DINAMIKA KRISTALNE REŠETKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DINAMIKA KRISTALNE REŠETKE"

Transcript

1 DINAMIKA KRISTALNE REŠETKE

2 r<r o sila nastoji povećati r r>r o sila nastoji smanjiti r r0- ravnotežna vrijednost kad je sila =0 Smjer djelovanja sile suprotan je od smjera pomaka. Sila nastoji vratiti atome u ravnotežne položaje i zove se povratna (restitucijska) sila. Pod djelovanjem ove sile atomi titraju oko svojih ravnotežnih položaja. Kao da su atomi meñusobno vezani elastičnim oprugama (postoje elastične/povratne sile)

3 U kristalnoj rešetki pomak svakog atoma utiče pobuñuje i njegovu okolinuvezano titranje. U tom titraju je uskladištena unutrašnja energija kristala koju tijelo ima na konačnoj temperaturi Intenzitet titranja se smanjuje sa temperaturom Titranje postoji i na temperaturi apsolutne nule zbog Heisenbergovih relacija neodreñenosti p q h

4 Atomski pomaci iz ravnotežnog položaja daju talas koji se prostire kroz rešetku i koji može da se okarakteriše sa: brzinom prostiranja v talasnom dužinom λ ili talasnim brojem k = π/λ frekvencijom ν ili ugaonom frekvencijom ω = πν = kv. Možemo izvesti jednačinu kretanja za bilo koji pomak, tj. naći tzv. DISPERZIONU RELACIJU koja povezuje frekvencije i talasne dužine, tj. ugaone frekvencije i talasni broj (vektor) ω = f(k).

5 OSCILOVANJE ATOMA U JEDNODIMENZIONALNOJ KRISTALNOJ REŠETCI Funkcionalna zavisnost frekvencije od talasnog vektora ω (k) naziva se DISPERZIONA RELACIJA. Odredićemo disperzionu relaciju u najjednostavnijem modelu rešetke u jednodimenzionalnoj rešetki i to u dva slučaja : lanac sa atomima iste vrste i lanac dva tipa atoma.

6 LANAC ISTOVRSNIH ATOMA Neka svaka elementalna ćelija sadrži samo jedan atom mase M i neka su atomi meñusobno vezani silom jačine. Neka se u ravnotežnom stanju atomi nalaze u čvorištima rešetke na meñusobno jednakom rastojanju a. Neka svaki atom meñudjeluje samo sa svoja prva dva susjeda i neka se pomak odvija samo u pravcu lanca.

7 Lanac istovrsnih atoma Usljed titranja amplitudom u l, trenutni položaji atoma su x=la+u l pa se prema tome mijenjaju i meñusobni razmaci

8 Lanac istovrsnih atoma Pretpostavke: 1. Atomi titraju oko ravnotežnih položaja x l =la. Meñuatomska sila je kratkog dosega i meñudjeluju samo prvi susjedi, a amplitude titranja su male u usporedbi sa a tj. a>> u pretpostavka nam omogućava primjenu tzv. harmonijske aproksimacije => potencijalna energija je kvadratna funkcija atomskih pomaka iz ravnotežnih položaja Za cijeli linearni niz atoma/harmonijskih oscilatora N = α u u + u u u u = α [( ) ( ) ( ) ] ( u u ) U 1 3 N 1 N l l+ a l= 1

9 Lanac istovrsnih atoma Ovdje je α- konstanta elastičnosti tj. konstanta meñuatomskog djelovanja koja odreñuje jačinu meñuatomske veze l =1,,...N je broj elementarnih ćelija i u našem slučaju broj atoma u kristalu (jedan atom po elementarnoj ćeliji- uvedeno na početku) Pogledajmo detaljnije titranje l-tog atoma u lancu Sila na l-ti atom (koja je jednaka negativnoj derivaciji potencijalne energije) potiče od njemu prvih susjeda, lijevog i desnog tj. (l-1)-og i (l+1)-og i proporcionalna je pomaku tog atoma iz ravnotežnog položaja, pa je jednačina kretanja l-tog atoma:

10 Aproksimacija elastičnog kontinuuma (približno rješenje) ( ) Pretpostavićemo da je meñuatomski razmak a toliko malen da kristalnu rešetku možemo aproksimirati kontinuiranim elastičnim sredstvom Pomak iz ravnotežnog položaja l-tog atoma označićemo sa u(x,t), a pomake susjednih atoma razviti u red po malom parametru a u kvadratnoj aproksimaciji: u x t u = u ( x, t) ± a + x (, ) a u ( x, t) l ± 1 x

11 Aproksimacija elastičnog kontinuuma (približno rješenje) Time jednadžba kretanja ( ) postaje: Ovo je poznata valna jednadžba: Pri čemu je v o brzina širenja valova u sredstvu. Uporeñivanjem jednačina slijedi da je u αa u = t M x t u u = v 0 α v0 = a M x Titranjem atoma prenose se zvučni valovi tj. v 0 je brzina zvuka

12 Aproksimacija elastičnog kontinuuma (približno rješenje) Rješenja valne jednačine su ravni valovi: u(x,t)=ae i(kx-ωt) Valni broj je k=π/λ. Veza izmeñu kružne frekvencije, valnog broja i fazne brzine ima oblik: ω=v 0 k Sad ćemo se opet vratiti na početnu jednadžbu kretanja i naći rješenja u obliku Blochovih funkcija (zbog translacione simetrije kristala)

13 Uvrstimo li redom l=1,,...n, dobivamo sistem od N diferencijalnij jednačina čija rješenja opisuju titranja N vezanih linearnih harmonijskih oscilacija atoma. Meñutim zbog translatorne simetrije u kristalu, funkcija pomaka u l, kao rješenje gornje jednačine je Blochova funkcija pa za l-ti atom ima oblik (*) gdje je r l =x l =la ravnotežni položaj l-tog atoma

14 Lanac istovrsnih atoma Uvrštavanjem ovih izraza u jednačinu kretanja, dobiva se jednačina kretanja u k-prostoru Djeljenjem sa faktorom e ikla slijedi jednačina kretanja u kojoj se gubi ovisnost o indeksu l, odnosno o razmatranom atomu Ovo je jednačina kretanja LHO

15 Rješenja su: u k ( ) i t t = Ae ω Frekvencija titranja oscilatora je: Frekvencija ima samo pozitivne vrijednosti: Disperziona relacija sistema

16 Lanac istovrsnih atoma Ona ima maksimalnu vrijednost ω m kada je sin(ka/)=1, odnosno kada je maksimalna vrijednost valnog vektora k m =±π/a Ovo je granična vrijednost valnog vektora realnih titranja atoma lanca Primijetiti da je u 1-D rešetki iznos vektora recipročnog prostora G jednak nπ/a gdje je n proizvoljan cijeli broj

17 Lanac istovrsnih atoma Područje valnih vektora u kome su sve moguće vrijednosti frekvencije ω jednoznačno odreñene je područje prve Brillouinove zone: π a k π a 1. B. zona u 1D. Valni vektori iz 1. B. zone zovu se redukovani valni vektori

18 Lanac istovrsnih atoma Prema (*) titranje atoma oko čvorišta se prenosi kroz kristal u vidu ravnih valova: Minimalna valna dužina odreñena je maksimalnom vrijednošću valnog vektora: Vidimo da je istog reda veličine kao meñuatomsko rastojanje a m

19 Lanac istovrsnih atoma U disperzionoj relaciji za frekvenciju nestala je zavisnost od l koju ima početna jednačina kretanja rj Zato rješenja opisuju titranja atoma pri čemu svakom stanju valnog vektora k, odgovara odreñena vrijednost frekvencije. Ovakve meñusobno nezavisne oscilacije nazivaju se normalne oscilacije

20 Lanac istovrsnih atoma Broj normalnih oscilacija odreñen je graničnim uslovom periodičnosti koji mora zadovoljavati funkciju pomaka, a koji zahtijeva da je pomak invarijantan prema prostornoj translaciji za dužinu L: Ovaj uslov zahtijeva da početni i krajnji N-ti atom titraju u fazi (kao da je lanac atoma u obliku prstena atoma) L = Na s+n-1 s x = sa x = (s+n)a s+1 s+

21 Lanac istovrsnih atoma (broj reduciranih valnih vektora)

22 Grafički prikaz disperzione relacije u 1. B. zoni

23 1. Brillouinova zona u recipročnom prostoru Sjetimo se disperzione relacije za 1-D monoatomsku rešetku koja se ponavlja sa periodom π / a (u k-prostoru) : ω 4α M k 4π a 3π a π π 0 a a π a π a 3π a 4π a 1st Brillouin Zone (BZ) nd Brillouin Zone 3rd Brillouin Zone Svaka BZ sadrži identične informacije o rešetki

24 1. BZ 1. BZ je dio recipročnog prostora koji sadrži sve informacije o vibracijama rešetke u čvrstom tijelu. Samo vrijednosti k iz 1. BZ odgovaraju jedinstvenim vibracionim modovima. Svaki k izvan 1. BZ je matematički ekvivalentan vrijednosti k 1 unutar 1. BZ. Ovo se može izraziti preko vektora translacije recipročnog prostora: k k = 1 + G 4α M ω G 4π a 3π a π π 0 a a k 1 π a π a k 3π a 4π a k

25 Izgled BZ

26 Dugovalna aproksimacija Što je veća valna dužina, to će manje biti izražena diskretnost kristalne strukture, a to znači da kristal možemo aproksimirati elastičnom sredinom. Dugovalna aproksimacija (ka<<1 tj. λ>>a) Uslov da je ω k je karakteristika prostiranja zvučnih valova u neprekidnoj elastičnoj sredini

27 Dugovalna aproksimacija Faktor proporcionalnosti predstavlja brzinu širenja zvuka v kroz tu sredinu Ovi rezultati se podudaraju sa rezultatima koje smo izveli u modelu elastičnog kontinuuma. Uvažavajući definiciju valnog broja k=π/λ to znači da kristal možemo aproksimirati elastičnim kontinuumom ako je ka<<1 tj. λ>>a što je i razumljivo jer što je veća valna dužina to će manje biti izražene osobine kristalne strukture U ovom području fazna brzina v=ω/k i grupna brzina v=dω/dk su meñusobno jednake i imaju stalnu vrijednost, jednaku brzini prostiranja zvučnih valova kroz elastičnu sredinu. To znači da u ovom području nema disperzije valova Titranja rešetke ovog tipa nazivaju se akustička titranja.

28 U području velikih k U području velikih vrijednosti valnog vektora k brzina valova ne ostaje konstantna. Fazna i grupna brzina su tad Iz ovog rezultata se vidi da dolazi do disperzije valova u kristalu. Za k = ± π/a ( na granicama 1. Brillouinove zone) tj kada je talasna dužina λ= a, disperziona kriva postaje ravna (tj. grupna brzina pada na nulu).

29 Grupna brzina Grupna brzina opisuje kretanje valnog paketa koji se sastoji od više valova različitih valnih dužina Ima maksimalnu vrijednost za male k, a pada na nulu na granicam 1. B. zone (k=±π/a)

30 Granice 1 B. zone Rješenje na granicama 1. B. Zone ne predstavlja više progresivni val, već stojeći val (što smo mogli zaključiti i iz činjenice da je grupna brzina na granicama zone =0, nema propagacije energije) Ovo je funkcija stojećeg vala. Kod ovakvog vala atomi titraju u protufazi (coslπ=±1) u zavisnosti da li je l paran ili neparan broj.

31 Ovo je ekvivalentno Braggovoj refleksiji progresivnih valova na kristalografskim ravnima: nλ=dsinθ To znači da je pri refleksiji valova na kristalografskim ravnima meñusobno udaljenim za d =a, ugao refleksije θ = 90, odakle se vidi da se to dešava za λ=a/n tj. za k=nπ/a uvijek na granicama Brillouinove zone.

32 LANAC DVA TIPA ATOMA Razmotrimo sada jednodimenzionalni model rešetke koju čine dva tipa atoma M 1 i M, rasporeñenih naizmjenično na meñusobno jednakim rastojanjima a. Uzećemo da je M >M 1 Neka su atomi vezani elastičnom silom. Sada svaka elementarna ćelija sadrži dva atoma, pa je linearna dimenzija ćelije b=a. Neka su atomi mase M 1 na parnim, a M na neparnim pozicijama u kristalu

33 Možemo postaviti dvije jednačine kretanja za atome mase M 1 i mase M : Rješenja su Blochove funkcije pri čemu postoji razlika u amplitudi titranja za atome M 1 i M

34 Uvrštavanjem u jednadžbe kretanja dobivamo: Determinantu sistema izjednačavamo sa nulom: α M ω 1 α coska α coska α + M ω = 0 => Dobivamo jednadžbu: čija rješenja su: 4 M1 + M 4α ω αω + sin ka = 0 M M M M 1 1 Dvije disperzione relacije

35 Lanac dva tipa atoma Valnom broju k pridružene su dvije frekvencije ω + (k) i ω - (k) I opet je nestala zavisnost od l, što znači da su titranja nezavisna od razmatranog atoma, odnosno to su normalne oscilacije Frekvenicja titranja je periodična funkcija sa periodom π/a, jer translacija valnog broja za višekratnik π/a ostavlja frekvenciju nepromjenjenu (pokazati kao i ranije) Područje jednoznačno odreñenih vektora je područje 1. B. zone: π a k π a ; b = a

36 Lanac dva tipa atoma Pomoću periodičnosti rješenja jednačina kvantiziramo valni broj Postavljamo granični uslov periodičnosti u l+n =u l Svaka elementarna ćelija sadrži dva atoma tako da je broj atoma N=n, gdje je n broj elementarnih ćelija linearne dimenzije b=a Označimo sa L dužinu lanca pa je L=nb=na u l+n =u l - uslov periodičnosti => Ae i [ k ( l+ N ) a ωt ] i[ kla ωt ] kl = πm π k = na = Ae π k = m, pošto je L = na L m, m = 0, ± 1, ±,... e ikna = e ik na = e ikl = 1 imamo

37 Lanac dva tipa atoma Uvrštavanjem k u područje reduciranih valnih vekotra dobivamo: n m n Ovo nam omogućava da prebrojima sva stanja u 1. B. Zoni Broj valnih vektora u 1. B. Zoni jednak je broju ćelija u lancu tj. m=n, odnosno broj normalnih oscilacija jednak je broju ćelija u kristalu, a ne broju atoma N

38 Grafički prikaz disperzionih relacija Dvije grane disperzione relacije opisuju titranje atoma dvoatomnog lanca. Frekventna ovisnost ω - (k) predstavlja se krivom koja se naziva akustična grana, a funkcija ω + (k) se naziva optičkom granom.

39 Lanac dva tipa atoma Ako sa A + i B + označimo amplitude koje odgovaraju frekvenciji ω + (k), a sa A - i B - amplitude koje odgovaraju frekvenciji ω - (k) dobijamo iz : ( α M ω ) A Bα coska 0 Aα coska 1 = ( α M ω ) B 0 = => B A α M1ω ± α coska = = ± α coska α M ω ± Napravimo analizu rješenja ω - (k) i ω + (k) i odnosa amplituda titranja u dva granična područja valnih vektora: u središtu (k=0) i na granici B. zone (k=π/a)

40 a) U dugovalnom području je ka<<1 tj. sinka ka. Za akustičku granu se dobija ( razvojem u red drugog člana donje relacije) Razvojem u red ( ) sin ka k a ; 1 x = 1 x => Brzina širenja vala zvučnih valova u kristalu Za k=0 dobija se: Atomi titraju u fazi (slika b) sa istom amplitudom

41 Dugovalna aproksimacija Linearna zavisnost izmeñu frekvencije i valnog vektora pokazuje da se radi o prenosu titranja akustičkim valovima kroz elastičnu neprekidnu sredinu. Zato se frekvencija ω - (k) zove akustička frekvencija. Ako su mase atoma u lancu jednake tj. M 1 =M =M, za brzinu akustičkih valova se dobiva: α α α v0 = a = a = a M M 4M M ( + ) 1 što je ekvivalentno izrazu koji smo dobili kod monoatomnog lanca

42 Dugovalna aproksimacija Za optičku granu u blizini k=0 se iz dobija ω ( 0) α + M 1 M Grupna i fazna brzina su tada: ω ω ( 0) v g = = 0 v = + f k k B A + = M M 1 Atomi titraju u protufazi (slika a)

43 Dugovalna aproksimacija Usljed ovoga titranja u protufazi se kod jonskih kristala koji sadrže atome različitog tipa sa električnim naboj suprotnog znaka, pojavljuje optički aktivan dipolni momenat (može se pobuditi EM poljem) Oscilacije ovog električnog dipola odgovaraju frekvencijama iz optičkog dijela spektra pa se ove frekvencije zato nazivaju optičkim.

44 b) Područje na granicu Brilloinove zone k max =π/a; sin ka= 1 Za akustičku granu π α ω = a M B A Ovo znači da samo atomi mase M titraju, dok atomi mase M 1 miruju. Za optičku granu što znači da samo atomi mase M 1 titraju dok atomi mase M miruju.

45 Širine akustičke i optičke grane je: Širina procjepa

46 Širina procjepa Širina procjepa zavisi od konstante elastičnosti α i obje mase, a iščezava za M 1 =M. Odnos masa M 1 /M odreñuje širinu zabranjenog frekventnog područja i širinu optičke grane. Kad se mase previše ne razlikuju procjep je uzak, dok u slučaju M >>M 1 procjep je širok, a širina optičke grane postaje uska

47 Iz ovog razmatranja smo vidjeli da u lancu istih atoma postoji samo jedan tip titranja atoma i to akustički. To je ono titranje pri kome se svi atomi pomiču u fazi. U lancu sa dva tipa atoma imamo dva tipa titranja, akustički i optički. Kad bi porastao broj atoma u elementarnoj ćeliji, tada bi i broj optičkih oscilacija postao veći. Kad bi u lancu bilo n različitih atoma u ćeliji javljalo bi se n tipova titranja rešetke. Sličan rezultat dobiva se i za trodimenzionalni kristal s tom razlikom što je sad broj mogućih titranja trostruko veći, dakle 3n. Na osnovu ovoga možemo zaključiti koliki je broj akustičkih i optičkih titranja u opštoj trodimenzionalnoj rešetki čija elementarna ćelija sadrži n atoma. Tada postoji 3n različitih titranja od kojih su 3 akustična, a 3(n-1) optička.

48 Dosadašnja razmatranja oscilovanja/titranja kristalne rešetke provedena su u Lagrangeovom formalizmu opisa sistema i dovela su do zaključaka da su normalne oscilacije atoma rešetke u velikom stepenu harmonijske i meñusobno nezavisne. S kvantno mehaničkog aspekta može se smatrati da su normalne oscilacije kvantni harmonijski oscilatori. Tad titranje atoma možemo opisati sistemom harmonijskih oscilatora čiji je energetski spektar dat relacijom: ε n ħω = + nħω (**) gdje je ω frekvencija titranja oscilatora, a n odreñuje energetsko stanje u koje je oscilator pobuñen u odnosu na stanje n=0

49 Fononi U ovom mnoštvu oscilatora neki su u osnovnom stanju, neki u prvom pobuñenom itd. Stepen pobuñenja oscilatora raste sa temperaturom Najmanji iznos energije dovoljan da se harmonijski oscilator pobudi u više energetsko stanje je ћ ω. U skladu sa korpuskularno-talasnom prirodom mikročestica, zgodno je za ovo elementarno pobuñenje energije ћω uvesti koncept kvazičestice koju nazivamo fonon. Fonon je elementarno pobuñenje toplotnih titranja cijele rešetke,a ne induvidualnog atoma u njoj.

50 Fononi Fononi su kao i fotoni bozoni Oni se mogu stvarati i poništavati u interakciji Na taj način se kvantnom broju n u jednačini (**) može pripisati značenje broja fonona u pobuñenom stanju koje specificira valni vektor k Raspodjela fonona po energetskim stanjima odreñena je Bose- Einsteinovom funkcijom raspodjele: n ( ) ω = e B 1 nħω k T 1

51 Fononi A srednja energija fonona, od kojih svaki ima energiju ћ ω: E = n ( ω) ħω

52 Optički i akustički fononi Optičkom titranju pridruženi su optički (N o ), a akustičnom, akustički fononi (N a ) tako da je ukupan broj fonona: N f =N o +N a Pri visokim temperaturama broj optičkih fonona linearno raste sa temperaturom: N o ~T Pri niskim temperaturama broj optičkih fonona opada eksponencijalno sa T: N o ~e -ћω/kbt

53 Optički i akustički fononi Pri visokim temperaturama broj akustičkih fonona je proporcionalan sa temperaturom kao i u slučaju optičkih fonona Pri niskim temperaturama broj akustičkih fonona opada sa T kao Na ~T 3 Ovo je sporije nego za optičke fonone Na niskim temperaturama dominiraće akustički fononi nad optičkim fononima

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Dvoatomna linearna rešetka

Dvoatomna linearna rešetka Dvoatomna linearna rešetka Promatramo linearnu rešetku s dva različita atom u elementarnoj ćeliji. Konstanta rešetke je a. Udaljenost između susjednih različih atoma je a/2 Mase atoma su M 1 i M 2. (Neka

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Uvod. Na temperaturi T atomi titraju oko ravnotežnih položaja što je opisano disperzionom relacijom ω(k)

Uvod. Na temperaturi T atomi titraju oko ravnotežnih položaja što je opisano disperzionom relacijom ω(k) Uvod Na temperaturi atomi titraju oko ravnotežnih položaja što je opisano disperzionom relacijom (k) oplotno titranje atoma oko ravnotežnih pložaja doprinosi najviše unutrašnjoj energiji kristala Veličina

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k.

Funkcija prenosa. Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k. OT3OS1 7.11.217. Definicije Funkcija prenosa Funkcija prenosa se definiše kao količnik z transformacija odziva i pobude. Za LTI sistem: y n h k x n k Y z X z k Z y n Z h n Z x n Y z H z X z H z H z n h

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Elektron u periodičnom potencijalu

Elektron u periodičnom potencijalu Elektron u periodičnom potencijalu U Sommerfeldovom modelu elektroni se gibaju u potencijalnoj jami s ravnim dnom (kutija). Periodični potencijala od pravilne kristalne strukture pozitivnih iona se zanemaruje.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

PP-talasi sa torzijom

PP-talasi sa torzijom PP-talasi sa torzijom u metrički-afinoj gravitaciji Vedad Pašić i Dmitri Vassiliev V.Pasic@bath.ac.uk D.Vassiliev@bath.ac.uk Department of Mathematics University of Bath PP-talasi sa torzijom p. 1/1 Matematički

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Prikaz sustava u prostoru stanja

Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja Prikaz sustava u prostoru stanja je jedan od načina prikaza matematičkog modela sustava (uz diferencijalnu jednadžbu, prijenosnu funkciju itd). Promatramo linearne sustave

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

7. MEHANIČKI VALOVI I ZVUK

7. MEHANIČKI VALOVI I ZVUK ELEKTROTEHNIČKI FAKULTET SARAJEVO INŽENJERSKA FIZIKA I 7. MEHANIČKI VALOVI I ZVUK 7.1 Prostiranje valova u elastičnoj sredini Ako se na jednom mjestu elastične sredine (čvrste, tečne ili plinovite) izazovu

Διαβάστε περισσότερα