Specifični faktorji E i bodo imeli majhne variance, če so opazovane spremenljivke blizu faktorju F.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Specifični faktorji E i bodo imeli majhne variance, če so opazovane spremenljivke blizu faktorju F."

Transcript

1 Faktorska analiza Med metodami za pregledovanje podatkov smo omenili metodo glavnih komponent. Cilj te metode je določiti manjše število linearnih kombinacij merjenih spremenljivk tako, da z njimi pojasnimo kar se da velik del celotne razpršenosti (variance) podatkov. Faktorska analiza, ki je podobna metoda za redukcijo podatkov, se v osnovi razlikuje od metode glavnih komponent. V primeru faktorske analize gre za študij povezav med spremenljivkami, tako da poizkušamo najti novo množico spremenljivk (manj kot merjenih spremenljivk), ki predstavljajo to, kar je skupnega opazovanim spremenljivkam. Faktorska analiza poizkuša poenostaviti kompleksnost povezav med množico opazovanih spremenljivk z razkritjem skupnih razsežnosti ali faktorjev, ki omogočajo vpogled v osnovno strukturo podatkov. V (tržnem) raziskovanju je velikokrat tako, da pojmov, ki so ključni, ne moremo neposredno meriti (npr. družbeni položaj ljudi, ekonomsko razvitost držav, zadovoljstvo z delom). Ponavadi jih merimo posredno z indikatorji tistega, kar naj bi merili. Zberemo torej nekaj direktno merljivih spremenljivk, ki so indikatorji pojma (konstrukta), ki ga želimo meriti, in nato poizkušamo razkriti ali so povezave med izbranimi opazovanimi spremenljivkami pojasnljive s predpostavljeno nemerljivo spremenljivko, ali pa je morda potrebno postaviti kompleksnejšo strukturo povezanosti. Ponavadi imenujemo merljive spremenljivke manifestne, nemerljive pa latentne spremenljivke. V takih študijah je najpogosteje uporabljena ena od metod faktorske analize. Cilj teh metod je ugotoviti ali so zveze med opazovanimi spremenljivkami (kovariance ali korelacije) pojasnjljive z manjšim številom posredno opazovanih spremenljivk ali faktorjev.

2 Oče faktorske analize je Spearman (1904), ki je obravnaval skupni uspeh učencev na osnovi ocen treh predmetov: X 1 klasične vede X 2 francoski jezik X 3 angleški jezik Koeficienti korelacije teh treh predmetov na množici učencev so predstavljeni v tabeli. X 1 X 2 X 3 X 1 1. X X Spearman je predpostavljal, da en faktor ustrezno pojasnjuje dobljene korelacije. Faktorski model je zapisal takole: X 1 = λ 1 F + E 1 X 2 = λ 2 F + E 2 X 3 = λ 3 F + E 3 kjer so λ i faktorske uteži in E i predstavljajo specifične faktorje. V tem primeru splošni faktor F pomeni splošno učenčevo uspešnost. Specifični faktorji E i bodo imeli majhne variance, če so opazovane spremenljivke blizu faktorju F.

3 Splošni faktorski model Dane naj bodo spremenljivke X i (i=1,...,m), F r (r=1,...,k) in E i (i=1,...,m). Osnova faktorskega modela je domneva, da med spremenljivkami X i, F r in E i velja zveza: X i = k r=1 a ir F r + E i, i = 1,..., m kjer je k < m. X i so merjene spremenljivke, F r so v tem modelu skupni faktorji, E i je specifični faktor, ki vpliva samo na X i, a ir pa je faktorska utež, ki kaže vpliv faktorja F r na X i.

4 Zapišimo faktorski model najprej v matrični obliki. Spremenljivke X i zapišimo v matriki X n m (matrika podatkov) X = x 11 x x 1m x 21 x x 2m x n1 x n2... x nm faktorje F r v matriki F n k (matrika faktorjev) F = f 11 f f 1k f 21 f f 2k f n1 f n2... f nk faktorske uteži a ir v matriki A m k (matrika uteži) A = a 11 a a 1k a 21 a a 2k a m1 a m2... a mk in specifična faktorje v matriki E n m (matrika specifičnih faktorjev) e 11 e e 1m e E = 21 e e 2m e n1 e n2... e nm Splošni faktorski model potem lahko zapišemo v matrični obliki X = F A + E

5 Običajne predpostavke splošnega faktorskega modela so: 1. Specifični faktorji so pravokotni med seboj (cov(e i, E j ) = 0, če je i j); 2. Vsak specifični faktor E i je pravokoten na vsak skupni faktor F j (cov(e i, F j ) = 0 za vsak i in j); 3. Skupni faktorji so pravokotni med seboj (cov(f i, F j ) = 0, če je i j); 4. Spremenljivke X i, F i in E i naj bodo centrirane (E(X i ) = E(F i ) = E(E i ) = 0). Posledice teh predpostavk so: Zaradi četrte predpostavke velja Σ = 1 n X X To je variančno - kovariančna matrika ali v primeru standardiziranih spremenljivk korelacijska matrika. Ker velja prva predpostavka je 1 n E E = Ψ kjer je Ψ diagonalna matrika z variancami specifičnih faktorjev na diagonali. Zaradi druge predpostavke je E F = 0. Iz tretje predpostavke sledi 1 n F F = I Iz splošnega faktorskega modela in na osnovi omenjenih predpostavk lahko izpeljemo naslednjo faktorsko enačbo Σ = AA + Ψ

6 Preverimo: Σ = 1 n X X = 1 n (F A + E) (F A + E) = = 1 n (AF + E )(F A + E) = = 1 n (AF F A + E F A + AF E + E E) = AA + Ψ V zgornji faktorski enačbi je Σ v splošnem matrika varianc in kovarianc, če pa so merjene spremenljivke standardizirane, je Σ korelacijska matrika. Najpogosteje velja slednje. Če primerjavo na levi in desni strani faktorske enačbe diagonalne elemente, dobimo naslednje enačbe σ 2 i = k j=1 a 2 ij + ψ ii kar pomeni, da varianco merjene spremenljivke X i razbijemo na del, ki je pojasnjen s skupnimi faktorji, in na specifično varianco. Delež variance, ki je pojasnjena s skupnimi faktorji, imenujemo komunaliteta in jo označujemo s h 2 i : k j=1 a 2 ij = h 2 i Naloga je, da iz znanih elementov matrike varianc in kovarianc (ali korelacijske matrike) Σ izračunamo neznane parametre faktorskega modela, se pravi faktorske uteži A in specifične variance Ψ.

7 Najprej naslednje: iz k-faktorskega modela, ki je podan s faktorsko enačbo X = F A + E, sledi, da je variančno kovariančna matrika opazovanih spremenljivk Σ = AA + Ψ. Velja tudi obratno: če je kovariančno matriko Σ možno dekomponirati v zgornjo obliko, potem k-faktorski model velja za opazovane spremenljivke X.

8 Pred računanjem parametrov faktorskega modela se moramo najprej vprašati, kako je z identifikabilnostjo faktorskega modela in enoličnostjo ocen parametrov. Identifikabilnost Število vseh parametrov faktorskega modela, ki jih moramo oceniti na osnovi faktorske enačbe, je m k (faktorskih uteži) in m (specifičnih varianc). Parametre ocenjujemo na osnovi informacij v matriki varianc in kovarianc opazovanih spremenljivk, ki jih je m(m+1) 2. Torej imamo m(m+1) 2 enačb za mk + m parametrov. Za identifikacijo modela je ponavadi potreben pogoj, da je več enačb kot ocenjevanih parametrov. Od tu naslednji pogoj: mk + m m(m + 1)/2 oziroma (m 1) k 2 Zgornji pogoj je potreben pogoj za identifikacijo faktorskega modela, ni pa zadosten.

9 Enoličnost Naša naloga je, da iz danih elementov variančno kovariančne ali korelacijske matrike Σ izračunamo neznane elemente matrik A in Ψ. Vprašanje, ki se ob tem ponuja, je: pri kakšnih pogojih je mogoče za dano matriko Σ enolično določiti matriki A in Ψ, ki zadoščata enačbi Σ = AA + Ψ Če je k > 1 in če obstaja enolično določena matrika Ψ, obstaja neskončno mnogo matrik A, ki zadoščajo zgornji enačbi. Poglejmo zakaj: Naj bo M k k neka ortonormalna matrika (MM = I) in naj bo A = AM Potem je A A = (AM)(AM) = AMM A = AA = Σ Ψ To pomeni, da je tudi A lahko rešitev zgornje enačbe. Ortonormalnih matrik je neskončno mnogo, zato tudi obstaja neskončno mnogo matrik, ki zadoščajo zgornji enačbi. Za enolično določitev matrike A je zato potrebno dodati še kakšen pogoj.

10 Ocenjevanje faktorskega modela Faktorski model ocenjujemo v dveh korakih: 1. ocena komunalitet (t.j. skupnega prostora) z eno od metod faktorske analize, 2. ocena faktorskih uteži z eno od rotacij. Faktorska analiza ni končana, če ni narejena tudi ustrezna rotacija. 1. Metode faktorske analize metoda glavnih osi (PAF) metoda največjega verjetja (ML) image faktorska analiza alfa faktorska analiza...

11 Metoda glavnih osi Splošno faktorsko enačbo Σ = AA + Ψ lahko zapišemo takole Σ Ψ = AA Denimo, da so merjene spremenljivke standardizirane. Ker je matrika Ψ diagonalna matrika z variancami specifičnih faktorjev na diagonali, je leva stran enačbe korelacijska matrika s komunalitetami na diagonali. V splošnem lahko komunalitete določimo šele tedaj, ko določimo skupne faktorje, ki pa jih lahko izračunamo iz popravljene korelacijske matrike Σ Ψ. Ta začarani krog za ocene komunalitet in skupnih faktorjev je osnovna pomanjkljivost splošnega faktorskega modela. Metoda glavnih osi (PAF) rešuje problem faktorske analize iteracijsko. Najprej v diagonalo korelacijske matrike namestimo neke ocene komunalitet. Komunalitete lahko ocenimo na več načinov, npr. z največjim koeficientom korelacije v vrstici korelacijske matrike ali z multiplim koeficientom korelacije posamezne spremenljivke s preostalimi spremenljivkami. Nato določimo uteži skupnih faktorjev A tako, da izračunamo lastne vrednosti in lastne vektorje korelacijske matrike z ocenjenimi komunalitetami na diagonali, pri čemer (tako kot pri metodi glavnih komponent) predstavljajo lastne vrednosti variance skupnih faktorjev in lastni vektorji njihove uteži. Na osnovi izračunanih uteži lahko izračunamo komunalitete, ki jih ponovno vstavimo v diagonalo korelacijske matrike. Ponovno izračunamo lastne vrednosti in lastne vektorje na novo popravljene korelacijske matrike itd.

12 Na žalost ni dokazano, da ta postopek vedno skonvergira k pravi rešitvi, vendar ponavadi da dobre rezultate. Z metodo glavnih osi torej enolično določimo matriki A in Ψ, kar z drugimi besedami pomeni, da v prostoru merjenih spremenljivk zakoličimo skupni prostor, tako da je varianca prvega dobljenega skupnega faktorja največja, od vseh možnih skupnih faktorjev, pravokotnih na prvi faktor, je izbran drugi skupni faktor z največjo varianco itd. Poznanih je več drugih metod faktorske analize za oceno matrik A in Ψ (npr. metoda največjega verjetja, image faktorska analiza, alfa faktorska analiza, kanonična faktorska analiza).

13 2. Rotacije Ob reševanju splošne faktorske enačbe Σ = AA + Ψ kjer je znana matrika Σ in neznani matriki A in Ψ, smo ugotovili, da matrike A ne moremo enolično oceniti. Zato različne metode faktorske analize z dodatnimi pogoji enolično poiščejo matriko A. Ko so z izbrano metodo poiskani skupni faktorji, lahko pozabimo na privzete dodatne pogoje. Če dobljene rešitve ne moremo dobro interpretirati, lahko dobljeno rešitev v skupnem prostoru (določenim z dobljenimi skupnimi faktorji) transformiramo, zarotiramo. To pomeni, da dobljeno matriko A pomnožimo z neko transformacijsko matriko M A = AM Rešitev A enako dobro reproducira originalne podatke kot prvotna rešitev A. Za rotacijo se odločimo predvsem takrat, ko ne moremo smiselno interpretirati dobljene skupne faktorje. Npr., ko so projekcije iste spremenljivke precejšnje na več faktorjih, ali pa če so projekcije na prvem faktorju vseh spremenljivk precejšnje (splošen faktor).

14 Vzemimo primer dvanajstih dejavnikov, ki naj bi vplivali na poslovni uspeh malih podjetih v Sloveniji (J. Prašnikar (1994): Drobno gospodarstvo v Sloveniji). Z metodo glavnih osi smo dobili dva skupna faktorja, ki ju predstavljamo v naslednji tabeli: F 1 F 2 h 2 X 1 PROD-MET X 2 MARK-MET X 3 PRODUKT X 4 ODNOSI X 5 USP-ZAP X 6 USP-MAN X 7 DRUZINA X 8 GOSP-ZDR X 9 POL-ZVE X 10 LOK-OBL X 11 DRZAVA X 12 PODJETJA λ i % p.v Prvi faktor je splošni faktor, drugi pa bipolarni. Za lažji vpogled v dobljeno faktorsko strukturo rešitev predstavimo v koordinatnem sistemu, kjer sta koordinatni osi oba dobljena skupna faktorja, točke pa spremenljivke:

15

16 Na sliki je vidno, da imamo dve izraziti skupini spremenljivk: X 1 do X 6 in X 8 do X 12. Spremenljivka X 7 (podpora družine) se ne uvršča v nobeno od omenjenih skupin. Tako izrazita razvrstitev spremenljivk ni razvidna iz tabele. Če zavrtimo koordinatni osi, tako da gredo kar se da skozi točke, ki predstavljajo spremenljivke, dobimo drugačne faktorske uteži: F 1 F 2 X 1 PROD-MET X 2 MARK-MET X 3 PRODUKT X 4 ODNOSI X 5 USP-ZAP X 6 USP-MAN X 7 DRUZINA X 8 GOSP-ZDR X 9 POL-ZVE X 10 LOK-OBL X 11 DRZAVA X 12 PODJETJA Dobljene faktorske uteži so izrazitejše in rešitev je mogoče lažje razložiti. Prvi faktor ima izrazite uteži na izboljšavah produkcijskih in marketinških metodah ter samih produktov, dobrih odnosih med zaposlenimi in usposobljenosti zaposlenih in managementa. Drugi faktor pa na podpori gospodarskih združenj, lokalnih oblasti, države in drugih podjetih ter na zvezah v politiki. Podpora družine ni izrazita v nobenem od skupnih faktorjev. Prvi faktor torej obsega dejavnike za poslovni uspeh znotraj podjetja, drugi faktor pa obsega dejavnike v obliki podpore izven podjetja.

17 Bistvo rotiranja je, da dobimo teoretično pomembne faktorje in čim enostavnejšo faktorsko strukturo. Thurston je postavil nekaj osnovnih načel za iskanje take enostavne strukture: 1. vsaka vrstica v faktorski matriki A naj ima vsaj eno ničlo; 2. če je k skupnih faktorjev, naj ima vsak faktor v matriki vsak k ničel; 3. za vsak par faktorjev v matriki naj bo več spremenljivk, ki imajo močne uteži v enem stolpcu in majhne na ostalih; 4. za vsak par faktorjev v matriki naj ima velik del spremenljivk majhne uteži na obeh faktorjih (če je 4 ali več vseh faktorjev); 5. za vsak par faktorjev v matriki naj bo le majhen del spremenljivk z utežmi različnimi od 0 na obeh faktorjih (če je 4 ali več vseh faktorjev). Postopki rotacij prevedejo Thurstonove enostavne kriterije na optimiziranje ustreznih kriterijskih funkcij, ki dajo rotirane faktorske rešitve. Ločimo dve vrsti rotacij: pravokotne (rotirani faktorji so neodvisni med seboj) in poševne (rotirani faktorji so odvisni med seboj).

18 Pravokotne rotacije Poznamo vsaj tri pravokotne rotacije: QUARTIMAX prevede problem na maksimizacijo četrtih potenc faktorskih uteži. Ta rotacijski postopek poenostavlja strukturo po vrsticah v faktorski matriki. Posledica je, da je običajno prvi dobljeni faktor splošni. VARIMAX maksimizira varianco kvadratov uteži v vsakem faktorju in s tem poenostavlja strukturo po stolpcih. EQUIMAX poenostavlja strukturo po vrsticah in stolpcih. Poševne rotacije Načela, ki so osnova posameznim postopkom poševne rotacije, so podobna kot pri pravokotnih rotacijah z razliko, da so v tem primeru rotirani faktorji korelirani med seboj. Poznanih je več postopkov poševne rotacije: OBLIMIN, OBLIMAX, QUARTIMIN, COVARMIN in BIQUARTIMIN. Nobeden od postopkov ni bistveno boljši od preostalih. V primeru poševnih rotacij (grafično to pomeni, da kot med faktorjema, ki sta predstavljena s koordinatnima osema, ni pravi kot) lahko spremenljivke (točke v poševnem koordinatnem sistemu) projiciramo na poševne faktorje na dva načina: vzporedno, s čemer dobimo pattern uteži in pravokotno, s čemer dobimo strukturne uteži, ki so koeficienti korelacije med spremenljivko in faktorjem. V primeru pravokotnih faktorjev so pattern in strukturne uteži enake.

19

20 Faktorske vrednosti (angl. factor scores) Ocenjeno: A, Ψ (h 2 i ) Še ni ocenjeno: F n k = [f ij ] f ij je vrednost j-tega faktorja na i-ti enoti. F linearna kombinacija X i X i = linearna kombinacija F j + E i Regresijska ocena faktorskih vrednosti ˆF = XB B je potrebno oceniti. Vzemimo, da so vse spremenljivke standardizirane. V vektorju B so standardizirani regresijski koeficienti. Pomnožimo zgornjo enačbo z leve z 1/nX : 1/nX ˆF = 1/nX XB 1/nX ˆF = ΣB Levo je izraz enak strukturni matriki faktorskih uteži: A = ΣB = B = Σ 1 A V matriki B so regresijski koeficienti (angl. factor score coefficients). Ocena faktorskih vrednosti je torej ˆF = XΣ 1 A

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Metoda glavnih komponent

Metoda glavnih komponent Metoda glavnih komponent Metoda glavnih kompnent je ena najpogosteje uporabljenih multivariatnih metod. Osnoval jo je Karl Pearson (1901). Največ zaslug za nadaljni razvoj pa ima Hotelling (1933). Osnovna

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

DISKRIMINANTNA ANALIZA

DISKRIMINANTNA ANALIZA DISKRIMINANTNA ANALIZA Z diskriminantno analizo poiščemo tako linearno kombinacijo merjenih spremenljivk, da bo maksimalno ločila vnaprej določene skupine in da bo napaka pri uvrščanju enot v skupine najmanjša.

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko:

Odvode odvisnih spremenljivk po neodvisni spremenljivki bomo označevali s piko: Sistem navadnih diferencialnih enačb prvega reda ima obliko: 4 Sisemi diferencialnih enačb V prakičnih primerih večkra naleimo na več diferencialnih enačb, ki opisujejo določen pojav in so medsebojno povezane edaj govorimo o sisemih diferencialnih enačb V eh enačbah

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Uporabna matematika za naravoslovce

Uporabna matematika za naravoslovce Uporabna matematika za naravoslovce Zapiski predavanj Študijski programi: Aplikativna kineziologija, Biodiverziteta Študijsko leto 203/4 doc.dr. Barbara Boldin Fakulteta za matematiko, naravoslovje in

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Lastne vrednosti in lastni vektorji

Lastne vrednosti in lastni vektorji Poglavje VIII Lastne vrednosti in lastni vektorji V tem poglavju bomo privzeli, da so skalarji v vektorskih prostorih, koeficienti v matrikah itd., kompleksna števila. Algebraične operacije seštevanja,

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Osnove linearne algebre

Osnove linearne algebre Osnove linearne algebre Matrike Matrika razsežnosti n m je A = a 1 1 a 1 2 a 1 m a 2 1 a 2 2 a 2 m a n 1 a n 2 a n m Če je n = m, tedaj matriko imenujemo kvadratna matrika Elementi matrike so lahko realna

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1

Matrike. Poglavje II. Matrika je pravokotna tabela realnih števil. Na primer: , , , 0 1 Poglavje II Matrike Matrika je pravokotna tabela realnih števil Na primer: [ ] 1 1 1, 2 3 1 1 0 1 3 2 1, 0 1 4 [ ] 2 7, Matrika je sestavljena iz vrstic in stolpcev Vrstici matrike [ ] 1 1 1 2 3 1 [ ]

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko

Linearna algebra. Bojan Orel Fakulteta za računalništvo in informatiko Linearna algebra Bojan Orel Fakulteta za računalništvo in informatiko 23. februar 205 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 52.64(075.8)(0.034.2) OREL, Bojan

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

3.1 Reševanje nelinearnih sistemov

3.1 Reševanje nelinearnih sistemov 3.1 Reševanje nelinearnih sistemov Rešujemo sistem nelinearnih enačb f 1 (x 1, x 2,..., x n ) = 0 f 2 (x 1, x 2,..., x n ) = 0. f n (x 1, x 2,..., x n ) = 0. Pišemo F (x) = 0, kjer je x R n in F : R n

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Multivariatna analiza variance

Multivariatna analiza variance (MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti med več odvisnimi (številskimi) in več neodvisnimi (opisnimi) spremenljivkami. (MANOVA) MANOVA je multivariatna metoda za proučevanje odvisnosti

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα

11.5 Metoda karakteristik za hiperbolične PDE

11.5 Metoda karakteristik za hiperbolične PDE 11.5 Metoda karakteristik za hiperbolične PDE Hiperbolična kvazi linearna PDE ima obliko au xx + bu xy + cu yy = f, (1) kjer so a, b, c, f funkcije x, y, u, u x in u y, ter velja b 2 4ac > 0. Če predpostavimo,

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Poliedri Ines Pogačar 27. oktober 2009

Poliedri Ines Pogačar 27. oktober 2009 Poliedri Ines Pogačar 27. oktober 2009 Pri linearnem programiranju imamo opravka s končnim sistemom neenakosti in končno spremenljivkami, torej je množica dopustnih rešitev presek končno mnogo polprostorov.

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec

Dodatna poglavja iz linearne algebre za 1. letnik finančne matematike na FMF. Primož Moravec Dodatna poglavja iz linearne algebre za 1 letnik finančne matematike na FMF Primož Moravec 13 september 2017 1 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 51264(0758)

Διαβάστε περισσότερα

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik

Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik Univerza v Ljubljani Fakulteta za računalništvo in informatiko Fakulteta za matematiko in fiziko Peter Škvorc Inverzni problem lastnih vrednosti evklidsko razdaljnih matrik DIPLOMSKO DELO UNIVERZITETNI

Διαβάστε περισσότερα

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti

Linearne preslikave. Poglavje VII. 1 Definicija linearne preslikave in osnovne lastnosti Poglavje VII Linearne preslikave V tem poglavju bomo vektorske prostore označevali z U,V,W,... Vsi vektorski prostori bodo končnorazsežni. Zaradi enostavnosti bomo privzeli, da je pripadajoči obseg realnih

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

Statistika 2 z računalniško analizo podatkov. Multipla regresija in polinomski regresijski model

Statistika 2 z računalniško analizo podatkov. Multipla regresija in polinomski regresijski model Statistika z računalniško analizo podatkov Multipla regresija in polinomski regresijski model 1 Multipli regresijski model Pogosto so vrednosti odvisne spremenljivke linearno odvisne od več kot ene neodvisne

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Algebraične strukture

Algebraične strukture Poglavje V Algebraične strukture V tem poglavju bomo spoznali osnovne algebraične strukture na dani množici. Te so podane z eno ali dvema binarnima operacijama. Binarna operacija paru elementov iz množice

Διαβάστε περισσότερα

Oznake in osnovne definicije

Oznake in osnovne definicije Oznake in osnovne definicije B Plestenjak, JKozak: Numerične metode 2011-2012 1 / 53 Sistem n linearnih enačb z n neznankami a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II

ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Univerza v Ljubljani Fakulteta za elektrotehniko Andrej Perne ZBIRKA REŠENIH NALOG IZ MATEMATIKE II Skripta za vaje iz Matematike II (UNI + VSP) Ljubljana, determinante Determinanta det A je število, prirejeno

Διαβάστε περισσότερα

Problem lastnih vrednosti

Problem lastnih vrednosti Problem lastnih vrednosti Naj bo A R n n. Iščemo lastni par, da zanj velja Ax = λx, kjer je x C n, x 0 (desni) lastni vektor, λ C pa lastna vrednost. Vektor y 0, pri katerem je y H A = λy H, je levi lastni

Διαβάστε περισσότερα

MATRIČNI ZAPIS MODELA IN OSNOVE MATRIČNE OPERACIJE

MATRIČNI ZAPIS MODELA IN OSNOVE MATRIČNE OPERACIJE Biometrija 1 Poglavje 1 MATRIČNI ZAPIS MODELA IN OSNOVE MATRIČNE OPERACIJE 11 Skalar Skalar je matrika reda 1 x 1 Skalarji so označeni z malimi ali velikimi navadnimi (neodebeljene) črkami kot npr y i

Διαβάστε περισσότερα

Poglavje 2. Sistemi linearnih enačb

Poglavje 2. Sistemi linearnih enačb Poglavje 2 Sistemi linearnih enačb Najpogostejši problem, na katerega naletimo pri numeričnem računanju, je reševanje sistema linearnih enačb Tak sistem lahko dobimo direktno iz matematične formulacije

Διαβάστε περισσότερα

Problem lastnih vrednosti 1 / 20

Problem lastnih vrednosti 1 / 20 Problem lastnih vrednosti 1 / 20 2 / 20 1 Uvod 2 Potenčna metoda 3 Inverzna iteracija 4 QR iteracija 5 Metode za simetrične matrike Sturmovo zaporedje Jacobijeva iteracija 3 / 20 Uvod Naj bo A R n n. Paru

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Projekcije in zmanjšanje dimenzionalnosti podatkov

Projekcije in zmanjšanje dimenzionalnosti podatkov Poglavje 9 Projekcije in zmanjšanje dimenzionalnosti podatkov Modeli, ki jih gradimo v strojnem učenju, povzemajo podatke tako, da v nekem formalnem zapisu predstavijo glavne vzorce, ki so te podatke oblikovali.

Διαβάστε περισσότερα

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II

UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO MATEMATIKA II UNIVERZA V MARIBORU FAKULTETA ZA KEMIJO IN KEMIJSKO TEHNOLOGIJO Petra Žigert Pleteršek MATEMATIKA II Maribor, 2016 Kazalo Uvod v linearno algebro 1 1.1 Matrike................................ 1 1.2 Računanje

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

v skupine Fakulteta za družbene vede Univerza v Ljubljani Zgledi uporabe statistike na različnih strokovnih področjih DMFA, Ljubljana 27. in 28.1.

v skupine Fakulteta za družbene vede Univerza v Ljubljani Zgledi uporabe statistike na različnih strokovnih področjih DMFA, Ljubljana 27. in 28.1. Razvrščanje v skupine Anuška Ferligoj Fakulteta za družbene vede Univerza v Ljubljani Photo: Vladimir Batagelj, UNI-LJ Zgledi uporabe statistike na različnih strokovnih področjih DMFA, Ljubljana 27. in

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

Reševanje sistemov linearnih enačb

Reševanje sistemov linearnih enačb 1 / 37 Reševanje sistemov linearnih enačb Meteorologija z geofiziko, I. stopnja http://ucilnica.fmf.uni-lj.si/ 2 / 37 Matrični zapis sistema linearnih enačb Sistem m linearnih enačb z n neznankami a 11

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

Zanesljivost psihološkega merjenja. Osnovni model, koeficient α in KR-21

Zanesljivost psihološkega merjenja. Osnovni model, koeficient α in KR-21 Zanesljivost psihološkega merjenja Osnovni model, koeficient α in KR- Osnovni model in KTT V kolikšni meri na testne dosežke vplivajo slučajne napake? oziroma, kako natančno smo izmerili neko lastnost.

Διαβάστε περισσότερα

VPLIVI SPREMINJANJA CEN POGONSKIH GORIV NA DOLOČENE SPREMENLJIVKE

VPLIVI SPREMINJANJA CEN POGONSKIH GORIV NA DOLOČENE SPREMENLJIVKE VPLIVI SPREMINJANJA CEN POGONSKIH GORIV NA DOLOČENE SPREMENLJIVKE MAJA TAVČAR MPRESTOR@GMAIL.COM POVZETEK Skozi celotno statistično analizo sem ugotovila, da na prodajo avtomobilov v Sloveniji vplivajo

Διαβάστε περισσότερα

Matematično modeliranje. Simpleksna metoda.

Matematično modeliranje. Simpleksna metoda. Simpleksna metoda. Drago Bokal, Tanja Gologranc Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru Kanonična oblika linearnega programa. min c T x p. p.

Διαβάστε περισσότερα

5.1 Predpogojevanje. K 1 Ax = K 1 b,

5.1 Predpogojevanje. K 1 Ax = K 1 b, 5.1 Predpogojevanje Konvergenca metod podprostorov za reševanje linearnega sistema Ax = b je v veliki meri odvisna od razporeditve lastnih vrednosti (in lastnih vektorjev) matrike A. Kadar je konvergenca

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO

UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA SANDRA BOLTA LASTNE VREDNOSTI GRAFA DIPLOMSKO DELO LJUBLJANA, 2014 2 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA Študijska smer: Fizika in matematika SANDRA BOLTA

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Tadeja Kraner Šumenjak MATEMATIKA. Maribor, 2010

Tadeja Kraner Šumenjak MATEMATIKA. Maribor, 2010 Tadeja Kraner Šumenjak in Vilma Šuštar MATEMATIKA Maribor, 2010 2 CIP-kataložni zapis o publikaciji Univerzitetna knjižnica Maribor CIP številka Avtor Naslov publikacije/avtor, kraj, založnik ISBN Naslov

Διαβάστε περισσότερα

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni?

22. Kdaj sta dva vektorja vzporedna? FGG geodezija UNI Matematika I, 2005/ Kdaj so vektorji a 1, a 2,..., a n linearno neodvisni? FGG geodezija UNI Matematika I, 2005/06 1. Definicija enakosti množic (funkcij, kompleksnih števil, urejenih n teric)? 2. Definicija kartezičnega produkta množic A in B. Definicija množice R n. 3. Popolna

Διαβάστε περισσότερα

METODA FAKTORSKE ANALIZE je osnovana na analizi medsebojnih korelacij. Tu potrebujemo neko vsebinsko poznavanje oz. neko teorijo, da pojav x vpliva na

METODA FAKTORSKE ANALIZE je osnovana na analizi medsebojnih korelacij. Tu potrebujemo neko vsebinsko poznavanje oz. neko teorijo, da pojav x vpliva na 4. predavanje RVM Kvantitativne metode Borut Kodrič, Koper 4.6.2010 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. del Na podlagi česa ugotovimo kako sta dve spremenljivki med

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

INTEGRALI RACIONALNIH FUNKCIJ

INTEGRALI RACIONALNIH FUNKCIJ UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA NIKA HREN INTEGRALI RACIONALNIH FUNKCIJ DIPLOMSKO DELO LJUBLJANA, 203 UNIVERZA V LJUBLJANI PEDAGOŠKA FAKULTETA MATEMATIKA - RAČUNALNIŠTVO NIKA HREN Mentor: izr.

Διαβάστε περισσότερα

Sistem normalnih ena b in metoda me²anega modela

Sistem normalnih ena b in metoda me²anega modela Sistem normalnih ena b in metoda me²anega modela Milena Kova 5. marec 203 Biometrija 202/3 Modeli z naklju nimi vplivi Ena ba me²anega modela Matrika varianc in kovarianc y = Xβ + Zu + e y (Xβ, V) var(y)

Διαβάστε περισσότερα