Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις"

Transcript

1 Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-2: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ανάλυση Ηλεκτρικών Κυκλωμάτων με Αντιστάσεις H ανάλυση ενός κυκλώματος με αντιστάσεις στη γενική της περίπτωση μπορεί να πραγματοποιηθεί με δύο τρόπους. Και οι δύο μέθοδοι είναι άμεση συνέπεια των νόμων του Kirchoff. Η μέθοδος των απλών βρόγχων Για την πρώτη παρουσίαση της μεθόδου θεωρούμε πως το κύκλωμα μας αποτελείται μόνο από πηγές τάσης και αντιστάσεις και δεν υπάρχουν καθόλου πηγές ρεύματος. Η γενικότερη παρουσίαση της μεθόδου θα παρουσιαστεί στη συνέχεια. Αρχικά πρέπει να ορίσουμε έναν κόμβο αναφοράς τον οποίο αναπαριστούμε με το σύμβολο της γης και θεωρούμε ότι το δυναμικό είναι ίσο με 0V. Στη συνέχεια ανακαλύπτουμε όλους τους απλούς βρόγχους του κυκλώματος και τους αριθμούμε. Θεωρούμε πως ο απλός βρόγχος k διαρρέεται από ένα ρεύμα I k. Επίσης κάνουμε τη σύμβαση πως τα ρεύματα όλων των απλών βρόγχων έχουν την ίδια φορά με τη φορά περιστροφής των δεικτών του ρολογιού (φορά αναφοράς). Το γραμμικό σύστημα που πρέπει να λύσουμε έχει τη μορφή Ζ m I = Ε όπου με Ζ m συμβολίζουμε τον πίνακα αντιστάσεων των απλών βρόγχων ενώ το διάνυσμα Ε περιέχει τη συνεισφορά των πηγών τάσης του υποεξέταση κυκλώματος. Για ένα κύκλωμα με απλούς βρόγχους το γραμμικό σύστημα παίρνει την παρακάτω μορφή: Z Z 2 Z I Z 2 Z 22 Z 2 I 2 E 2 Z Z 2 Z I = E E Αυτό που μένει να αντιστοιχίσουμε τις τιμές των Ζ ij και Ε i με τις αντιστάσεις και τις πηγές τάσης του κυκλώματος μας. Αυτό πραγματοποιείται με τους εξής απλούς κανόνες: Τα στοιχεία της κυρίας διαγωνίου Z ii ισούνται με το άθροισμα των αντιστάσεων των κλάδων που απαρτίζουν το βρόγχο i. Tα στοιχεία Z ij και Z ji με i j που βρίσκονται εκατέρωθεν της κυρίας διαγωνίου είναι ίσα (ο πίνακας Ζ m είναι συμμετρικός) και η τιμή τους είναι το αρνητικό άθροισμα των αντιστάσεων που είναι κοινές στους βρόγχους i και j. Αν οι βρόγχοι i και j δεν έχουν κοινές αντιστάσεις τότε Z ij =Z ji =0. Κάθε E i ισούται με το αλγεβρικό άθροισμα των πηγών τάσεων που υπάρχουν το βρόγχο i. Όταν οι πηγές τάσης έχουν την ίδια φορά με τη φορά αναφοράς (όταν διατρέχουμε το βρόγχο βλέπουμε πρώτα τον αρνητικό πόλο της πηγής τάσης) θεωρούμε πως είναι θετικές ενώ στην αντίθετη περίπτωση συμμετέχουν στον υπολογισμό του E i με αρνητικό πρόσημο. Η φορά αναφοράς του βρόγχου ταυτίζεται με τη φορά του ρεύματος του βρόγχου που επιλέξαμε

2 Παράδειγμα Το κύκλωμα του παραδείγματος αποτελείται από βρόγχους οι οποίοι θεωρούμε ότι διαρρέονται από τα ρεύματα Ι, Ι2 και Ι αντίστοιχα. Ακολουθώντας τα τρία βήματα της μεθόδου το γραμμικό σύστημα που προκύπτει ως προς τα ρεύματα είναι το εξής: R R R2 R 0 R R R 4 R 5 R 5 I = V V 2 V V 5 I V 5 V 7 0 R 5 R 5 R 6 R 7 I Αφού λύσουμε το σύστημα, υπολογίσουμε δηλαδή τα I, I2 και Ι βρίσκουμε τις τάσεις ως προς τον κόμβο αναφοράς όλων των υπόλοιπων κόμβων του κυκλώματος και στη συνέχεια μπορούμε απλά να υπολογίσουμε τα ρεύματα των κλάδων (Τα ρεύματα των κλάδων που είναι κοινοί μεταξύ των βρόγχων ειναι ουσιαστικά η διαφορά των ρευμάτων που διαρρέουν τους δύο γειτονικούς βρόγχους). Η μέθοδος των κόμβων Για την πρώτη παρουσίαση της μεθόδου θεωρούμε πως το κύκλωμα μας αποτελείται μόνο από πηγές ρεύματος και αντιστάσεις και δεν υπάρχουν καθόλου πηγές τάσης. Αρχικά πρέπει να ορίσουμε έναν κόμβο αναφοράς τον οποίο αναπαριστούμε με το σύμβολο της γης και θεωρούμε ότι το δυναμικό είναι ίσο με 0V. Στη συνέχεια ανακαλύπτουμε τους υπόλοιπους κόμβους του κυκλώματος και τους αριθμούμε. Θεωρούμε πως ο κόμβος k έχει τάση V k. Το γραμμικό σύστημα που πρέπει να λύσουμε έχει τη μορφή Ζ k V = J όπου με Ζ k συμβολίζουμε τον πίνακα αντιστάσεων των κόμβων ενώ το διάνυσμα J περιέχει τη συνεισφορά των πηγών ρεύματος του υπο-εξέταση κυκλώματος. Για ένα κύκλωμα με κόμβους (χωρίς να προσμετράτε ο κόμβος αναφοράς) το γραμμικό σύστημα παίρνει την παρακάτω μορφή: Z Z 2 Z V Z 2 Z 22 Z 2 V 2 J 2 Z Z 2 Z V = J J Για την ανάλυση κάποιου συγκεκριμένου κυκλώματος πρέπει να αντιστοιχίσουμε τις τιμές των Ζ ij και J i με τις αντιστάσεις και τις πηγές ρεύματος του κυκλώματος μας. Αυτό πραγματοποιείται με τους εξής απλούς κανόνες: Τα στοιχεία της κυρίας διαγωνίου Z ii ισούνται με το άθροισμα των αντιστάσεων των κλάδων που συνδέονται στον κόμβο i. Tα στοιχεία Z ij και Z ji με i j που βρίσκονται εκατέρωθεν της κυρίας διαγωνίου είναι ίσα (ο πίνακας Ζ k είναι συμμετρικός) και η τιμή τους είναι το αρνητικό άθροισμα των αντιστάσεων που είναι κοινές στους κόμβους i και j. Αν οι κόμβοι i και j δεν έχουν κοινές αντιστάσεις τότε Z ij =Z ji =0. Κάθε J i ισούται με το αλγεβρικό άθροισμα των πηγών ρεύματος που καταλήγουν στον κόμβο i. 2

3 Παράδειγμα Όταν το ρεύμα μιας πηγής εισέρχεται (φτάνει) στον κόμβο i τότε θεωρούμε ότι το ρεύμα αυτό είναι θετικό.στην αντίθετη περίπτωση που το ρεύμα της αντίστοιχης πηγής εξέρχεται (φεύγει) από τον κόμβο συμμετέχει στον υπολογισμό του J i με αρνητικό πρόσημο. Το κύκλωμα του παραδείγματος αποτελείται από κόμβους K, K 2 και Κ (και ένας ο κόμβος αναφοράς 4) στους οποίους θεωρούμε ότι έχει αναπτυχθεί τάση ίση με V, V 2 και V αντίστοιχα. Ακολουθώντας τα τρία βήματα της μεθόδου των κόμβων το γραμμικό σύστημα που προκύπτει ως προς τις τάσεις είναι το εξής: R R2 R4 R2 R4 R 2 R 2 R R 5 R 5 V = I x 2 0 V I x2 R4 R 5 R 5 R 6 R 4 V Αφού λύσουμε το σύστημα βρίσκουμε τις τάσεις V, V 2 και V και στη συνέχεια υπολογίζουμε τα ρεύματα όλων των κλάδων του κυκλώματος. Αρχή της επαλληλίας Με τη βοήθεια της αρχής της επαλήλιας μπορούμε να χωρίσουμε την ανάλυση ενός κυκλώματος σε επιμέρους βήματα τα οποία μπορούμε να εκτελέσουμε ευκολότερα. Η αρχή της επαλληλίας ορίζεται ως εξής: Σε κάθε γραμμικό ηλεκτρικό κύκλωμα το ρεύμα ή η τάση οποιουδήποτε κλάδου, που προέρχεται απο την επίδραση περισσοτέρων από μιας ανεξάρτητων πηγών, είναι ίσα με το άθροισμα των ρευμάτων ή των τάσεων αντίστοιχα που προέρχονται από κάθε ανεξάρτητη πηγή, όταν αυτή δρα μόνη της, ενώ οι υπόλοιπες πηγές είναι νεκρές. Για παράδειγμα ας υποθέσουμε πως έχουμε το παρακάτω κύκλωμα το οποίο αποτελείται από τρεις ιδανικές πηγές. Δύο ιδανικές πηγές τάσης και μία ιδανική πηγή ρεύματος. Η διαφορά δυναμικού στα άκρα των αντιστάσεων και το ρεύμα που τις διαρρέει μπορεί να υπολογιστεί αν θεωρήσουμε τα τρία ανεξάρτητα κυκλώματα που φάινονται παρακάτω.

4 Στο κύκλωμα Α έχουμε μηδενίσει (νεκρώσει) την πηγή ρεύματος και τη δεξιά πηγή τάσης. Αντίθετα στο κύκλωμα Β έχουμε μηδενίσει τις δύο πηγές τάσης και υπολογίζουμε τη συνεισφορά μόνο της πηγής ρεύματος. Τέλος στο κύκλωμα C έχουμε αποσύρει την αριστερή πηγή τάσης και την πηγή ρεύματος, με αποτέλεσμα η συμπεριφορά του να εξαρτάται αποκλειστικά από την μία πηγή τάσης. Τι σημαίνει νεκρή πηγή. Για την εφαρμογή της αρχής της επαλληλίας όταν θέλουμε να αφαιρέσουμε μια πηγή τάσης την αντικαθιστούμε με ένα βραχυκύκλωμα μηδενίζοντας έτσι τη διαφορά δυναμικού στα άκρα της. Αντίθετα, ο μηδενισμός μιας πηγής ρεύματος πραγματοποιείται αντικαθιστώντας την πηγή από ένα ανοιχτοκύκλωμα. Κάθε τάση ή ρεύμα του αρχικού κυκλώματος προκύπτει από το άθροισμα των τάσεων και των ρευμάτων που υπολογίζουμε για το κάθε ένα κύκλωμα Α, Β και C χωριστά. Έτσι για παράδειγμα η τάση του κόμβου Α (V A ) του συνολικού κυκλώματος μπορεί πολύ εύκολα να υπολογιστεί αν αθροισούμε τις επιμέρους τάσεις V A, V A2 και V A που υπολογίζουμε από τα τρία απλούστερα κυκλώματα. Κυκλώματα με δύο είδη πηγών Η αρχή της επαλληλίας μας βοηθάει να αναλύσουμε κυκλώματα τα οποία περιέχουν ταυτόχρονα πηγές τάσης και ρεύματος. Ενα τέτοιο κύκλωμα φαίνεται στο παράδειγμα που ακολουθεί. Στην περίπτωση αυτή θα θέλαμε να μπορούμε να εφαρμόσουμε τη μέθοδο των απλών βρόγχων για τις πηγές τάσης και τη μέθοδο των κόμβων για τις πηγές ρεύματος. Αυτό μπορεί να πραγματοποιηθεί με τη βοήθεια της αρχής της επαλληλίας. Δημιουργούμε με άλλα λόγια δύο κυκλώματα. Το ένα αποτελείται μόνο από τις 4

5 πηγές τάσεις του αρχικού κυκλώματος ενώ οι πηγές ρεύματος έχουν αντικατασταθεί από ανοικτοκυκλώματα, ενώ το άλλο αποτελείται μόνο από τις πηγές ρεύματος και οι πηγές τάσης έχουν αντικατασταθεί από βραχυκυκλώματα. Στην πρώτη εκδοχή υπολογίζουμε εύκολα με τη μέθοδο των απλών βρόγχων τα ρεύματα και τις τάσεις του κυκλώματος. Τα αποτελέσματα που παίρνουμε τα αθροιζούμε με αυτά που προκύπτουν μετά την εφαρμογή της μεθόδου των κόμβων στο κύκλωμα το οποίο αποτελείται μόνο από πηγές ρεύματος. Ο τρόπος αυτός αντιμετώπισης της ύπαρξης πηγών δύο είδων είναι ο πιο απλός και οδηγεί πάντα σε σίγουρα αποτελέσματα. Στο επόμενο κεφάλαιο και στα παραδείγματα που θα δοθούν θα αναπτύξουμε και άλλες τεχνικές οι οποίες επιτρέπουν εύκολα την ανάλυση των κυκλωμάτων ανεξάρτητα από το είδος των πηγών που υπάρχουν στο κύκλωμα. Η εφαρμογή τους παρόλα αυτά απαιτεί περισσότερη εμπειρία στην ανάλυση ηλεκτρικών κυκλωμάτων. 5

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Ισοδύναμα Κυκλώματα και Μετασχηματισμοί

Ισοδύναμα Κυκλώματα και Μετασχηματισμοί Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Ισοδύναμα Κυκλώματα και Μετασχηματισμοί Ισοδύναμα Κυκλώματα Thevenin-Norton Θεωρούμε ένα

Διαβάστε περισσότερα

Καθυστέρηση στατικών πυλών CMOS

Καθυστέρηση στατικών πυλών CMOS Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν

Διαβάστε περισσότερα

- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB.

- Η ισοδύναμη πηγή τάσης Thevenin (V ή VT) είναι ίση με τη τάση ανοικτού κυκλώματος VAB. ΘΕΩΡΗΜΑ THEVENIN Κάθε γραμμικό ενεργό κύκλωμα με εξωτερικούς ακροδέκτες Α, Β μπορεί να αντικατασταθεί από μια πηγή τάση V (ή VT) σε σειρά με μια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήμα.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 Αντίσταση Καλωδίων Σύνδεσης ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ με χρήση ΤΠΕ: Τάση, ένταση, αντίσταση Νόμος Ohm Συνδεσμολογίες Αντιστατών Απλά ηλεκτρικά κυκλώματα 6 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τίτλος: Λαμβάνοντας υπόψη την αντίσταση

Διαβάστε περισσότερα

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης

Ενότητα 4 η. «Ηλεκτροτεχνία Ηλεκτρικές Εγκαταστάσεις»,Τμήμα Μηχανολόγων Π.Θ., Γ. Περαντζάκης - - Ενότητα 4 η (Συστηματική μελέτη και ανάλυση κυκλωμάτων με τις μεθόδους των βρόχων και κόμβων. Θεωρήματα κυκλωμάτωνthevenin, Norton, επαλληλίας, μέγιστης μεταφοράς ισχύος) Στην παρούσα ενότητα παρουσιάζονται

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 3: Νόμος του Ohm Κανόνες του Kirchhoff Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438)

Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438) Φυσική Γ.Π. Β Λυκείου 1 Τράπεζα Θεμάτων (Ηλεκτρισμός) ΘΕΜΑ Β1 (15438) ΘΕΜΑ Β2 (14731) Α. Σωστή απάντηση είναι η α. Β. Από τον ορισμό της έντασης: = = = 10 5 = 50 Β. Η σύνδεση που προτείνεται στο α δείχνει

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

- Η ισοδύναµη πηγήτάσηςthevenin (V ή VT) είναι ίση µε τητάση ανοικτού κυκλώµατος VAB.

- Η ισοδύναµη πηγήτάσηςthevenin (V ή VT) είναι ίση µε τητάση ανοικτού κυκλώµατος VAB. ΘΕΩΡΗΜΑ THEVENIN Κάθε γραµµικό ενεργό κύκλωµα µε εξωτερικούς ακροδέκτες Α, Β µπορεί να αντικατασταθεί από µια πηγή τάση V (ή VT) σε σειρά µε µια σύνθετη αντίσταση Z (ή ZT), όπως φαίνεται στο παρακάτω σχήµα.

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΣΥΝΔΕΣΗ ΑΝΤΙΣΤΑΤΩΝ. Ηλεκτρική τάση - Ένταση του ηλεκτρικού ρεύματος Αντιστάτης Αντίσταση Ισοδύναμη ή ολική αντίσταση

ΠΑΡΑΛΛΗΛΗ ΣΥΝΔΕΣΗ ΑΝΤΙΣΤΑΤΩΝ. Ηλεκτρική τάση - Ένταση του ηλεκτρικού ρεύματος Αντιστάτης Αντίσταση Ισοδύναμη ή ολική αντίσταση ΕΚΦΕ ΑΝ. ΑΤΤΙΚΗΣ (Παλλήνη) υπ. Κ. Παπαμιχάλης ΠΑΡΑΛΛΗΛΗ ΣΥΝΔΕΣΗ ΑΝΤΙΣΤΑΤΩΝ Έννοιες και φυσικά μεγέθη Ηλεκτρική τάση - Ένταση του ηλεκτρικού ρεύματος Αντιστάτης Αντίσταση Ισοδύναμη ή ολική αντίσταση Στόχοι.

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5:

ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5: ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ενότητα 5: Παράλληλα ηλεκτρικά κυκλώματα Καθηγητής Πουλάκης Νικόλαος ΤΕΙ Δ. ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ ezekel@ucy.ac.cy Green Park, Γραφείο Τηλ. 899 Διάλεξη Από την προηγούμενη διάλεξη Στο ΗΜΥ θα επικεντρωθούμε σε γραμμικά και συγκεντρωμένα κυκλώματα

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ

ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ ΚΥΚΛΩΜΑΤΑ ΜΕ ΑΠΛΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΑΝΤΙΣΤΑΤΩΝ Αντιστάτες συνδεδεμένοι σε σειρά Όταν ν αντιστάτες ενός κυκλώματος διαρρέονται από το ίδιο ρεύμα τότε λέμε ότι οι αντιστάτες αυτοί είναι συνδεδεμένοι σε σειρά.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 5: Επανάληψη στο Συνεχές Ρεύμα. Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0. Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση Τ.Π.Ε. ΤΙΤΛΟΣ: «Απλά ηλεκτρικά κυκλώματα συνεχούς ρεύματος» 5 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση Τ.Π.Ε. ΤΙΤΛΟΣ: «Απλά ηλεκτρικά κυκλώματα συνεχούς ρεύματος» 5 ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Διδασκαλία, Σύνδεσης αντιστατών παράλληλα, με Εργαστήριο Κατασκευής Κυκλωμάτων Συνεχούς Ρεύματος, Physics Education Technology (PhET), University of 1 ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΦΟΡΑΣ ΣΕΝΑΡΙΟΥ με χρήση

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΝΑ ΑΠΑΝΤΗΘΟΥΝ ΤΑ ΕΞΙ ( 6 ) ΑΠΟ ΤΑ ΕΝΝΕΑ ( 9 ) ΘΕΜΑΤΑ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ, ΣΤΗΝ ΚΟΛΛΑ ΑΝΑΦΟΡΑΣ. ΘΕΜΑ 1 (α) Όταν θέλετε να ανάψετε το φως στο

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α Α.1 Σωστή απάντηση είναι η β. ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς ΟΜΑΔΑ Α Α. Σωστή απάντηση είναι η δ. Σχόλιο: Η μετατροπή των αριθμών που δίνονται

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.5 Εφαρμογές των αρχών διατήρησης στη μελέτη απλών ηλεκτρικών κυκλωμάτων Λέξεις κλειδιά: σύνδεση σε σειρά, παράλληλη σύνδεση, κόμβος, κλάδος, αντίσταση, τάση. Υπάρχουν δυο τρόποι σύνδεσης των ηλεκτρικών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙ ΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014. Κλάδος: Ηλεκτρολογίας Αρ.

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙ ΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014. Κλάδος: Ηλεκτρολογίας Αρ. ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙ ΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Πρακτική Τάξη: Β' Μάθημα: Εφαρμοσμένη Ηλεκτρολογία Κλάδος: Ηλεκτρολογίας Αρ. Μαθητών :

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. ) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει ιςς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ Α. Θεωρητικό Μέρος MM205 ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ Εργαστήριο 1 ο Όργανα μέτρησης ηλεκτρικών μεγεθών Μετρήσεις στο συνεχές ρεύμα

Διαβάστε περισσότερα

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση

ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ. ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση ΣΗΜΕΙΑ ΙΣΟΡΡΟΠΙΑΣ ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΈΈστω ένα φυσικό σύστημα που περιγράφεται σε γενικευμένες συντεταγμένες από την Λαγκρανζιανή συνάρτηση. Ο πίνακας Μ μπορεί να ληφθεί χωρίς καμμία έλλειψη γενικότητας ως

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες:

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Ηλεκτροκινητήρας Εναλλασσόμενου Ρεύματος τύπου κλωβού. Άσκηση 9. Ηλεκτροκινητήρας εναλλασσόμενου ρεύματος τύπου κλωβού

Ηλεκτροκινητήρας Εναλλασσόμενου Ρεύματος τύπου κλωβού. Άσκηση 9. Ηλεκτροκινητήρας εναλλασσόμενου ρεύματος τύπου κλωβού ANTIKEIMENO: Άσκηση 9 Ηλεκτροκινητήρας εναλλασσόμενου ρεύματος τύπου κλωβού ΣΤΟΧΟΙ ΑΥΤΟΥ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ: Κατανόηση της λειτουργίας του ηλεκτροκινητήρα εναλλασσόμενου ρεύματος τύπου κλωβού Υπολογισμός μηχανικών

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας Πρόλογος Σ το βιβλίο αυτό περιλαμβάνεται η ύλη του μαθήματος «Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας» που διδάσκεται στους φοιτητές του Γ έτους σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 1: Εισαγωγή. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 1: Εισαγωγή. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα : Εισαγωγή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Ανασκόπηση των βασικών εννοιών, κανόνων και θεωρημάτων των γραμμικών δικτυωμάτων: κανόνες

Διαβάστε περισσότερα

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)

Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 3 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ)

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΟΔΗΓΙΑ: Να γράψετε στο τετράδιο σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΟΔΗΓΙΑ: Να γράψετε στο τετράδιο σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 014-015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 1-1-014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α ΟΔΗΓΙΑ: Να

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 3 Νόμος του Ohm, Κυκλώματα σε Σειρά και Παράλληλα Λευκωσία, 2010 Εργαστήριο 3 Νόμος

Διαβάστε περισσότερα

Φυσική Β Γενικού Λυκείου

Φυσική Β Γενικού Λυκείου Φυσική Β Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: Νεκτάριος Πρωτοπαπάς Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ

ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ Δρ. ΕΥΘΥΜΙΟΣ ΜΠΑΚΑΡΕΖΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ ΜΟΝΑΔΕΣ ΜΕΓΕΘΟΣ ΣΥΜΒΟΛΟ ΜΟΝΑΔΕΣ S.. Φορτίο, q oulomb, Ηλεκτρικό ρεύμα, i Ampére, A Ηλεκτρικό δυναμικό olt, Ενέργεια

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26)

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΒΑΣΗ για την ΑΝΑΛΥΣΗ: R = V/I, V = R I, I = V/R (Νόμος Ohm) ΙΔΑΝΙΚΟ ΚΥΚΛΩΜΑ: Αντίσταση συρμάτων και Aμπερομέτρου (A) =, ενώ του Βολτομέτρου (V) =. Εάν η εσωτερική

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΡΗΣΕΩΝ ΗΜΕΡΑ ΩΡΑ.. ΟΜΑΔΑ ΚΑΘΗΓΗΤΗΣ. ΦΥΛΛΟ ΕΡΓΟΥ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΟΛΥΜΕΤΡΟ (ΣΥΜΠΛΗΡΩΜΑΤΙΚΗ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ.. Μέτρηση αντιστάσεων με ωμόμετρο 1. Ρυθμίζουμε το πολύμετρο

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό:

Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό: ΑΣΚΗΣΗ 1 Η Ένας κινητήρας συνεχούς ρεύματος ξένης διέγερσης, έχει ονομαστική ισχύ 500kW, τάση 1000V και ρεύμα 560Α αντίστοιχα, στις 1000στρ/λ. Η αντίσταση οπλισμού του κινητήρα είναι RA=0,09Ω. Το τύλιγμα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù www.ziti.gr Πρόλογος Το βιβλίο που κρατάτε στα χέρια σας είναι γραμμένο

Διαβάστε περισσότερα

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε:

(μονάδες 5) A1.2 Κύκλωμα RLC σε σειρά τροφοδοτείται από εναλλασσόμενη τάση V=V 0 ημ ωt + και διαρρέεται. +. Τότε: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 23 ΜΑÏΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Μετασχηματιστές Ισοδύναμα κυκλώματα

Μετασχηματιστές Ισοδύναμα κυκλώματα Μετασχηματιστές Ισοδύναμα κυκλώματα Σε ένα πρώτο επίπεδο μπορούμε να θεωρήσουμε το μετασχηματιστή ως μια ιδανική συσκευή χωρίς απώλειες. Το ισοδύναμο κύκλωμα λοιπόν ενός ιδανικού μετασχηματιστή είναι το:

Διαβάστε περισσότερα

Μετασχηματιστές Ισοδύναμα κυκλώματα

Μετασχηματιστές Ισοδύναμα κυκλώματα 9/5/0 Μετασχηματιστές Ισοδύναμα κυκλώματα Συνολικά οι απώλειες πυρήνα εκφράζονται στο ισοδύναμο κύκλωμα του μετασχηματιστή με τη χρήση μιας εγκάρσιας ωμικής αντίστασης: I R jx jx R I + + jx ϕ R C N N Αυτό

Διαβάστε περισσότερα

Breadboard-Raster-Πλέγμα ηλεκτρονικού κυκλώματος πλέγμα

Breadboard-Raster-Πλέγμα ηλεκτρονικού κυκλώματος πλέγμα Breadboard-Raster-Πλέγμα Πάντα στην κατασκευή ενός ηλεκτρονικού κυκλώματος το πρώτο στάδιο είναι το χαρτί και το δεύτερο η υλοποίηση του σε ένα ράστερ, για τον έλεγχο του ώστε όταν περαστεί σε πλακέτα

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ

Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Άσκηση 3 Η ΔΙΟΔΟΣ ΩΣ ΗΜΙΑΓΩΓΟΣ Αυτό έργο χορηγείται με άδεια Creative Commons Attribution-NonCommercial-ShareAlike Greece 3.0. Ονοματεπώνυμο: Μητρόπουλος Σπύρος Α.Ε.Μ.: 3215 Εξάμηνο: Β' Σκοπός της εργαστηριακής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ

ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΔΙΔΑΣΚΩΝ: ΑΡΙΣΤΕΙΔΗΣ Νικ. ΠΑΥΛΙΔΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μάθημα: Στοιχεία Ηλεκτροτεχνίας

Μάθημα: Στοιχεία Ηλεκτροτεχνίας Κεφάλαιο 1 Αλέξανδρος Φλάμος, Επ.. Καθηγητής e-mail: aflamos@unipi.gr 3 ος όροφος, Γραφείο 304, κτίριο Γρηγορίου Λαμπράκη 126 *Σημειώσεις - ασκήσεις από ανάλυση ηλεκτρικών κυκλωμάτων, Νίκος Μάργαρης,,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Φυσική Γενικής Παιδείας Β Λυκείου. Τράπεζα θεμάτων

Φυσική Γενικής Παιδείας Β Λυκείου. Τράπεζα θεμάτων Φυσική Γενικής Παιδείας Β Λυκείου Τράπεζα θεμάτων Φώτης Μπαμπάτσικος www.askisopolis.gr Συνεχές Ηλεκτρικό ρεύμα Β Θέμα Συνεχές ηλεκτρικό ρεύμα Θέμα Β _005 Β.1 Διαθέτουμε μια ηλεκτρική πηγή με ηλεκτρεγερτική

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού

Διαβάστε περισσότερα

2012 : (307) : , 29 2012 : 11.00 13.30

2012  : (307) : , 29 2012 : 11.00 13.30 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρµοσµένη Ηλεκτρολογία

Διαβάστε περισσότερα

Πολύμετρο Βασικές Μετρήσεις

Πολύμετρο Βασικές Μετρήσεις Πολύμετρο Βασικές Μετρήσεις 1. Σκοπός Σκοπός της εισαγωγικής άσκησης είναι η εξοικείωση του σπουδαστή με τη χρήση του πολύμετρου για τη μέτρηση βασικών μεγεθών ηλεκτρικού κυκλώματος, όπως μέτρηση της έντασης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος Προβλήματα Σειρά # 6: Κυκλώματα Συνεχούς Ρεύματος Αντιστοιχεί (α) Στo Κεφάλαιο Η6 (εκτός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

1 Τράπεζα θεμάτων 2014-15 ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΥΚΑΜΙΣΑΣ

1 Τράπεζα θεμάτων 2014-15 ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΥΚΑΜΙΣΑΣ 1 2 ΘΕΜΑ B Ένταση του ηλεκτρικού ρεύματος 1. ΘΕΜΑ Β 2-15438 B.1 Ένας αγωγός διαρρέεται από ηλεκτρικό ρεύμα έντασης i = 5 A. Το ηλεκτρικό φορτίο q που περνά από μια διατομή του αγωγού σε χρόνο t = 10 s

Διαβάστε περισσότερα

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Ηλεκτρικές Μηχανές Ι. Ενότητα 4: Εύρεση Παραμέτρων. Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Ηλεκτρικές Μηχανές Ι Ενότητα 4: Εύρεση Παραμέτρων Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 19 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα