODE MODE MODE MODE MODE Menggunakan kalkulator EXP 12 6 EXP (-) 5 = Paparan menunjukkan 8 x Penyelesaian masalah yang melibatkan nombor dalam bentuk piawai Contoh 3 : 5 x m 7.42 x m Gambarajah 1 Gambarajah 1 di atas menunjukkan tapak rumah Ali dalam bentuk segiempat. Nyatakan jawapan anda dalam bentuk piawai untuk mengira : a. Perimeter b. Luas tapak rumah tersebut

14 Penyelesaian : a. Perimeter = 2 (7.42 x x ) m = 2 (7.42 x x 10-2 x ) m = 2 (7.42 x x ) m = 2 ( ) x m = 2 x 7.47 x m = x m = x m Menggunakan kalkulator 2 ( 7.42 EXP EXP 16 ) = b. Luas tapak rumah tersebut = Panjang x Lebar = [(7.42 x ) x (5 x )] m 2 = [(7.42 x 5) x (10 18 x )] m 2 = 37.1 x m 2 Menggunakan kalkulator 7.42 EXP 18 x 5 EXP 16 = = 3.71 x m

15 LATIHAN ULANGKAJI Latihan 1.1 i. Di antara jawapan berikut, yang manakah BUKAN kuantiti asas? A. Arus elektrik B. Suhu C. Panjang D. Kuasa ii. Pilih unit yang bersamaan dengan unit Joule? A. Ns B. Wms -1 C. Nm D. kgm 2 s -2 iii. 1 ms -2 bersamaan dengan... A. 1 N kg -1 B. 1 N g -1 C. 10 N kg -1 D. 1 J kg iv. Diantara kuantiti terbitan berikut, yang manakah TIDAK diterbitkan dari kuantiti masa (saat)? A. Daya B. Halaju C. Ketumpatan D. Momentum v. Diantara rumus berikut, yang manakah TIDAK mempunyai unit yang sama dengan kg ms -2? A. Jisim x Halaju Masa B. Halaju x Panjang (Masa) 2 C. Jisim x pecutan D. Jisim x Halaju x Panjang

16 Latihan 1.2 Tuliskan setiap nombor berikut dengan gandaan dan imbuhan yang sesuai i ii iii Tukarkan setiap nombor berikut kepada nombor nyata iv. 1.7 x 10 6 v x 10 8 vi x 10-5 Latihan 1.3 Tukarkan setiap ukuran berikut. Tunjukkan jalan penyelesaian. i g =... kg ii. iii. iv. 26 µm =... m 950 Mg =... g 678 l =... ml v. 67 n Farad =... Farad Latihan 1.4 Tukarkan nombor nyata berikut kepada bentuk piawai. Tunjukkan jalan penyelesaian. i ii iii iv

17 Tukarkan bentuk piawai berikut kepada nombor nyata. Tunjukkan jalan penyelesaian. v. 1.3 x 10 4 vi x 10 5 vii x 10-6 viii. 3 x Latihan 1.5 Selesaikan pengiraan soalan berikut dan nyatakan dalam bentuk piawai. Tunjukkan jalan penyelesaian. i ii iii iv x 8.4 v x Selesaikan operasi berikut dan nyatakan dalam bentuk piawai. Tunjukkan jalan penyelesaian. i. 4 x x 10 3 ii x x 10-9 iii. 7 x x 10 5 iv. 3.1 x x v. (9 x 10 4 ) x (8 x 10 8 ) vi. (7.38 x 10-5 ) x (4.5 x ) vii. 4.8 x x 10 5 viii. 5.4 x x

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya NHB_Jun2014 1 Objektif: Adalah diharapkan diakhir kursus ini peserta akan : 1. Mengenal pasti alat-alat

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

Jawab semua soalan. P -1 Q 0 1 R 2

Jawab semua soalan. P -1 Q 0 1 R 2 Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

Kertas soalan ini mengandungi 20 halaman bercetak.

Kertas soalan ini mengandungi 20 halaman bercetak. 3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 2013 2 Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian

SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian SEMESTER 1 : BACHELOR PENDIDIKAN (SAINS RENDAH) 2012 TAJUK KURSUS : Fizik dalam Konteks Kehidupan Harian KOD KURSUS SCE3105 MATA KREDIT : 3 (2 + 1) PENGENALAN Kursus ini meneroka idea dan amalan fizik

Διαβάστε περισσότερα

KEMENTERIAN PELAJARAN MALAYSIA

KEMENTERIAN PELAJARAN MALAYSIA KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN 2007 2 2 1 jam LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 MATEMATIK Kertas 2 Dua jam tiga puluh minit JANGAN

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 )

LOGIKA MATEMATIKA. MODUL 1 Himpunan. Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) LOGIKA MATEMATIKA MODUL 1 Himpunan Zuhair Jurusan Teknik Informatika Universitas Mercu Buana Jakarta 2012 年 04 月 08 日 ( 日 ) Himpunan I. Definisi dan Notasi Himpunan adalah kumpulan sesuatu yang didefinisikan

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM

13 M. Syuhaimi.indd 149 5/28/10 4:21:43 PM 1 4 Kumpulan Penyelidikan Komputer dan Sekuriti Rangkaian, Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής

Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Εισαγωγή Σε Βασικές Έννοιες Της Φυσικής Φυσικά Μεγέθη Φυσικά μεγέθη είναι έννοιες που μπορούν να μετρηθούν και χρησιμοποιούνται για την περιγραφή των φαινομένων. Διεθνές σύστημα μονάδων S. I Το διεθνές

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK Satu litar elektronik dikenali juga sebagai sistem. Satu sistem elektronik terdiri daripada beberapa komponen. Setiap komponen elektronik mempunyai fungsinya

Διαβάστε περισσότερα

HMT 504 Morfologi dan Sintaksis Lanjutan

HMT 504 Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

PENGEMPARAN SAMPEL/SPESIMEN DARAH

PENGEMPARAN SAMPEL/SPESIMEN DARAH HUSM/TDM/QP-03 SAMPEL/SPESIMEN DARAH MAKMAL PEMONITORAN DRUG TERAPEUTIK HOSPITAL UNIVERSITI SAINS MALAYSIA Disediakan oleh: DELLEMIN CHE ABDULLAH Diluluskan oleh: ABDUL HAKIM HJ. ABDULLAH Tarikh efektif:

Διαβάστε περισσότερα

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY (SGHU 2313) CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

tutormansor.wordpress.com

tutormansor.wordpress.com Nama: Sekolah: FASILITATOR PUAN ZALEHA BT TOMIJAN PUAN CHE RUS BT HASHIM ENCIK WAN MOHD SUHAIMI B WAN IBRAHIM PUAN NORAINI BT SALDAN PUAN FAUDZILAH BT MEHAT 1 Syarikat Cepat Sampai menyediakan perkhidmatan

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1 Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1. Sumber Tenaga Dunia 2. Bahanapi Gas Komponen, Sifat ( SG, CV,

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011

Pemerihalan Data. Pemerihalan Data. Sukatan kecenderungan memusat. Pengenalan. Min. Min 1/14/2011 Pemerihalan Data Pemerihalan Data PM DR KMISH OSMN Sukatan kecenderungan memusat Sukatan kedudukan Sukatan serakan Sukatan serakan relatif Ukuran korelasi G603 1 G603 Pengenalan Mengeluarkan maklumat daripada

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

ACCEPTANCE SAMPLING BAB 5

ACCEPTANCE SAMPLING BAB 5 ACCEPTANCE SAMPLING BAB 5 PENGENALAN Merupakan salah satu daripada SQC (statistical quality control) dimana sampel diambil secara rawak daripada lot dan keputusan samada untuk menerima atau menolak lot

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21 TAJUK MONOGRAF : GEODESI GEOMETRIK KANDUNGAN PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH 7 BAB 1 PENGENALAN 1.1 Tafsiran 10 1.2 Sejarah 12 1.3 Bentuk Bumi 21 BAB 2 CIRI-CIRI ELIPSOID 2.1 Sifat Khas Elip dan

Διαβάστε περισσότερα

MATEMATIK TINGKATAN 2

MATEMATIK TINGKATAN 2 Kurikulum Bersepadu Sekolah Menengah SPESIFIKASI KURIKULUM MATEMATIK Bahagian Pembangunan Kurikulum Kementerian Pelajaran Malaysia 2011 Buku Spesifikasi Kurikulum Matematik Tingkatan 2 ini ialah terjemahan

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

FAKULTI SAINS DAN TEKNOLOGI UNIVERSITI KEBANGSAAN MALAYSIA STSF 1413 SAINS FIZIK PEPERIKSAAN PERTENGAHAN SEMESTER CONTOH SOALAN

FAKULTI SAINS DAN TEKNOLOGI UNIVERSITI KEBANGSAAN MALAYSIA STSF 1413 SAINS FIZIK PEPERIKSAAN PERTENGAHAN SEMESTER CONTOH SOALAN FAKULTI SAINS DAN TEKNOLOGI UNIVERSITI KEBANGSAAN MALAYSIA STSF 1413 SAINS FIZIK PEPERIKSAAN PERTENGAHAN SEMESTER CONTOH SOALAN JAWAB SEMUA SOALAN. JAWAB DENGAN MENGHITAMKAN PADA NOMBOR DALAM BORANG, JAWAPAN

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SPM 2004 FIZIK

PEPERIKSAAN PERCUBAAN SPM 2004 FIZIK SULIT Fizik Kertas 1 September 2004 1 1/4 jam MKT RENH SINS MR PEPERIKSN PERUN SPM 2004 FIZIK Kertas 1 Satu jam lima belas minit JNGN UK KERTS SOLN INI SEHINGG IERITHU 1. Kertas soalan ini adalah dalam

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

BAB 4 ANALISIS DAN PENEMUAN KAJIAN. borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden BAB 4 ANALISIS DAN PENEMUAN KAJIAN Bab ini akan menerangkan hasil keputusan kajian yang diperolehi oleh pengkaji melalui borang soal selidik yang telah diedarkan kepada responden dan hasil temu bual responden

Διαβάστε περισσότερα

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi - Pengenalan - Skop Kajian Makroekonomi - Contoh Analisis Makroekonomi - Objektif Kajian Makroekonomi - Pembolehubah Makroekonomi - Dasar

Διαβάστε περισσότερα

PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000

PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM KM 7+000 PERENCANAAN JALAN ALTERNATIF & PERKERASAN LENTUR TANJUNG SERDANG KOTABARU,KALIMANTAN SELATAN KM 4+000 KM 7+000 LATAR BELAKANG TUJUAN DAN BATASAN MASALAH METODOLOGI PERENCANAAN HASIL Semakin meningkatnya

Διαβάστε περισσότερα

EAG 345/2 - Analisis Geoteknik

EAG 345/2 - Analisis Geoteknik UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

1 Bahan manakah yang TIDAK merupakan makromolekul (molekul raksasa)? 2 Bahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena).

1 Bahan manakah yang TIDAK merupakan makromolekul (molekul raksasa)? 2 Bahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena). ahagian 1 ahan manakah yang TIK merupakan makromolekul (molekul raksasa)? selulosa kanji getah asli garam biasa 2 ahan berikut merupakan oligomer bagi hasil pempolimeran etilena (etena). dekana sikloheksena

Διαβάστε περισσότερα

BAB 8 PENENTUAN KEDALAMAN

BAB 8 PENENTUAN KEDALAMAN Pengenalan BAB 8 PENENTUAN KEDALAMAN Proses penentuan kedalaman/penentudalaman perlulah dijalankan dengan seberapa tepat yang boleh kerana jika berlaku kesilapan, ianya akan memberikan gambaran yang salah

Διαβάστε περισσότερα

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1 MODUL PENINGKATAN AKADEMIK SPM 207 PERATURAN PEMARKAHAN KERTAS 2 (453/2) BAHAGIAN A Nombor (a) (i) P R P (b)(i) Ralat rawak // ralat paralaks (ii) Ulang eksperimen, kira bacaan purata//kedudukan mata berserenjang

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK SULIT Fizik Kertas 1 September 2006 1 ¼ jam MKT RENH SINS MR PEPERIKSN PERUN SIJIL PELJRN MLYSI 2006 FIZIK Kertas 1 Satu jam lima belas minit JNGN UK KERTS SOLN INI SEHINGG IERITHU 1. Kertas soalan ini

Διαβάστε περισσότερα

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK

KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK KEMENTERIAN PELAJARAN MALAYSIA KURIKULUM STANDARD SEKOLAH RENDAH DUNIA MUZIK TAHUN TIGA DOKUMEN STANDARD KURIKULUM STANDARD SEKOLAH RENDAH (KSSR) MODUL TERAS TEMA DUNIA MUZIK TAHUN TIGA BAHAGIAN PEMBANGUNAN

Διαβάστε περισσότερα

Keapungan. Objektif. Pendahuluan

Keapungan. Objektif. Pendahuluan Pelajaran 6 Pelajaran 6 Keapungan Ojektif Setelah hais mempelajari pelajaran ini, anda dapat Mentakrifkan Prinsip Archimedes Mentakrifkan rumus untuk pusat meta jasad terapung Memuat analisis mencari tinggi

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα