Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα"

Transcript

1 Εργασία στα Γενικευμένα Γραμμικά Μοντέλα Μ. Παρζακώνης ΜΕΣ/ 06015

2 Ο παρακάτω πίνακας δίνει τα αποτελέσματα 800 αιτήσεων για δάνειο σε μία τράπεζα. Ο πίνακας παρουσιάζει τον αριθμό των δανείων που εγκρίθηκαν, ανάλογα με το εισόδημα του πελάτη (με τρεις κατηγορίες: χαμηλό, μέτριο, υψηλό) και μία βαθμολογία που χρησιμοποιεί η τράπεζα και προκύπτει από τα αρχεία της σε σχέση με την οικονομική φερεγγυότητα του πελάτη. Σε κάθε πελάτη δίνεται μία βαθμολογία Α, Β, ή Γ ανάλογα με το πόσο αξιόπιστος θεωρείται οικονομικά (ο βαθμός Α αντιστοιχεί στη μεγαλύτερη αξιοπιστία). Έγκριση δανείου Εισόδημα Βαθμολογία πελάτη Ναι Όχι Χαμηλό Α Β Γ Μέτριο Α Β Γ Υψηλό Α 73 9 Β Γ (α) Να εξεταστεί αν το εισόδημα και η βαθμολογία του πελάτη επηρεάζει την πιθανότητα έγκρισης του δανείου. (β) Είναι η αλληλεπίδραση μεταξύ των δύο ερμηνευτικών μεταβλητών στο μοντέλο στατιστικά σημαντική; (γ) Επιλέγοντας ένα κατάλληλο μοντέλο λογιστικής παλινδρόμησης, το οποίο θα αναφέρετε, να δοθούν οι εκτιμώμενες τιμές για το πλήθος των ατόμων που το δάνειό τους αναμένεται να εγκριθεί ανάλογα με το εισόδημα και τη βαθμολογία τους. (δ) Με βάση το ίδιο μοντέλο, να εκτιμηθεί σημειακά η σχετική πιθανότητα έγκρισης δανείου για κάποιον με μέτριο εισόδημα και βαθμολογία Γ. (ε) Πόσο αυξάνεται (ως ποσοστό, %) η πιθανότητα έγκρισης δανείου σε κάποιον με υψηλό εισόδημα και βαθμολογία Γ σε σχέση με κάποιον με μέτριο εισόδημα και βαθμολογία Γ; Να εκτιμηθεί ο λόγος σχετικής πιθανότητας ανάμεσα στις δύο αυτές κατηγορίες πελατών. (στ) Για κάποιον ο οποίος έχει χαμηλό εισόδημα, και για καθεμία από τις 3 δυνατές βαθμολογίες αξιολόγησης (Α, Β, Γ), να δοθεί ένα διάστημα εμπιστοσύνης 95% για την πιθανότητα έγκρισης του δανείου. (ζ) Κάνοντας και όποιους άλλους ελέγχους θεωρείτε απαραίτητους, να συνοψίσετε τα αποτελέσματα από την παραπάνω ανάλυση για τη σχέση μεταξύ των μεταβλητών με τρόπο ώστε αυτά να είναι κατανοητά για κάποιον ο οποίος δεν είναι ειδικός στη στατιστική.

3 Σημείωση Προφανώς, έχει γίνει κάποιο τυπογραφικό λάθος στον αυθεντικό πίνακα της εργασίας rev grade apr dapr Καθώς το άθροισμα των παρατηρήσεων είναι 790 και όχι 800 που αναφέρεται στην εκφώνηση. Λογικά το 9 είναι 19

4 Στο επόμενο γράφημα έχουμε την αναπαράσταση του παρατηρούμενο πίνακα Given : Rev counts Given : AA Grade Παρατηρούμε ότι ανάμεσα στις κατηγορίες της βαθμολογίας των αιτούντων υπάρχουν μεγάλες διαφορές Θέλουμε να ελέγξουμε εάν οι μεταβλητές εισόδημα (rev) και βαθμολογία(grade) επηρεάζουν την πιθανότητα έγκρισης της αίτησης δανείου. Αυτό μπορούμε να το υλοποιήσουμε «μέσα» από ένα μοντέλο λογιστικής παλινδρόμησης Το μοντέλο θα είναι (στην γλώσσα του R) apr.total~rev+grade, όπου apr.total το ποσοστό επιτυχίας (έγκρισης της αίτησης)) Για να ελέγξουμε τη σημαντικότητα των παραγόντων χρησιμοποιούμε το πίνακα ανάλυσης απόκλισης.

5 Analysis of Deviance Table Model 1: apr.total ~ 1 Model 2: apr.total ~ rev + grade Resid. Df Resid. Dev Df Deviance P(> Chi ) e-08 Βλέπουμε ότι σε ε.σ 5% το εισόδημα και η βαθμολογία του συστήματος που εφαρμόζει η τράπεζα είναι σημαντική (από κοινού). Για να ελέγξουμε την σημαντικότητα κάθε παράγοντα ξεχωριστά έχουμε Analysis of Deviance Table Model: binomial, link: logit Response: apr.total Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev P(> Chi ) NULL rev e-08 grade e-09 Το συμπέρασμα είναι ότι και οι δύο παράγοντες είναι σημαντικές προσθήκες στο μοντέλο. Για να ελέγξουμε ένα υπάρχει μια σημαντική αλληλεπίδραση μεταξύ των παραγόντων εισόδημα και βαθμολογία απλά συγκρίνουμε τα δύο μοντέλα apr.total~rev+grade apr.total~rev*grade Και πάλι μέσω του πίνακα ανάλυσης απόκλισης Analysis of Deviance Table Model 1: apr.total ~ rev + grade Model 2: apr.total ~ rev * grade Resid. Df Resid. Dev Df Deviance P(> Chi ) e Η αλληλεπίδραση των δύο μεταβλητών δεν είναι σημαντική (αφού η διαφορά τους είναι στατιστικά μηδενική, τα δύο μοντέλα είναι ισοδύναμα) Για να βρούμε ένα κατάλληλο μοντέλο λογιστικής παλινδρόμησης μπορούμε να αρχίσουμε από το μηδενικό μοντέλο και να προσθέτουμε σε κάθε βήμα και ένα παράγοντα Δηλαδή

6 apr.total~1 apr.total~rev apr.total~rev+grade apr.total~rev*grade και τελικά να συγκρίνουμε το κατά πόσο διαφέρει το ένα από το άλλο (διαδοχικά). Όταν βρεθούν δύο μοντέλα με (στατιστικά) μηδενική διαφορά τότε έχουμε βρει το επιθυμητό Analysis of Deviance Table Model 1: apr.total ~ 1 Model 2: apr.total ~ rev Model 3: apr.total ~ rev + grade Model 4: apr.total ~ rev * grade Resid. Df Resid. Dev Df Deviance P(> Chi ) e e e Βλέπουμε ότι το μοντέλο των κύριων επιδράσεων είναι το μοντέλο το οποίο επιλέγεται με αυτή τη μέθοδο (το μοντέλο 3 και 4 είναι ισοδύναμα με την έννοια ότι δεν προσφέρει κάτι η εισαγωγή της αλληλεπίδρασης) Συνεπώς, το μοντέλο με το οποίο δουλεύουμε από εδώ και πέρα είναι το Οι εκτιμήσεις του μοντέλου είναι apr.total ~ rev + grade Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) rev rev e-08 *** grade grade e-09 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Εκτίμηση της πιθανότητας έγκρισης της αίτησης ενός ατόμου με μέτριο εισόδημα και βαθμολογία Γ είναι η Για να συγκρίνουμε την ποσοστιαία μεταβολή της πιθανότητας έγκρισης μιας αίτησης όταν μεταβάλλεται η κατηγορία εισοδήματος από μέτριο σε υψηλό και παραμένουμε στη βαθμολογική κλίμακα Γ απλά fit[9,1]/fit[6,1]-1 >

7 Για να εκτιμήσουμε το λόγο σχετικής πιθανότητας υπολογίζουμε τα logit των δύο κατηγοριών μέσω της εντολής logits <-predict.glm(g2,newdata=pi2,se.fit=t,type="link") logit s.e Η διαφορά των logit των κατηγοριών θα είναι ο λογάριθμος του λογού σχετικών πιθανοτήτων logits[9,1] -logits[6,1] > ή αλλιώς (χρησιμοποιώντας μόνο τις εκτιμήσεις των παραμέτρων) Και τελικά logor.3.2< > OR.3.2<-exp(logOR.3.2) > Συνεπώς, ο λόγος πιθανοτήτων έγκρισης της αίτησης ενός ατόμου με μέτριο εισόδημα είναι φορές μεγαλύτερος όταν αυτός βρίσκεται στην 3 η βαθμολογική κλίμακα σε σχέση με το λόγο πιθανοτήτων όταν βρίσκεται στην 2 η βαθμολογική κλίμακα. Για να δημιουργούμε τα δ.ε θα χρειαστούμε τα τυπικά σφάλματα των εκτιμήσεων. Με την παρακάτω εντολή δημιουργούμε ένα πίνακα με τις εκτιμήσεις και τα τυπικά σφάλματα τους fit<cbind(predict.glm(g2,newdata=pi2,se.fit=t,type="response")$"fit ",predict.glm(g2,newdata=pi2,se.fit=t,type="response")$"se.fit" ) fit se.fit

8 Τώρα μπορούμε να βρούμε τα (ασυμπτωτικά) δ.ε fit[1,1]+c(-1,1)*1.96*fit[1,2] > fit[2,1]+c(-1,1)*1.96*fit[2,2] > fit[3,1]+c(-1,1)*1.96*fit[3,2] > Τελικά, έχουμε τα επόμενα σημειακά και διαστημικά αποτελέσαντα της διαδικασίας εκτίμησης. (rev,grade) LB Estimate UB A,Α A,Β A,Γ για τις κατηγορίες Α,Β,Γ βαθμολογίας και σταθερή την κατηγορία χαμηλού εισοδήματος. Σε αυτό το σημείο θα ελέγξουμε την καλή προσαρμογή του μοντέλου Τελικά έχουμε goft <- function(fit) { pv<-pchisq(deviance(fit),df.residual(fit),lower.tail=f) cat('\n Pr(>Dev) =',pv,'\n')} Pr(>Dev) = Και δεν μπορούμε να απορρίψουμε την απόθεση της καλής προσαρμογής. Συνεπώς, ο επόμενος πίνακας έχει νόημα να χρησιμοποιηθεί rev grade apr dapr fit.apr fit.dapr Total Επανερχόμενοι στις εκτιμήσεις των logits βλέπουμε ότι οι 6 από τις 9 εκτιμήσεις είναι στατιστικά σημαντική, δηλ η πιθανότητα έγκρισης σε σχέση με την πιθανότητα απόρριψης είναι διαφορετική του 0.5 logit.fit logit.se.fit LB UB

9 Από το παραπάνω πίνακα βλέπουμε ότι η μετακίνηση προς τα ανώτερα εισοδηματικά κλιμάκια ( A B Γ) βελτιώνει τις σχετικές πιθανότητες (και των τριών κατηγοριών βαθμολογίας, αυτό είναι το νόημα του μοντέλου των κυριών επιδράσεων). Επίσης, παρατηρούμε ότι παράλληλα υπάρχει μια σχέση διάταξη ανάμεσα στις βαθμολογικές κατηγορίες. Είναι ξεκάθαρο ότι οι σχετικές πιθανότητες ευνοούν κάποιον όσο πιο «ψηλά» κατατάσσετε στην κλίμακα A B Γ (αν με συμβολίσουμε το «καλύτερο») [Τα ίδια συμπεράσματα προκύπτουν και χρησιμοποιώντας τις πιθανότητες αντί για τα logits] Τέλος, ελέγχουμε το μοντέλο για παραβιάσεις από τις υποθέσεις. Προσοχή χρειάζεται στις παρατηρήσεις με επιρροή (influential) Potentially influential observations of glm(formula = apr.total ~ rev + grade, family = "binomial", data = pi2,weights = total) : dfb.1_ dfb.rev2 dfb.rev3 dfb.grd2 dfb.grd3 dffit cov.r cook.d hat _* _* -2.28_* _* 3.03_* -5.14_* _* _* _* _* Τέλος, μερικά γραφήματα τα οποία δείχνουν ότι θα χρειαστεί να έχουμε στο μυαλό μας ότι οι υποθέσεις του μοντέλου επιδέχονται κριτική

10 Residuals vs Fitted Normal Q-Q Residuals Std. deviance resid Predicted values Theoretical Quantiles Std. deviance resid Scale-Location 4 7 Std. deviance resid Residuals vs Leverage 6 7 Cook's distance Predicted values Leverage

Λογιστική Παλινδρόµηση

Λογιστική Παλινδρόµηση Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Γραµµική Παλινδρόµηση

Γραµµική Παλινδρόµηση Κεφάλαιο 8 Γραµµική Παλινδρόµηση Η γραµµική παλινδρόµηση είναι ένα από τα πιο σηµαντικά ϑέµατα της Στατιστική ϑεωρείας. Στη συνέχεια αυτή η πολύ γνωστή µεθοδολογία ϑα αναπτυχθεί στην R µέσω των τύπων για

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη

Διαβάστε περισσότερα

Γενικευµένα Γραµµικά Μοντέλα

Γενικευµένα Γραµµικά Μοντέλα Σηµειώσεις για το εργαστήριο υπολογιστών για το µάθηµα Γενικευµένα Γραµµικά Μοντέλα. Μέρος δεύτερο: Γενικευµένα Γραµµικά Μοντέλα στην SPLUS Οι σηµειώσεις γράφτηκαν από το Γιώργο Τζουγά, υποψήφιο διδάκτορα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Ανάλυση της ιακύµανσης

Ανάλυση της ιακύµανσης Κεφάλαιο 9 Ανάλυση της ιακύµανσης Η ανάλυση της διακύµανσης είναι µια από τις πλέον σηµαντικές µεθόδους για ανάλυση δεδοµένων. Η µέθοδος αυτή αναφέρετε στη διαµέριση του συνολικού αθροίσµατος τετραγώνων

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ. Εαρινό εξάµηνο ακαδηµαϊκού έτους 2003-2004 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. Εργασία 4 - Ενδεικτική λύση ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ Εαρινό εξάµηνο ακαδηµαϊκού έτους 34 ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5 Μαΐου 4 Εργασία 4 - Ενδεικτική λύση Το κείµενο απευθύνεται στους φοιτητές και αιτιολογεί και περιγράφει

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Άσκηση 1: Μια τράπεζα ενδιαφέρεται να μελετήσει την αποταμιευτική συμπεριφορά των πελατών της. Θεωρείται ως δεδομένο ότι η ετήσια αποταμίευση των πελατών της

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Άσκηση 1. Πληθυσμός (Χ i1 )

Άσκηση 1. Πληθυσμός (Χ i1 ) Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Εφαρμογών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στη

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..

Υ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n.. Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ

ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ICAP GROUP S.A. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Φεβρουάριος 2015 1 Table of Contents ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΛΗΨΗ... 3 1. ΕΙΣΑΓΩΓΗ... 4 2. ΑΝΑΘΕΩΡΗΣΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΜΟΝΤΕΛΩΝ... 4 2.1 ΔΕΔΟΜΕΝΑ... 4 2.1.1

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test

Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου. One-Sample t-test 1 Σύγκριση μέσου όρου πληθυσμού με τιμή ελέγχου One-Sample t-test 2 Μια σύντομη αναδρομή Στα τέλη του 19 ου αιώνα μια μεγάλη αλλαγή για την επιστήμη ζυμώνονταν στην ζυθοποιία Guinness. Ο William Gosset

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα εξετάσουµε την απόδοση και την επιτυχία των υποψηφίων η µερησίων δηµοσίων και ιδιωτικών λυκείων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ

ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΚΕΦΑΛΑΙΟ 7 ο ΜΕΘΟ ΟΛΟΓΙΑ ΤΗΣ ΕΡΕΥΝΑΣ ΕΙΣΑΓΩΓΗ Οι δυό βασικές κατευθύνσεις της ανάλυσης των δεδοµένων της έρευνας, επιχειρούν ανιχνεύοντας τους παράγοντες που προσδιορίζουν την πρόσβαση στις υπηρεσίες υγείας,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.391-397 ΔΙΑΓΩΝΙΣΜΟΣ ΥΠΟΨΉΦΙΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΑΣΕΠ (2002).ΜΕΛΕΤΗ ΕΠΙΔΟΣΕΩΝ ΚΑΙ ΕΞΑΓΩΓΗ ΣΥΜΠΕΡΑΣΜΑΤΩΝ ΓΙΑ ΤΟΝ ΚΛΑΔΟ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009

Διαβάστε περισσότερα

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης

Κεφάλαιο 13. Εισαγωγή στην. Η Ανάλυση ιακύµανσης Κεφάλαιο 13 Εισαγωγή στην Ανάλυση ιακύµανσης 1 Η Ανάλυση ιακύµανσης Από τα πιο συχνά χρησιµοποιούµενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές µέσων όρων, όπως και

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Πολλαπλές συγκρίσεις Στην ανάλυση διακύμανσης ελέγχουμε την ισότητα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. )

Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Στατιστική για Οικονομολόγους ΙΙ ΛΥΜΕΝΑ ΘΕΜΑΤΑ παλαιοτέρων ετών από «ανώνυμο φοιτητή» (Στις ΛΥΣΕΙΣ ενδεχομένως να υπάρχουν λάθη. ) Πίνακας Περιεχομένων Εργασία η... Θέμα ο :... Θέμα ο :... 4 Θέμα 3 ο :...

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 30 Μαρτίου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 30 Μαρτίου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 30 Μαρτίου 2017 1/32 Ανάλυση Παλινδρόμησης: Γενικά. Με την ανάλυση παλινδρόμησης εξετάζουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

DirichletReg: Dirichlet Regression for Compositional Data in R

DirichletReg: Dirichlet Regression for Compositional Data in R DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract Full R Code for Maier, M. J. (2014). DirichletReg: Dirichlet Regression for Compositional

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017

Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 Ανάλυση διακύμανσης (Μέρος 2 ο ) 31/3/2017 2 Σχέδιο τυχαιοποιημένων πλήρων ομάδων (1) Αποτελεί ευθεία γενίκευση του σχεδίου που γνωρίσαμε όταν μιλήσαμε για τη σύγκριση κατά ζεύγη δύο μέσων μ 1 και μ 2

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή 1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία ακραίων τιμών

Εισαγωγή στη θεωρία ακραίων τιμών Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα