Zidovi. Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА. ZID površinski vertikalni element zgrade 10/27/2015

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zidovi. Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА. ZID površinski vertikalni element zgrade 10/27/2015"

Transcript

1 Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА DR DRAGAN KOSTIĆ, V.PROF. Zidovi ZID površinski vertikalni element zgrade Osnovna podela zidova: prema nameni i položaju u sklopu zgrade prema materijalu od kog su građeni prema načinu građenja 10/27/2015 PREDAVANJE BR.4 2 1

2 Zidovi PODELA PREMA NAČINU IZVOĐENJA I MATERIJALIMA: ZIDANJE - zidani zidovi od elemenata za zidanje: o opeka: puna i šuplja o blokovi:od gline, od betona o kamen: prirodni, lomljen ili tesani LIVENJE NA LICU MESTA - zidovi od betona MONTAŽA - zidovi od AB, od lakih betona,... 10/27/2015 PREDAVANJE BR.4 3 Materijal za izradu nosećih zidova Prirodni: drvo, kamen, ilovača Prefabrikovani materijali: - Opekarski proizvodi - Proizvodi na bazi lakog i teškog betona Veštački materijali 10/27/2015 PREDAVANJE BR.4 4 2

3 Opekarski proizvodi za zidanje - OPEKA PUNA OPEKA od gline ŠUPLJA OPEKA od gline FASADNA OPEKA KLINKER OPEKA ĆERPIČ RADIJALNA 10/27/2015 PREDAVANJE BR.4 5 Opekarski proizvodi za zidanje -OPEKA Opeke za noseće zidove mogu imati samo vertikalne šupljine (Pš 15%Posnove) Veličina šupljina: max. 2,5cm 2 (kružne, kvadratne) i max. 6cm 2 (pravougaone) 10/27/2015 PREDAVANJE BR.4 6 3

4 Opekarski proizvodi za zidanje - OPEKA 10/27/2015 PREDAVANJE BR.4 7 Opekarski proizvodi za zidanje OPEKARSKI BLOK OPEKARSKI BLOKOVI PREMA DIMENZIJAMA: 1. BLOKOVI OBIČNIH DIMENZIJA: o dužina 25 cm o širina 12; 25; cm, o visina 12; 14; 16; 25; cm. 2. BLOKOVI MODULARNIH DIMENZIJA: odužina 19; 29 cm oširina 9; 19; 29cm, ovisina 9; 19; 29cm. 10/27/2015 PREDAVANJE BR.4 8 4

5 Opekarski proizvodi za zidanje OPEKARSKI BLOK OPEKARSKI BLOKOVI PREMA POLOŽAJU ŠUPLJINA: 1. Blokovi sa vertikalnim šupljinama: o NOSEĆI!. 2. Blokovi sa horizontalnim šupljinama: opregradni! 10/27/2015 PREDAVANJE BR.4 9 Opekarski proizvodi za zidanje OPEKARSKI BLOK Opekarski blok od pečene gline sa vertikalnim šupljinama (Pš 15%Posnove) MODULARNI BLOKOVI (M=10cm) BLOKOVI U FORMATU OPEKE (25cm) 10/27/2015 PREDAVANJE BR

6 Opekarski proizvodi za zidanje OPEKARSKI BLOK Manja dimenzija šupljine mora biti 15mm Opekarski proizvodi ne smeju se koristiti za zidove podrumskih prostorija 10/27/2015 PREDAVANJE BR.4 11 Opekarski proizvodi za zidanje OPEKARSKI BLOK 10/27/2015 PREDAVANJE BR

7 Opekarski proizvodi za zidanje OPEKARSKI BLOK 10/27/2015 PREDAVANJE BR.4 13 Opekarski proizvodi za zidanje OPEKARSKI BLOK Veća površina vert.šupljina poboljšava: tehnologiju izrade -bolje sušenje i pečenje, toplotno-izolaciona svojstva 10/27/2015 PREDAVANJE BR

8 Laki blokovi od organskih materijala - DURISOL Mineralizovana drvena vlakna iver i cement Dužina 50cm Visina 25cm Širina 20cm i 25cm (po zahtevu Š=15cm i 30cm) ρ elemenata je 550 do 650 kg/m3 Koriste se kao izgubljena oplata za VS i HS 10/27/2015 PREDAVANJE BR.4 15 Laki blokovi od organskih materijala - DURISOL Koriste se kao izgubljena oplata za VS i HS Zida se u suvo Na svaka 2 sloga šupljine se pune plast.betonom do -5cm od vrha 10/27/2015 PREDAVANJE BR

9 Laki blokovi od organskih materijala - DURISOL Zida se u suvo Na svaka 2 sloga šupljine se pune plast.betonom do -5cm od vrha, Ugradnja vibriranjem 10/27/2015 PREDAVANJE BR.4 17 Laki blokovi od organskih materijala - DURISOL 10/27/2015 PREDAVANJE BR

10 Laki blokovi od ekspandiranog polistirena (EPS) - stiropora STIROPOR BLOK-Jednostavan "lego sistem" od stiropoora,koji se ispunjava betonom. Brza I veoma laka izgradnja objekta. 10/27/2015 PREDAVANJE BR.4 19 Laki blokovi od ekspandiranog polistirena (EPS) - stiropora 10/27/2015 PREDAVANJE BR

11 Laki blokovi od ekspandiranog polistirena (EPS) - stiropora 10/27/2015 PREDAVANJE BR.4 21 Laki blokovi od ekspandiranog polistirena (PES) - stiropora 10/27/2015 PREDAVANJE BR

12 Laki blokovi od ekspandiranog polistirena (PES) - stiropora 10/27/2015 PREDAVANJE BR.4 23 Laki blokovi od ekspandiranog polistirena (PES) - stiropora 10/27/2015 PREDAVANJE BR

13 Šuplji blokovi za zidanje od betona Sastav: sitniji mineralni agregat, cement i voda ρ 1600 kg/m 3 10/27/2015 PREDAVANJE BR.4 25 Šuplji blokovi za zidanje od betona Prema nameni, razlikujemo: 1. NBB (normalan betonski blok), Š=19cm, 24cm, 29 cm 2. TBB (termo bet.blok), D=39cm, V=19cm, 3. PBB (pregradni bet.blok) 10/27/2015 PREDAVANJE BR

14 Šuplji blokovi za zidanje od betona 10/27/2015 PREDAVANJE BR.4 27 Sastav: Šuplji blokovi za zidanje od lakog betona ŠLJAKO BLOKOVI agregat (zgura, keramzit, tuf), cement i voda ρ 1600 kg/m 3 10/27/2015 PREDAVANJE BR

15 Šuplji blokovi za zidanje od lakog betona ŠLJAKO BLOKOVI 10/27/2015 PREDAVANJE BR.4 29 Sastav: Puni blokovi od lakog betona SIPOREKS- YTONG agregat (kvarcni pesak), cement, voda i ρ= kg/m 3 aluminijumski prah Očvršćavanje zaparivanjem 10/27/2015 PREDAVANJE BR

16 Puni blokovi od lakog betona SIPOREKS- YTONG Dimenzije: D=60cm, V = 25cm Širina=15cm (2,5cm) 30cm Čvrstoća Mmin.2.5 MPa 10/27/2015 PREDAVANJE BR.4 32 Puni blokovi od lakog betona SIPOREKS- YTONG 10/27/2015 PREDAVANJE BR

17 MALTERI ZA ZIDANJE Plastična mešavina agregata, veziva i vode naziva se MALTER Agregat pesak 0,5 do 2mm Vezivo: kreč i/ili cement 10/27/2015 PREDAVANJE BR.4 34 VRSTE MALTERA Cement Kreč Pesak Krečni MM1-1 3 Produžni MM Produžni MM Produžni MM Cementni MM1 do 5: 1-3 do 4 10/27/2015 PREDAVANJE BR

18 ZIDANJE-DELOVI OPEKE Proces formiranja zidova od elemenata (opeke/blokova) koji se povezuju malterom 10/27/2015 PREDAVANJE BR.4 36 Osnovni zidarski pojmovi RACIONALNA DEBLJINA NOSEĆIH ZIDOVA od opeka 25cm, 38cm, 51cm, 64cm od blokova 2M (19cm), 3M (29cm) 10/27/2015 PREDAVANJE BR

19 Osnovni zidarski pojmovi Sloj je sklop opeka poređanih po određenom redu. Ležišna ravan je horizontalna površina opeka u jednom sloju. Horizontalna (ležišna) spojnica je prostor između dva sloja opeka, ispunjen malterom deblji ne veći od1,2cm. 10/27/2015 PREDAVANJE BR.4 38 Osnovni zidarski pojmovi Vertikalna (dodirna) spojnica je prostor između susednih opeka, koja je ispunjena malterom debljine 1cm. 10/27/2015 PREDAVANJE BR

20 Osnovni zidarski pojmovi Vezač je opeka u zidu koja je svojom dužom stranom upravna na pravac pružanja zida Dužnjak je opeka u zidu koja je svojom dužom stranom paralelna sa pravcem pružanja zida. 10/27/2015 PREDAVANJE BR.4 40 Pravila zidanja 1. Postoje samo 2 osnovna sloga 10/27/2015 PREDAVANJE BR

21 Pravila zidanja 2. Vertikalne spojnice ne smeju se poklapati po vertikali ni u X-pravcu, ni u Y-pravcu (PREVEZ) 10/27/2015 PREDAVANJE BR.4 42 Pravila zidanja nosećih zidova Vertikalne spojnice donjeg reda ne smeju se preklapati sa v.spojnicama gornjeg reda, tzv. PREVEZ Prevez, smicanje spojnica je ½ elementa, a min.1/4 elementa 10/27/2015 PREDAVANJE BR

22 Pravila zidanja 10/27/2015 PREDAVANJE BR.4 44 Pravila zidanja 3. Slojevi zida horizontalni, kontrola libelom 4. Ozidani zid vertikalan, kontrola viskom 10/27/2015 PREDAVANJE BR

23 Karakteristike elemenata za zidanje Elementi (OPEKA, BLOK) moraju imati odgovarajuću marku (min.mo10) Malter mora biti u skladu sa projektom (min.mm2) 10/27/2015 PREDAVANJE BR.4 46 Pravila zidanja nosećih zidova Koristiti cele elemente ili nj.delove samo za postizanje veze (prevez za min.1/4) Sve spojnice moraju biti potpuno ispunjene malterom Širina vertikalnih spojnica 1cm Debljina horizontalnih spojnica 1.2cm (1cm) 10/27/2015 PREDAVANJE BR

24 Pitanja? 10/27/2015 PREDAVANJE BR

Оsnоvni principi prојеktоvаnjа zidаnih zgrаdа

Оsnоvni principi prојеktоvаnjа zidаnih zgrаdа Građevinsko-arhitektonski fakultet Univerziteta u Nišu Osnovne akademske studije studijski program Arhitektura Školska godina 2015/16 Uvod u arhitektonske konstrukcije, II sem. 2+2 Predavanje br. 6 Оsnоvni

Διαβάστε περισσότερα

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Dr Veliborka Bogdanović, red.prof. Dr Dragan Kostić, v.prof. Konstruktivni sklop - Noseći sistem objekta Struktura sastavljena od jednostavnih nosećih elemenata

Διαβάστε περισσότερα

Opšte KROVNI POKRIVAČI I

Opšte KROVNI POKRIVAČI I 1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Arhitektonske konstrukcije I, III sem. 2+2

Arhitektonske konstrukcije I, III sem. 2+2 Građevinsko-arhitektonski fakultet Univerziteta u Nišu Osnovne akademske studije studijski program Arhitektura Školska godina 2016/17 Arhitektonske konstrukcije I, III sem. 2+2 Prof. dr Veliborka Bogdanović

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PREDAVANJA. Redni broj predavanja. Nastavna jedinica. 1. Uvod, Temelji, Hidroizolacije. 2. Osnovni elementi i tipologije konstrukcija visokogradnje

PREDAVANJA. Redni broj predavanja. Nastavna jedinica. 1. Uvod, Temelji, Hidroizolacije. 2. Osnovni elementi i tipologije konstrukcija visokogradnje PREDAVANJA Redni broj predavanja Nastavna jedinica 1. Uvod, Temelji, Hidroizolacije 2. Osnovni elementi i tipologije konstrukcija visokogradnje 3. Kameno ziđe 4. Betonske stijene 5. Pregradne stijene 6.

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM PROGRAM ZA MEĐUSPRATNE KONSTRUKCIJE TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi

Διαβάστε περισσότερα

" SIMPROLIT" > FIZIČKO-MEHANIČKA SVOJSTVA. Fizičko-mehanička svojstva usklađena su sa normativnim trebovanjima GOST R (polistirolbeton)

 SIMPROLIT > FIZIČKO-MEHANIČKA SVOJSTVA. Fizičko-mehanička svojstva usklađena su sa normativnim trebovanjima GOST R (polistirolbeton) S I M P R O L I T - NAŠ PRODOR U XXI VEK SIMPROLIT BLOKOVI " SIMPROLIT" SIMPROLIT je posebna vrsta polistirolbetona, patentirana smesa od ekspandiranih granula polistirola, portland-cementa i patentiranih

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

Priveznice W re r R e o R p o e p S e l S ing n s

Priveznice W re r R e o R p o e p S e l S ing n s Priveznice Wire Rope Slings PRIVEZNICE OD ČEIČNO UŽEA (RAE) jenosruke SINE WIRE ROPE SINS Sanar EN P P P P P P P P P P P P ozvoljeno operećenje kg elemeni priveznice prekina jenokrako vešanje ) ouvaanje

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD. Josipa Tomić. Osijek, 15. rujna 2016.

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD. Josipa Tomić. Osijek, 15. rujna 2016. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujna 2016. Josipa Tomić SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK

Διαβάστε περισσότερα

PRORAČUN GLAVNOG KROVNOG NOSAČA

PRORAČUN GLAVNOG KROVNOG NOSAČA PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Keramički materijali. Predavanje:

Keramički materijali. Predavanje: Keramički materijali Predavanje: 12.04.2012. Hemijski sastav gline Kaolin: Al 2 O 3 2 S i O 2 2 H 2 O S i O 2 Al 2 O 3 H 2 O CaO Fe 2 O 3 FeO K 2 O MgO Podjela prema kompaktnosti mase: sa poroznom masom

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Dimenzioniranje nosaa. 1. Uvjeti vrstoe Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

Transmisioni gubici. Predavanje 2

Transmisioni gubici. Predavanje 2 Transmisioni gubici Predavanje 2 Koeficijent prolaza toplote-u za spoljne prozore, balkonska vrata i krovne prozore Prozori se sastoje od tri komponente Stakla,rama i distancera Termički mostovi su kontakti

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2

BETONSKE KONSTRUKCIJE 2 BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja

Διαβάστε περισσότερα

Vesla, teleskopi, nosači za štapove za ribolov

Vesla, teleskopi, nosači za štapove za ribolov 76 Vesla, teleskopi, nosači za štapove za ribolov vesla pala piatta rvena vesla obojana prozirnom poliuretanskom bojom, vrlo čvrsta, sa ravnom lopaticom. Imaju plastično ležište za rašlje Φ43mm. tr13 38180

Διαβάστε περισσότερα

konstruktivni detalji

konstruktivni detalji Ytong sustav gradnje konstruktivni detalji λ 10 DRY = 0,09 Najbolja toplinska izolacija 115 110/120 100 20/90 120 80/120 60 70/75 30/35/40/45 50 30/35 15/20/25 10/15 10 10/15 10 TEMELJ I SOKL 10-05 Temelj

Διαβάστε περισσότερα

KROVNI POKRIVAČI. ZAVRŠNI, ZAŠTITNI ELEMENT KROVNE KONSTRUKCIJE I OBJEKTA U CELINI (kruna svake kuće)

KROVNI POKRIVAČI. ZAVRŠNI, ZAŠTITNI ELEMENT KROVNE KONSTRUKCIJE I OBJEKTA U CELINI (kruna svake kuće) XII Predavanje KROVNI POKRIVAČI DR DRAGAN KOSTIĆ, V.PROF. 12/21/2015 1 Osnovni pojmovi ZAVRŠNI, ZAŠTITNI ELEMENT KROVNE KONSTRUKCIJE I OBJEKTA U CELINI (kruna svake kuće) Namena: štiti od atmosferskih

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

DRVOLIT I KOMBI PLOČE

DRVOLIT I KOMBI PLOČE Hrvatski kvalitet RVONEO RVOPOR RVOTERM RVOLIT RVOLIT AKUSTIK RVOLIT I KOMBI PLOČE RVOLIT I KOMBI PLOČE VARPING, s kojim FRAGMAT sarađuje od 1991. godine je početkom 010 godine postao član grupacije FRAGMAT

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 OPTEREĆENJE KROVNE KONSTRUKCIJE : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2 1.1. ROGOVI : * nagib krovne ravni : α = 35 º * razmak rogova : λ = 80 cm 1.1.1. STATIČKI

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

ČELIČNA UŽAD 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49. Ø 1,5-20 mm 6 X 19 + T.J. = X 19 + J.J. = 133. Ø 3-30 mm

ČELIČNA UŽAD 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49. Ø 1,5-20 mm 6 X 19 + T.J. = X 19 + J.J. = 133. Ø 3-30 mm ČELIČNA UŽAD STANDARD - OPIS Broj žica dimenzije DIN 3053 19 Ø 1-10 mm DIN 3054 37 Ø 3-10 mm DIN 3055 6 X 7 + T.J. = 42 6 X 7 + J.J. = 49 Ø 1,5-20 mm DIN 3060 6 X 19 + T.J. = 114 6 X 19 + J.J. = 133 Ø

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRILOG B. U [W/(m 2 K)] Redni broj. Građevni dio. Θ int,set,h 18 C 12 C < Θ int,set,h < 18 C

PRILOG B. U [W/(m 2 K)] Redni broj. Građevni dio. Θ int,set,h 18 C 12 C < Θ int,set,h < 18 C PRILOG B POPIS NAJVEĆIH DOPUŠTENIH VRIJEDNOSTI KOEFICIJENATA PROLASKA TOPLINE, U, GRAĐEVNIH DIJELOVA ZGRADE KOJE TREBA ISPUNITI PRI PROJEKTIRANJU NOVIH I REKONSTRUKCIJI POSTOJEĆIH ZGRADA I UTVRĐENE VRIJEDNOSTI

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif. SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU

AGREGAT. Asistent: Josip Crnojevac, mag.ing.aedif.   SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU AGREGAT Asistent: Josip Crnojevac, mag.ing.aeif. jcrnojevac@gmail.com SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU JOSIP JURAJ STROSSMAYER UNIVERSITY OF OSIJEK 1 Pojela agregata PODJELA AGREGATA - PREMA

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Katalog proizvoda Zidni sistemi

Katalog proizvoda Zidni sistemi Katalog proizvoda 2018. Zidni sistemi Sadržaj Gotovo 200 godina duga inovacija...4 Svetski lider u proizvodnji glinenih građevinskih materijala... 4 4 linije proizvoda za savršen dom!... 7 POROTHERM ENERGY

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Entwicklungen innovativ Inovativni razvoji für Ihre Ideen za vaše ideje. Liapor

Entwicklungen innovativ Inovativni razvoji für Ihre Ideen za vaše ideje. Liapor Entwicklungen innovativ Inovativni razvoji für Ihre Ideen za vaše ideje Liapor Entwicklungen innovativ Inovativni razvoji für Ihre Ideen za vaše ideje energetski efikasne tehnologije Primena u EU www.liapor.rs

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja: Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos

Διαβάστε περισσότερα

Vrijedi: OD 20. LIPNJA Lindab CJENiK Cijene su izražene u KN exw Lučko Zagreb, bez PDV-a; Cjenik vrijedi od

Vrijedi: OD 20. LIPNJA Lindab CJENiK Cijene su izražene u KN exw Lučko Zagreb, bez PDV-a; Cjenik vrijedi od Vrijedi: OD 20 LIPNJA 2012 Lindab CJENiK 2012 Sustav za odvodnju oborinskih voda i dodaci Lindab Elite sustav zaštite proizvoda >>> 3 Lindab Rainline Lindab Elite R Žlijeb Duljina: 4 m i 6 m 190 Elite

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

POVIJEST ZIDANIH KONSTRUKCIJA

POVIJEST ZIDANIH KONSTRUKCIJA Tehničko veleučilište u Zagrebu Graditeljski odjel ZIDANE KONSTRUKCIJE Zagreb, 2015. POVIJEST ZIDANIH KONSTRUKCIJA Piramide u Gizehu (2650. i 2550. gpk) Kineski zid, 8852km 1 Philadelphia City Hall, Pennsylvania

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

UPUTSTVO ZA GRADNJU SA TEHNIČKIM PODACIMA O PROIZVODIMA

UPUTSTVO ZA GRADNJU SA TEHNIČKIM PODACIMA O PROIZVODIMA UPUTSTVO ZA GRADNJU SA TEHNIČKIM PODACIMA O PROIZVODIMA SADRŽAJ Uvod...3 YTONG sistem gradnje...4 Proizvodi...5 Gradilište...6 Nivelisanje...7 Postavljanje prvog reda...8 Oblikovanje YTONG elementa...9

Διαβάστε περισσότερα

ZASTORI SUNSET CURTAIN Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

ZASTORI SUNSET CURTAIN Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. ZSTORI ZSTORI SUNSET URTIN Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. ŠIRIN (mm) VISIN (mm) Z PROZOR IM. (mm) TV25 40360 360 400 330x330 TV25 50450 450

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

ZIDANE KONSTRUKCIJE I NOVI EVROPSKI STANDARDI

ZIDANE KONSTRUKCIJE I NOVI EVROPSKI STANDARDI ZIDANE KONSTRUKCIJE I NOVI EVROPSKI STANDARDI Vladimir DENIĆ STRUČNI RAD UDK:624.012:693/694=861 UVOD Polazeći od činjenice da u novogradnji zidane konstrukcije učestvuju sa preko 90%, bilo je neophodno

Διαβάστε περισσότερα

POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP

POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP Strop se sastoji od montažne ploče (obično napravljene na vibro stolu), debljine min. 4 cm, armirane mrežastom armaturom i dodatnog betona, debljine

Διαβάστε περισσότερα

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar)

REGIONALNO-METAMORFNE STENE ( ºC; 2-10 kbar) REGIONALNO-METAMORFNE STENE (200-800ºC; 2-10 kbar) PODELA PREMA TEKSTURI 1. ŠKRILJAVE I 2. MASIVNE METAMORFNE STENE PODELA PREMA STEPENU KRISTALINITETA (NE ZAVISI OD STEPENA METAMORFIZMA) 1. STENE VISOKOG

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Predlog za kalkulacije i tenderske opise Projektantske cene bez PDV-a, rastura i popusta

Predlog za kalkulacije i tenderske opise Projektantske cene bez PDV-a, rastura i popusta April 010. Predlog za kalkulacije i tenderske opise Projektantske cene bez PDV-a, rastura i popusta SADRŽAJ Oblaganje zidova 1 Lepljenje Rigips ploča na zidove - suvo malterisanje Termoizolacija zidova

Διαβάστε περισσότερα

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI

VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI VEŽBA 7. ISPITIVANJE BETONA I NJEGOVIH KOMPONENTI O betonu... Beton je konstruktivni materijal koji nastaje očvršćavanjem mešavine: kamenih agregata, mineralnog veziva i vode aditivi Aktivne komponente

Διαβάστε περισσότερα

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti PLOČA - P 5 je zidni element I razreda namijenjen za oblaganja. Zbog male debljine, a velike površine, ploča je idealna za završne radove u interijerima građevina, prije svega kod oblaganja kupaonskih

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα