Tegangan Permukaan. Kerja

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tegangan Permukaan. Kerja"

Transcript

1 Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil. Kesan permukaan boleh dinyatakan dalam bentuk tenaga Helmholtz atau tenaga Gibbs. Dan perkaitan kedua-dua tenaga dan luas permukaan adalah kerja yang diperlukan untuk mengubah luas. Kerja yang dilakukan untuk mengubah tenaga sistem adalah sama dengan da atau dg. Jika perubahan luas dσ, kerja yang diperlukan ialah dw = γdσ dimana γ ialah tegangan permukaan. Kerja yang dilakukan pada suhu dan tekanan tetap adalah sama dengan perubahan tenaga Helmholtz, da, da = γdσ apabila dσ<0 maka da 0 maka pemukaan cecair akan mengecut. Katakan permukaan cecair diregang supaya keluasannya bertambah besar (Rajah 1). Rajah 1 1

2 Pertambahan luas, dσ dσ = lh Pertambahan luas didarabkan dengan kerana terdapat dua permukaan cecair sebelah menyebelah. Kerja yang dilakukan untuk meregang permukaan cecair ialah w = γ x dσ w = γ x lh γ disebut tegangan permukaan dalam unit Nm -1 (J/m ) Telah diketahui bahawa kerja adalah daya (F) x jarak (h) w = Fh F = γl Akibat dari pengecutan permukaan, cecair boleh berbentuk gelembung atau titisan. Gelembung Gelembung ialah wap atau udara yang terperangkap dalam lapisan nipis cecair. Gelembung terdiri dari dua permukaan iaitu sebelah luar dan sebelah dalam. Gelembung dalam cecair mempunyai satu lapisan (Rajah ). Rajah Perubahan luas gelembung dσ, apabila jejari r bertambah dr, dσ = 4π(r +dr) -4πr = 8πrdr (ungkapan dr diabaikan kerana bernilai kecil)

3 dw = γ8πrdr = F xdr F = 8πγr Daya yang bertindak ke dalam, F d ialah F d = 4πr P luar + 8πγr Daya yang bertindak keluar, F l ialah F l = 4πr P dlm Daya ke luar = Daya ke dalam 4πr P dlm = 4πr P luar + 8πγr γ P dlm P luar = r Persamaan ini disebut sebagai persamaan Laplace. Titisan Titisan adalah cecair dengan isipadu kecil dalam keseimbangan dengan wapnya dan juga udara. Tekanan wap dalam titisan tidak sama dengan tekanan wap permukaan mendatar. Katakan tekanan wap titisan P w dan tekanan wap cecair pukal P o. Jika perubahan tekanan dp cecair dalam keadaan pukal kepada bentuk titisan melibatkan pemindahan cecair dalam unit mol ialah dn. Jika gas dianggap unggul perubahan tenaga bebas atau kerja ialah dw = (dn)rt ln P w /P o Tenaga yang diperlukan untuk menghasilkan permukaan melengkung, dw dw = γda = γ[4π(r +dr ) - 4πr ] = 8πγrdr (dn)rt ln P w /P o = 8πγrdr Perubahan mol cecair ialah dn = 4πr dr (ρ/m) 4πr dr(ρ/m)rt ln (P w /P o )= 8πγrdr RT ln P w /P o = γm γ = rρ r Vm 3

4 atau P w = P e o γvm / rrt Persamaan ini dikenali sebagai persamaan Kelvin. Tindakan rerambut Kecenderungan cecair naik dalam tiub rerambut disebut tindakan rerambut akibat dari teangan permukaan. Apabila tiub rerambut diletakkan dalam cecair (Rajah 3), terdapat kecenderungan cecair melekat pada permukaan dinding rerambut. Rajah 3 Tenaga akan berkurangan jika lebih luas lapisan nipis meliputi dinding kaca. Permukaan cecair dalam tiub rerambut berbentuk melengkung. Tekanan luar P l menekan cecair naik melalui rerambut sehingga keseimbangan hidrostatik. Tekanan di bawah permukaan melengkung cecair, P P = P l γ r Tekanan yang diwujudkan oleh cecair dalam tiub rerambut, P P = ρgh dimana ρ ialah ketumpatan cecair, h ialah kenaikan cecair di dalam tiub rerambut, g ialah pecutan graviti. 4

5 γ Pl = Pe + ρgh r ρghr γ = Jejari permukaan melengkung tidak sama dg jejari rerambut kecuali sudut sentuh θ adalah kecil. Katakan jejari rerambut r jejari permukaan melengkung r, maka r = cosθ r' r' γ = ρgh cosθ ρghr' = jikaθ 0 Dengan kaedah perbandingan, tegangan permukaan cecair yang tidak diketahui boleh ditentukan dari nilai ketumpatan. γ γ 1 ρ1hi = ρ h Antaramuka cecair pepejal Cecair yang terdapat pada permukaan pepejal boleh berbentuk titisan atau terserak. Bentuk cecair pada permukaan pepejal adalah bergantung kepada sudut sentuh, θ diantara cecair dengan permukaan pepejal. Katakan pada keadaan keseimbangan sudut sentuh titisan dengan permukaan pepejal ialah θ dan cecair terserak dengan penambahan luas, da (Rajah 4). Rajah 4 5

6 Maka penambahan luas antara muka cecair wap ialah dacosθ dan penambahan tenaga bebas sistem ialah dg. dg = γ PC da - γ PG da + γ CG dacosθ Pada keadaan keseimbangan dg = 0, maka γ PC - γ PG + γ CG cosθ = 0 Sudut sentuh, θ boleh ditentukan dari persamaan di atas. Jika sudut sentuh bernilai sifar maka, γ PC - γ PG + γ CG = 0 Keterserakan cecair pada permukaan dinyatakan sebagai pekali serakan, S yang dinyatakan sebagai, S = γ PC - γ PG + γ CG Apabila S bernilai positif atau sifar cecair akan terserak pada permukaan pepejal. Sebaliknya apabila S bernilai negatif cecair berbentuk titisan pada permukaan pepejal. Kerja lekitan Kerja lekitan, w a ialah kerja yang diperlukan untuk memisahkan permukaan antara muka cecair pepejal sehingga terbentuk antara muka cecair gas dan antara muka pepejal gas (Rajah 5). pepejal cecair Rajah 5 6

7 Kerja lekitan, w a dinyatakan sebagai, w a = γ PG - γ CG + γ PC atau w a = γ CG ( 1 + cosθ ) 7

8 Soalan 1. Kirakan perbezaan tekanan dalam dan luaran bagi gelembung alkohol dengan jejari 0.1 mm pada 0 o C. (Tegangan permukaan alkohol pada 0 o C ialah. x 10 - Nm -1 ).. Kirakan kenaikan air di dalam salur rerambut dengan diameter 1 x 10-4 cm pada 5 o C. Kirakan tekanan yang diperlukan bagi menghalang air naik melalui rerambut. (Tegangan permukaan air pada 5 o C ialah 7.0 x 10 - Nm -1 ). 3. Kirakan tekanan wap titisan air pada suhu 5 o C dengan jejari nm. Tekanan wap pada permukaan datar ialah 3167 Pa. 4. Kirakan jejari titisan air apabila wap disejukkan dengan segera kepada 5 o C sehingga darjah ketepuan tercapai untuk membentuk titisan air di mana tekanan wap air 4 kali tekanan wap permukaan datar (P w /P o = 4). 5. Sudut sentuh titisan air pada permukaan lilin parafin ialah 105 o. Tentukan kerja lekitan air pada lilin parafin. (Tegangan permukaan air pada 5 o C ialah 7.0x10 - Nm -1 ) 8

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

LITAR ARUS ULANG ALIK (AU)

LITAR ARUS ULANG ALIK (AU) TA AUS UANG AK (AU) TA AUS UANG AK (AU) OBJEKTF AM Memahami litar asas arus Ulang alik dan litar sesiri yang mengandungi, dan. Unit OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menjelaskan bahawa dalam

Διαβάστε περισσότερα

ALIRAN LAPISAN SEMPADAN

ALIRAN LAPISAN SEMPADAN Bab 1 ALIRAN LAPISAN SEMPADAN 1.1 Kelikatan Kelikatan adalah sifat bendalir yang mengawal kadar alirannya. Ia terjadi disebabkan oleh cohesion yang wujud di antara zarah-zarah bendalir yang boleh diperhatikan

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

SISTEM KOLOID. Pengenalan. Pengkelasan koloid

SISTEM KOLOID. Pengenalan. Pengkelasan koloid SISTEM KOLOID Pengenalan Kajian mengenai koloid bermula pada awal kurun ke 19 oleh Graham. Sistem koloid yang mula dikaji ialah jelatin dan gam. Perkataan koloid adalah berasal dari perkataan Greek yang

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia

SEE 3533 PRINSIP PERHUBUNGAN Bab III Pemodulatan Sudut. Universiti Teknologi Malaysia SEE 3533 PRINSIP PERHUBUNGAN Bab III Universiti Teknologi Malaysia 1 Pengenalan Selain daripada teknik pemodulatan amplitud, terdapat juga teknik lain yang menggunakan isyarat memodulat untuk mengubah

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

Persamaan Diferensial Parsial

Persamaan Diferensial Parsial Persamaan Diferensial Parsial Turunan Parsial f (, ) Jika berubah ubah sedangkan tetap, adalah fungsi dari dan turunanna terhadap adalah f (, ) f (, ) f (, ) lim 0 disebut turunan parsialpertama dari f

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu.

Perubahan dalam kuantiti diminta bagi barang itu bergerak disepanjang keluk permintaan itu. BAB 3 : ISI RUMAH SEBAGAI PENGGUNA SPM2004/A/S3 (a) Rajah tersebut menunjukkan keluk permintaan yang mencerun ke bawah dari kiri ke kanan. Ia menunjukkan hubungan negatif antara harga dengan kuantiti diminta.

Διαβάστε περισσότερα

ALIRAN BOLEH MAMPAT SATU DIMENSI

ALIRAN BOLEH MAMPAT SATU DIMENSI Bab 3 ALIRAN BOLEH MAMPAT SATU DIMENSI 3.1 Bendalir Tak Boleh Mampat dan Boleh Mampat Bendalir tak boleh mampat tidak wujud dalam praktis. Sebutan ini sebenarnya digunakan untuk merujuk kepada bendalir

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

BAB 2 PEMODULATAN AMPLITUD

BAB 2 PEMODULATAN AMPLITUD BAB MODULATAN LITUD enghantaran iyarat yang engandungi akluat elalui atu aluran perhubungan eerlukan anjakan frekueni iyarat akluat kepada julat frekueni yang euai untuk penghantaran - roe ini diapai elalui

Διαβάστε περισσότερα

Kuliah 4 Rekabentuk untuk kekuatan statik

Kuliah 4 Rekabentuk untuk kekuatan statik 4-1 Kuliah 4 Rekabentuk untuk kekuatan statik 4.1 KEKUATAN STATIK Beban statik merupakan beban pegun atau momen pegun yang bertindak ke atas sesuatu objek. Sesuatu beban itu dikatakan beban statik sekiranya

Διαβάστε περισσότερα

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA

MENGENALI FOTON DAN PENGQUANTUMAN TENAGA MENGENALI FOTON DAN PENGQUANTUMAN TENAGA Oleh Mohd Hafizudin Kamal Sebelum wujudnya teori gelombang membujur oleh Huygens pada tahun 1678, cahaya dianggap sebagai satu aliran zarah-zarah atau disebut juga

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat

Pelajaran 9. Persamaan Bernoulli. Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Pelajaran 9 Persamaan Bernoulli OBJEKTIF Setelah selesai memelajari Pelajaran ini anda seatutnya daat Mentakrifkan konse kadar aliran jisim Mentakrifkan konse kadar aliran Menerangkan konse halaju urata

Διαβάστε περισσότερα

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi

BAB 4 HASIL KAJIAN. dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi BAB 4 HASIL KAJIAN 4.1 Pengenalan Bahagian ini menghuraikan tentang keputusan analisis kajian yang berkaitan dengan maklumat latar belakang responden, impak modal sosial terhadap prestasi pendidikan pelajar

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

ALIRAN BENDALIR UNGGUL

ALIRAN BENDALIR UNGGUL Bab 2 ALIRAN BENDALIR UNGGUL 2.1 Gerakan Zarah-zarah Bendalir Untuk analisis matematik gerakan bendalir, dua pendekatan biasanya digunakan: 1. Kaedah Lagrangian (a) Kajian pola aliran SATU zarah individu

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

BAB 2 PEMACU ELEKTRIK

BAB 2 PEMACU ELEKTRIK BAB 2 PEMACU ELEKTRIK PENGENALAN Kebanyakan perindustrian moden dan komersial menggunakan pemacu elektrik berbanding dengan pemacu mekanikal kerana terdapat banyak kelebihan. Di antaranya ialah : a) binaannya

Διαβάστε περισσότερα

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1

MODUL PENINGKATAN AKADEMIK SPM 2017 PERATURAN PEMARKAHAN KERTAS 2 (4531/2) BAHAGIAN A. 1(a) (i) P R P 1 (b)(i) Ralat rawak // ralat paralaks 1 MODUL PENINGKATAN AKADEMIK SPM 207 PERATURAN PEMARKAHAN KERTAS 2 (453/2) BAHAGIAN A Nombor (a) (i) P R P (b)(i) Ralat rawak // ralat paralaks (ii) Ulang eksperimen, kira bacaan purata//kedudukan mata berserenjang

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali

LITAR ELEKTRIK 1 EET101/4. Pn. Samila Mat Zali LITAR ELEKTRIK 1 EET101/4 Pn. Samila Mat Zali STRUKTUR KURSUS Peperiksaan Akhir : 50% Ujian teori : 10% Mini projek : 10% Amali/praktikal : 30% 100% OBJEKTIF KURSUS Mempelajari komponen-komponen utama

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015

Proses Pembakaran 1. Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1 Presenter: Dr. Zalilah Sharer 2014 Pusat Teknologi Gas Universiti Teknologi Malaysia 28 March 2015 Proses Pembakaran 1. Sumber Tenaga Dunia 2. Bahanapi Gas Komponen, Sifat ( SG, CV,

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

PENGENALAN KEPADA MESIN BENDALIR

PENGENALAN KEPADA MESIN BENDALIR Bab 4 PENGENALAN KEPADA MESIN BENDALIR 4.1 Pengkelasan Mesin Hidraulik Tenaga wujud dalam berbagai bentuk. Tenaga hidraulik adalah tenaga yang terdapat pada bendalir dalam beberapa bentuk; kinetik, tekanan,

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya

ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya ASAS PENGUKURAN -FIZIK- SULAIMAN REJAB Penolong Pegawai Sains Pusat Asasi Sains, Universiti Malaya NHB_Jun2014 1 Objektif: Adalah diharapkan diakhir kursus ini peserta akan : 1. Mengenal pasti alat-alat

Διαβάστε περισσότερα

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON

UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON Makmal Sains Bahan UJIKAJI 1 : PENYEDIAAN SPESIMEN DAN KAJIAN METALOGRAFI KELULI KARBON (1) Tujuan (a) (b) Mempelajari teknik penyediaan spesimen Mempelajari metalografi keluli karbon yang telah mengalami

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 6: Rantai Markov Waktu Kontinu Statistika FMIPA Universitas Islam Indonesia Rantai Markov Waktu Kontinu Peluang Kesetimbangan Pada bab ini, kita akan belajar mengenai rantai markov waktu kontinu yang

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

E513 : TEKNIK ELEKTRONIK BAB 2 : 1

E513 : TEKNIK ELEKTRONIK BAB 2 : 1 E513 : TEKNIK ELEKTRONIK BAB 2 : 1 BAB 2 : TUMBESARAN HABLUR DAN PENYEDIAAN WAFER OBJEKTIF : Di akhir pelalajaran ini pelajar akan dapat : a. Mentakrifkan istilah hablur tunggal, polihablur dan amorfus

Διαβάστε περισσότερα

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO

Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND LOGO Sebaran Kontinu HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA FMIPA UNAND Kompetensi menguraikan ciri-ciri suatu kurva normal menentukan luas daerah dibawah kurva normal menerapkan sebaran normal dalam

Διαβάστε περισσότερα

UNIT 5 PENUKAR AU-AT (PENERUS)

UNIT 5 PENUKAR AU-AT (PENERUS) PENUKAR AU-AT (PENERUS) E4140/UNIT 5/1 UNIT 5 PENUKAR AU-AT (PENERUS) OBJEKTIF Objektif am : Mengenali dan memahami jenis-jenis litar penukaran penukar AU-AT (Penerus) Objektif khusus : Di akhir unit ini

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

Keapungan. Objektif. Pendahuluan

Keapungan. Objektif. Pendahuluan Pelajaran 6 Pelajaran 6 Keapungan Ojektif Setelah hais mempelajari pelajaran ini, anda dapat Mentakrifkan Prinsip Archimedes Mentakrifkan rumus untuk pusat meta jasad terapung Memuat analisis mencari tinggi

Διαβάστε περισσότερα

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER

STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER STRUKTUR BAJA 2 TKS 1514 / 3 SKS PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS JEMBER Winda Tri Wahyuningtyas Gati Annisa Hayu Plate Girder Plate girder adalah balok besar yang dibuat dari susunan yang disatukan

Διαβάστε περισσότερα

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir.

Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN. 1 Mentakrif tabiat bendalir. Bendalir: Pengenalan 1 Pelajaran 1 BENDALIR : PENGENALAN OBJEKTIF PELAJARAN Setelah selesai mengikuti pelajaran ini anda seharusna dapat: 1 Mentakrif tabiat bendalir. 2 Mengenalpasti bila konsep mekanik

Διαβάστε περισσότερα

Kuliah 2 Analisis Daya & Tegasan

Kuliah 2 Analisis Daya & Tegasan -1 Kuliah Analisis Daya & Tegasan.1 ANALISIS DAYA a. Kepentingan sebelum sebarang analisis kejuruteraan dapat dilakukan, kita mesti ketahui dulu dayadaya yang bertindak ke atas sesuatu objek. Kemudian

Διαβάστε περισσότερα

STATIK BENDALIR: TEKANAN. Setelah selesai mengikuti pelajaran ini anda seharusnya dapat. Mentakrif dan membuktikan hukum Pascal tentang tekanan.

STATIK BENDALIR: TEKANAN. Setelah selesai mengikuti pelajaran ini anda seharusnya dapat. Mentakrif dan membuktikan hukum Pascal tentang tekanan. Statik Bendalir: Tekanan 8 Pelajaran STATIK BENDALIR: TEKANAN OBJEKTIF PELAJARAN Setelah selesai mengikuti elajaran ini anda seharusnya daat Mentakrif dan membuktikan hukum Pascal tentang tekanan. Membuktikan

Διαβάστε περισσότερα

KEMENTERIAN PELAJARAN MALAYSIA

KEMENTERIAN PELAJARAN MALAYSIA KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu

Διαβάστε περισσότερα

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH

BAB 1 PENGENALAN 1.1 PENDAHULUAN 1.2 PENYATAAN MASALAH BAB 1 PENGENALAN 1.1 PENDAHULUAN Dalam perkembangan teknologi sudah berkembang pesat begitu juga teknologi penetesan yang telah sanggup menciptakan alat penetas buatan yang dikenali sebagai alat penetas

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

BAB 8 PENENTUAN KEDALAMAN

BAB 8 PENENTUAN KEDALAMAN Pengenalan BAB 8 PENENTUAN KEDALAMAN Proses penentuan kedalaman/penentudalaman perlulah dijalankan dengan seberapa tepat yang boleh kerana jika berlaku kesilapan, ianya akan memberikan gambaran yang salah

Διαβάστε περισσότερα

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA

SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA SELAMAT DATANG KE KULIAH 12 EX2023 MAKROEKONOMI II FAKULTI EKONOMI UNIVERSITI KEBANGSAAN MALAYSIA Prof. Madya Dr. Mohd Zainudin Saleh mzsaleh@ukm.my www.ukm.my/zainudin 29/01/2004 Kuliah 12 1 MAKROEKONOMI

Διαβάστε περισσότερα

Mana-mana 3 dari atas Cas nucleus bertambah merentasi Q, S dan T. Tarikan nucleus terhadap electron dalam petala

Mana-mana 3 dari atas Cas nucleus bertambah merentasi Q, S dan T. Tarikan nucleus terhadap electron dalam petala SKEMA JAWAPAN PPC KERTAS 2 a i R ii U iii P b S dan T + c Membentuk ion berwarna Membentuk ion kompleks Mempunyai lebih dari satu nombor pengoksidaan Mempunyai sifat pemangkin Mana-mana 3 dari atas Cas

Διαβάστε περισσότερα

CADASTRE SURVEY (SGHU 2313)

CADASTRE SURVEY (SGHU 2313) CADASTRE SURVEY (SGHU 2313) WEEK 8-ADJUSTMENT OF OBSERVED DATA SR DR. TAN LIAT CHOON 07-5530844 016-4975551 1 OUTLINE Accuracy of field observations Misclosure in cadastre survey Bearing ('m' and 'c' correction

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

SKMM 2323 Mekanik Bendalir II

SKMM 2323 Mekanik Bendalir II Nota Kuliah SKMM 2323 Mekanik Bendalir II Abu Hasan ABDULLAH Nota Kuliah SKMM 2323 Mekanik Bendalir II Aliran Lapisan Sempadan Aliran Bendalir Unggul Aliran Boleh Mampat Satu Dimensi Pengenalan Kepada

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

EAG 345/2 - Analisis Geoteknik

EAG 345/2 - Analisis Geoteknik UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan.

FIZIK. Daya dan Gerakan TINGKATAN 4. Cikgu Khairul Anuar. Cikgu Desikan SMK Changkat Beruas, Perak. Bab 2. SMK Seri Mahkota, Kuantan. FIZIK TINGKATAN 4 Bab 2 Daya dan Gerakan Disunting oleh Cikgu Desikan SMK Changkat Beruas, Perak Cikgu Khairul Anuar Dengan kolaborasi bersama SMK Seri Mahkota, Kuantan FIZIK TINGKATAN 4 2016 Bab 2 Daya

Διαβάστε περισσότερα

PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan

PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan PENGERTIAN VOKAL: Vokal ialah bunyi-bunyi bersuara, dan apabila membunyikannya udara daripada paru-paru keluar melalui rongga mulut tanpa sekatan dan gangguan. Bunyi-bunyi vokal mempunyai ciriciri kelantangan

Διαβάστε περισσότερα

Bab 2. Loji Kuasa Stim

Bab 2. Loji Kuasa Stim Bab Loji Kuaa Stim tujuan - penjanaan tenaga elektrik bendalir kerja iala air baan api arang batu, ga ali, minyak komponen utama dandang, turbin, pemeluwap, pam air uapan. Pretai Loji Penggunaan tim tentu

Διαβάστε περισσότερα

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil., hlm. 143 156 c Jabatan Matematik, UTM. Kuasa Dua Tensor Yang Tak Abelan bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan

Διαβάστε περισσότερα

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK SULIT Fizik Kertas 1 September 2006 1 ¼ jam MKT RENH SINS MR PEPERIKSN PERUN SIJIL PELJRN MLYSI 2006 FIZIK Kertas 1 Satu jam lima belas minit JNGN UK KERTS SOLN INI SEHINGG IERITHU 1. Kertas soalan ini

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA

REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA REKABENTUK PERMUKAAN BENTUK BEBAS MENGGUNAKAN PERSAMAAN PEMBEZAAN SEPARA (PPS) Oleh ZAINOR RIDZUAN BIN YAHYA Tesis yang diserahkan untuk memenuhi keperluan bagi Ijazah Sarjana Sains (Matematik) Jun 2008

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

MODUL SOALAN PENERANGAN FIZIK SPM

MODUL SOALAN PENERANGAN FIZIK SPM MODUL SOALAN PENERANGAN FIZIK SPM TINGKATAN 4 BAB 1 1. Terangkan perbezaan antara kejituan dan kepersisan alat pengukuran menggunakan contoh yang sesuai. Kejituan adalah kebolehan alat untuk memberikan

Διαβάστε περισσότερα

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005

EMT361 Keboleharapan & Analisis Kegagalan. Dr Zuraidah Mohd Zain Julai, 2005 EMT361 Keboleharapan & Analisis Kegagalan Dr Zuraidah Mohd Zain zuraidah@kukum.edu.my Julai, 2005 Overview untuk minggu 1-3 Minggu 1 Overview terma, takrifan kadar kegagalan, MTBF, bathtub curve; taburan

Διαβάστε περισσότερα

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi

EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi EPPD1023: Makroekonomi Kuliah 1: Pengenalan Kepada Makroekonomi - Pengenalan - Skop Kajian Makroekonomi - Contoh Analisis Makroekonomi - Objektif Kajian Makroekonomi - Pembolehubah Makroekonomi - Dasar

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan.

2.1 Pengenalan. Untuk isyarat berkala, siri Fourier digunakan untuk mendapatkan spektrum frekuensi dalam bentuk spektrum garisan. . JELMAAN FOURIER DAN PENGGUNAANNYA. Pengenalan Unuk isyara berkala, siri Fourier digunakan unuk mendapakan spekrum frekuensi dalam benuk spekrum garisan. Unuk isyara ak berkala, garisan-garisan spekrum

Διαβάστε περισσότερα

SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I

SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.

Διαβάστε περισσότερα

BAB V DESAIN TULANGAN STRUKTUR

BAB V DESAIN TULANGAN STRUKTUR BAB V DESAIN TULANGAN STRUKTUR 5.1 Output Penulangan Kolom Dari Program Etabs ( gedung A ) Setelah syarat syarat dalam pemodelan struktur sudah memenuhi syarat yang di tentukan dalam peraturan SNI, maka

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

BAB I PENGENALAN. 1.1 Latar Belakang Kajian

BAB I PENGENALAN. 1.1 Latar Belakang Kajian BAB I PENGENALAN 1.1 Latar Belakang Kajian Masalah kegagalan cerun sememangnya sesuatu yang tidak dapat dielakkan sejak dari dulu hingga sekarang. Masalah ini biasanya akan menjadi lebih kerap apabila

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016

Bilangan Euler(e) Rukmono Budi Utomo Pengampu: Prof. Taufiq Hidayat. March 5, 2016 Bilangan Euler(e) Rukmono Budi Utomo 30115301 Pengampu: Prof. Taufiq Hidayat March 5, 2016 Asal Usul Bilangan Euler e 1 1. Bilangan Euler 2 3 4 Asal Usul Bilangan Euler e Bilangan Euler atau e = 2, 7182818284...

Διαβάστε περισσότερα