4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες."

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων και λύσεων 1. Σωστό ή Λάθος (εξηγείστε): Όταν οι εισοδηματικοί περιορισμοί δεν είναι ευθύγραμμοι τότε το σύνολο των εφικτών επιλογών είναι μη κυρτό. Λάθος. Μπορεί ο εισοδηματικός περιορισμός να έχει κάποια γωνία (αλλαγή στην τιμή σε κάποιο σημείο) αλλά να παραμένει το σύνολο των εφικτών επιλογών κυρτό, π.χ., αν η «γωνία» είναι προς τα έξω. 2. Σωστό ή Λάθος (εξηγείστε): Ανεξάρτητα από το καλάθι καταναλωτικών αγαθών που θα επιλέξει ανάμεσα στο σύνολο των καταναλωτικών εφικτών επιλογών που έχει ένας καταναλωτής, θα ξοδέψει το σύνολο του εισοδήματος του. Λάθος. Μόνο στα σημεία που βρίσκονται πάνω στον εισοδηματικό περιορισμό (όπου τα έξοδα είναι ίσα με το εισόδημα) θα ξοδεύει το σύνολο του εισοδήματός του. 3. Έστω ότι σου δίνουν ένα κουπόνι που σου επιτρέπει να αγοράσεις κάθε επιπλέον pizza που αγοράζεις σε τιμή 5% χαμηλότερη από την προηγούμενη. Δείξτε τι θα συμβεί στον εισοδηματικό περιορισμό (σε σχέση με την περίπτωση που δεν έχεις κουπόνι) όταν έχεις πίτσες στον οριζόντιο άξονα και άλλα αγαθά στον κάθετο άξονα. Απάντηση: Δείτε το διάγραμμα παρακάτω. Εφόσον δεν έχουμε συνολικό εισόδημα δεν μπορούμε να δείξουμε αριθμούς με ακρίβεια οπότε μας ενδιαφέρει μόνο μια γενική απεικόνιση. Η μαύρη ευθεία δείχνει έναν αρχικό ΕΠ και η κόκκινη τον ΕΠ με τα κουπόνια. 4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες. 1

2 Σωστό. Όταν υπάρξει κορεσμός ένα αγαθό μετατρέπεται από καλό σε κακό μετά από κάποιο επίπεδο κατανάλωσης (μετά από τον κορεσμό). 5. Σωστό ή Λάθος: Αν διπλασιάζαμε τις ποσότητες που καταναλώνει ο Νίκος θα διπλασιαζόταν και η ικανοποίηση που απολαμβάνει ο Νίκος από την κατανάλωση των αγαθών; Εξηγείστε. Λάθος: Η συνάρτηση χρησιμότητας δεν αναφέρεται σε μονάδες «ικανοποίησης» ή «χαράς» αλλά απλώς αντιπροσωπεύει την ιεράρχηση των προτιμήσεων. Αν έχει περισσότερη χρησιμότητα με διπλασιασμό των αγαθών που καταναλώνει ξέρουμε απλώς ότι προτιμάει το νέο συνδυασμό αλλά δεν μπορούμε να πούμε πόσο περισσότερο προτιμάει ένα συνδυασμό από άλλον. Οι συναρτήσεις παραγωγής απεναντίας αναφέρονται σε φυσικές μονάδες γι αυτό αναφερόμαστε και σε αποδόσεις κλίμακας. 6. Έστω πως υπάρχουν τρία αγαθά στον κόσμο:, x 3. (α) Σε διάγραμμα τριών διαστάσεων δείξτε τον εισοδηματικό περιορισμό όταν οι τιμές των τριών αγαθών είναι p 1 = 2, p 2 = 6, p 3 = 5 και εισόδημα I = 120. Απάντηση: Το διάγραμμα (α) δείχνει τον εισοδηματικό περιορισμό. (β) Ποιο είναι το κόστος ευκαιρίας του ως προς το x 2 ; Ποιο είναι το κόστος ευκαιρίας του x 2 ως προς το x 3 ; Απάντηση: Σε όποια τομή του διαγράμματος που κρατάει το x 3 σταθερό, η κλίση του ΕΠ είναι p 1 = 1. Όπως και στην περίπτωση των δύο αγαθών αυτό είναι p 2 3 το κόστος ευκαιρίας ως προς το x 2. Αν θέλει κάποιος να καταναλώσει μία παραπάνω μονάδα του ανταλλάσσοντας μόνο x 2 θα πρέπει να αποχωριστεί 1 3 της μονάδας του x. Με την ίδια λογική (κρατώντας το x 2 1σταθερό) το κόστος ευκαιρίας του x 2 ως προς το x 3 είναι p 2 p 3 = 6 5. (γ) Δείξτε διαγραμματικά την επίδραση μιας πτώσης του εισοδήματος στα 60. Αλλάζει η απάντηση σας στο υπο- ερώτημα (α); 2

3 Απάντηση: Δείτε το διάγραμμα (b). Δεν αλλάζει η απάντηση στο (α) καθώς δεν έχουν αλλάξει οι σχετικές τιμές. (δ) Δείξτε διαγραμματικά μια αύξηση της τιμής του στο p 1 = 4. Αλλάζει η απάντηση σας στο υπο- ερώτημα (α); Απάντηση: Δείτε το διάγραμμα (c). Εφόσον άλλαξε η τιμή του αλλάζει το σημείο που τέμνει ο ΕΠ τον άξονα και το κόστος ευκαιρίας του ως προς το x 2 αλλά όχι του x 2 ως προς το x 3 ; 7. Υποθέστε πως μια αεροπορική εταιρεία χρεώνει 20 λεπτά το χιλιόμετρο αλλά όταν φτάνει κάποιος τα χιλιόμετρα η τιμή πέφτει στα 10 λεπτά το χιλιόμετρο για επιπλέον χιλιόμετρα. Το εναλλακτικό μεταφορικό μέσο είναι αυτοκίνητο που κοστίζει 16 λεπτά το χιλιόμετρο. (α) Έστω ένας καταναλωτής έχει προϋπολογισμό για ταξίδια το χρόνο που μπορεί να ξοδέψει στο κόστος μεταφοράς ή σε «άλλη κατανάλωση» ενώ ταξιδεύει. Σε διάγραμμα με χιλιόμετρα με πτήση στον οριζόντιο άξονα και άλλη κατανάλωση στον κάθετο άξονα, δείξτε τον εισοδηματικό περιορισμό κάποιου ατόμου που σκέπτεται μόνο να πετάξει (και όχι να οδηγήσει). Απάντηση: Δείτε το διάγραμμα (a). (β) Σε αντίστοιχο διάγραμμα με «χιλιόμετρα με αυτοκίνητο» στον οριζόντιο άξονα δείξτε τον ΕΠ για κάποιον που σκέφτεται να οδηγήσει (και όχι να πετάξει). Απάντηση: Δείτε το διάγραμμα (b). (γ) Συνδυάζοντας τα δύο διαγράμματα σε ένα (αλλάζοντας τον οριζόντιο άξονα σε χιλιόμετρα ταξιδιών) μπορείτε να εξηγείσετε πώς το κίνητρο της μείωσης της τιμής των πτήσεων (στα πολλά χιλιόμετρα) μπορεί να επηρεάσει κάποιους να πετάνε περισσότερο από ότι πριν; Απάντηση: Στο διάγραμμα (c) βλέπουμε πως ενώ το αυτοκίνητο είναι φθηνότερο για κάποιον που του αρέσει κάποιο σχετικά μεσαίο συνδυασμό χιλιομέτρων και άλλη κατανάλωση, για κάποιους που τους αρέσουν περισσότερο τα χιλιόμετρα (ταξίδια) από άλλη κατανάλωση η έκπτωση θα τους δελεάσει να προτιμήσουν τα αεροπλάνα. 3

4 (δ) Δείξτε διαγραμματικά πώς θα έπρεπε να είναι οι καμπύλες αδιαφορίας για να προτιμήσει κάποιος να πετάξει με αεροπλάνο αντί να οδηγήσει (υποθέστε πως το μόνο που υπολογίζουν οι καταναλωτές είναι το κόστος της μεταφοράς και πως δεν έχουν κάποια ανεξάρτητη προτίμηση για το μέσο); Απάντηση: Θα έπρεπε να είναι αρκετά μεγάλη η κλίση των καμπυλών αδιαφορίας στο σημείο επαφής με τον εισοδηματικό περιορισμό ώστε να δίνει ο καταναλωτής μεγαλύτερη βαρύτητα στα ταξίδια από την αγορά άλλων αγαθών. Στο παρακάτω σχήμα βλέπουμε μια τέτοια περίπτωση που η βέλτιστη επιλογή γίνεται στο τμήμα του εισοδηματικού περιορισμού που επιλέγει μόνο πτήσεις. 8. Έστω πως οι προτιμήσεις σου συμβαδίζουν με τα βασικά αξιώματα της θεωρίας του καταναλωτή και πως η συνάρτηση χρησιμότητας u( ) = x 2 αντιπροσωπεύει τις προτιμήσεις σου (όπου είναι δημητριακά και x 2 είναι ομελέτες). (α) Έστω δύο καλάθια αγαθών A=(1,20) και Β = (10,2). Ποιο θα προτιμάς; Απάντηση: Θα είσαι αδιάφορος μεταξύ των δύο καλαθιών γιατί και τα δύο αντιστοιχούν με την ίδια χρησιμότητα u(1,20)=20 και u(10,2)=20. (β) Χρησιμοποιείστε τα δύο καλάθια για να δείξετε ότι οι προτιμήσεις είναι κυρτές. Απάντηση: Έστω συνδυάζω ένα νέο καλάθι που είναι το μέσο όρο των Α και Β. Αυτό θα μου έδινε 5,5 μονάδες δημητριακών και 11 ομελέτες. Βάζοντας αυτόν το συνδυασμό στην συνάρτηση χρησιμότητας βρίσκουμε u(5,5,11)=60,5 που είναι μεγαλύτερο από τα δύο αρχικά καλάθια. Η χρησιμότητα από ισορροπημένους συνδυασμούς είναι μεγαλύτερη από ακραίους συνδυασμούς. (γ) Ποιος είναι ο Οριακός Λόγος Υποκατάστασης στο συνδυασμό Α και Β; Απάντηση: MRS = u u x 2 = x 2 MRS A = 20, MRS B = 1/ 5, 4

5 (δ) Ποιος είναι ο πιο απλός μετασχηματισμός της συνάρτησης χρησιμότητας που να την κάνει να αντιπροσωπεύει τις προτιμήσεις που περιγράφονται στο πακέτο ασκήσεων 1 του 2014 ερώτηση 4δ; (Έτσι και αλλιώς είναι χρήσιμο να δείτε και αυτές τις ασκήσεις). Απάντηση: Ο πιο απλώς μετασχηματισμός θα ήταν να πολλαπλασιάσουμε την συνάρτηση με - 1. Αυτό θα διατηρούσε το σχήμα της καμπύλης αδιαφορίας (ο ΟΛΥ ίδιος). Η διαφορά είναι πως η αρίθμηση των καμπυλών θα αλλάξει. Αντί να αυξάνονται όσο πάμε προς τα πάνω και δεξιά θα μικραίνουν οι αριθμοί δείχνοντας πως πέφτει η χρησιμότητα (είναι χειρότερες επιλογές) όπως στην ερώτηση 4δ. (ε) Τώρα υποθέστε προτιμήσεις που ορίζονται από την συνάρτηση χρησιμότητας u( ) = 2 + x 2 2. Βρείτε τον ΟΛΥ. Απάντηση: MRS = u u x 2 = 2x 2 2 = x 2. (στ) Αυτές οι προτιμήσεις έχουν φθίνων ΟΛΥ; Είναι κυρτές; Απάντηση: Προσέξετε πως ο ΟΛΥ είναι ο αντίστροφος από την προηγούμενη συνάρτηση χρησιμότητας. Πάρτε δύο τυχαίους «ακραίους» συνδυασμούς όπως (1,5) και (5,1) που βρίσκονται στην ίδια καμπύλη αδιαφορίας. Ο ΟΛΥ από - 1/5 γίνεται - 5 στο δεύτερο συνδυασμό. Οπότε ξεκινάει μικρή κλίση και μεγαλώνει καθώς πάμε προς τα δεξιά, άρα αυτές οι προτιμήσεις είναι μη κυρτές. Μοιάζουν στο σχήμα με αυτές της ερώτησης 4γ στο περσινό πακέτο με την διαφορά πως η χρησιμότητα ανεβαίνει προς τα πάνω και δεξιά. (ζ) Πώς μπορούμε να μετασχηματίσουμε αυτές τις προτιμήσεις για να είναι ίδιες με αυτές στην ερώτηση 4γ του Πακέτου 1 του 2014; Απάντηση: Όπως και πριν πολλαπλασιάζοντας με - 1. u( ) = 2 x 2 2. Οι καμπύλες αδιαφορίας είχαν ήδη το σωστό σχήμα και απλά τώρα έχουν και την σωστή αρίθμηση. 9. Σωστό ή Λάθος (εξηγείστε): Αν με δείτε να επιλέγω το καλάθι Α αντί του Β την Δευτέρα, το καλάθι Β αντί Γ την Τρίτη και το καλάθι Γ αντί Α την Τετάρτη, σημαίνει αναγκαστικά πως οι προτιμήσεις μου παραβιάζουν την αρχή της μεταβατικότητας. Απάντηση: Λάθος. Μπορεί απλά να είμαι αδιάφορος μεταξύ των τριών καλαθιών ή ακόμα μπορεί να θέλω και ποικιλία κατά την διάρκεια της εβδομάδας. Υπάρχει και περίπτωση να αλλάζουν οι προτιμήσεις μου. 10. Σωστό ή Λάθος (εξηγείστε): Υποθέστε πως οι προτιμήσεις δεν είναι μονοτονικές πουθενά. Τότε ο φθίνων ΟΛΥ δεν συμβαδίζει με την κυρτότητα των προτιμήσεων. 5

6 Απάντηση: Σωστό. Στο παρακάτω διάγραμμα ο ΟΛΥ φθίνει και τα σημεία Α και Β βρίσκονται στην ίδια καμπύλη αδιαφορίας. Όμως ο μέσος όρος (κυρτός συνδυασμός) των Α και Β βρίσκεται σε περιοχή που είναι χειρότερη στις προτιμήσεις εφόσον (σε αυτήν την περίπτωση) λιγότερες ποσότητες είναι καλύτερες όταν παραβιάζεται η μονοτονικότητα. 11. Σωστό ή Λάθος (εξηγείστε): Αν οι προτιμήσεις σου συμβαδίζουν με τις κλασσικές υποθέσεις για προτιμήσεις και προτιμάται το καλάθι Α από το Β, και το καλάθι Γ είναι μέσος όρος (κυρτός συνδυασμός) του Α και Β, τότε το καλάθι Γ είναι τουλάχιστον εξίσου καλό με το καλάθι Β. Απάντηση: Σωστό. Αν αφαιρούσαμε λίγο από όλα τα αγαθά από το καλάθι Α κάποια στιγμή θα είχαμε ένα καλάθι Α που είναι αδιάφορο με το Β. Ο μέσος όρος του Α με Β θα μας έδινε ένα Γ που θα ήταν ασθενώς προτιμότερο από το Β (λόγω κυρτότητας). Αλλά το Γ έχει περισσότερο από όλα τα αγαθά σε σχέση με το Γ που σημαίνει (λόγω μονοτονικότητας) πως θα είναι προτιμότερο από το Β. 12. (α) Σε ένα διάγραμμα βάλτε ξηρούς καρπούς στον οριζόντιο άξονα και σοκολάτα στον κάθετο. Έστω ότι ο Κώστας μισεί τους ξηρούς καρπούς αλλά του αρέσει η σοκολάτα. Έχει αυστηρά κυρτές προτιμήσεις. Σχεδιάστε τρεις καμπύλες αδιαφορίας και με τόξο που ενώνει δύο σημεία μιας καμπύλης αδιαφορίας την κατεύθυνση μεγαλύτερης χρησιμότητας. Εξηγείστε. Aπάντηση. Η κυρτότητα σημαίνει πως οι καμπύλες αδιαφορίας λυγίζουν προς την γωνία των αξόνων (τόξων) που δείχνουν την κατεύθυνση αναρρίχησης στις προτιμήσεις του καταναλωτή. Στο διάγραμμα (α) τα σημείο Α και Β βρίσκονται στην ίδια καμπύλη αδιαφορίας και η γραμμή που ενώνει τα σημεία βρίσκεται σε χώρο με προτιμώμενους συνδυασμούς. 6

7 (β) Δείξτε διαγραμματικά με εισοδηματικό περιορισμό πώς θα ήταν μια βέλτιστη επιλογή. Απάντηση: Δείτε το παρακάτω διάγραμμα. Το άτομο θα αγόραζε μόνο σοκολάτες οπότε το σημείο θα ήταν ένα ακραίο σημείο στον κάθετο άξονα όπου τέμνει ο ΕΠ την ψηλότερη καμπύλη αδιαφορίας. 13. Υποθέστε την συνάρτηση χρησιμότητας u( ) = ln + ln x 2 1/2. (α) Βρείτε τον ΟΛΥ. (β) Οι προτιμήσεις που αντιπροσωπεύονται με την συνάρτηση χρησιμότητας συμβαδίζουν με φθίνοντα ΟΛΥ; (γ) Βρείτε την οριακή χρησιμότητα των δύο αγαθών. (δ) Γιατί η τακτική θεώρηση της χρησιμότητας δεν δίνει έμφαση στην οριακή χρησιμότητα (που βρήκατε στο γ); (ε) Γιατί η τακτική θεώρηση της χρησιμότητας αντιμετωπίζει διαφορετικά τον ΟΛΥ από την οριακή χρησιμότητα; Απάντηση: 1/2 (α) MRS = 2x 2 (β) Κρατώντας το x 2 σταθερό ο ΟΛΥ (σε απόλυτους αριθμούς) μειώνεται καθώς αυξάνεται το, δηλαδή η κλίση γίνεται πιο ρηχή καθώς πάμε προς τα δεξιά οπότε πράγματι οι προτιμήσεις συμβαδίζουν με φθίνοντα ΟΛΥ. (γ) MU 1 = 1, MU 2 = 1 2x 1/2 2 (δ) Η οριακή χρησιμότητα είναι σε μονάδες χρησιμότητας. Μια τακτική θεώρηση της χρησιμότητας θεωρεί πως η χρησιμότητα δεν μπορεί να μετρηθεί με κάποιο αντικειμενικό τρόπο οπότε δεν έχουν και στιβαρή (επιστημονική) ερμηνεία. (ε) Ο ΟΛΥ δεν είναι σε μονάδες χρησιμότητας αλλά σε αντικειμενικές μονάδες x 2. Αυτό ισχύει γιατί οι μονάδες χρησιμότητας απαλείφονται στον ΟΛΥ. 14. Πίτσα και Μπύρα: Ορισμένες φορές μπορούμε να συμπεράνουμε κάτι για τις προτιμήσεις παρατηρώντας τις επιλογές ατόμων κάτω από δύο διαφορετικές 7

8 οικονομικές συνθήκες. Έστω πως καταναλώνουμε μόνο μπύρες και πίτσες στις τιμές p 1, p 2 αντίστοιχα και σε εισόδημα I. (α) Με μπύρες στο οριζόντιο άξονα και πίτσες στο κάθετο άξονα δείξτε τον εισοδηματικό περιορισμό και κάποιο αρχικό βέλτιστο καλάθι Α (προσοχή στην σήμανση όλων των σημείων). Απάντηση: Το διάγραμμα (α) δείχνει τον αρχικό ΕΠ με το σημείο Α. (β) Όταν το εισόδημα αυξάνεται παρατηρώ πως καταναλώνεις περισσότερη μπύρα αλλά την ίδια ποσότητα πίτσας. Μπορώ να πω αν οι προτιμήσεις σου θα μπορούσαν να είναι ομοθετικές; Μπορώ να πω αν οι προτιμήσεις σου θα μπορούσαν να είναι οιονεί γραμμικές σε πίτσες ή μπύρες; Απάντηση: Την μεταβολή του εισοδήματος την δείχνουμε στο διάγραμμα (α) με την νέα βέλτιστη ποσότητα Β που περιέχει περισσότερη μπύρα και ίδια ποσότητα από πίτσες. Εφόσον οι δύο καμπύλες έχουν τον ίδιο ΟΛΥ στην οριζόντια ευθεία που κρατά τις πίτσες σταθερές οι προτιμήσεις μπορεί όντος να είναι οιονεί γραμμικές ως προς την μπύρα (Προσοχή: εδώ εννοούμε το αγαθό που δεν εμφανίζεται ως γραμμική συνάρτηση της χρησιμότητας. Πολλά βιβλία εννοούν ακριβώς το αντίθετο. Σημασία έχει εδώ να πούμε πως εφόσον αλλάζει η ποσότητα της μπύρας χωρίς να αλλάξει η τιμή δεν μπορεί να εμφανίζονται ως γραμμική συνάρτηση της χρησιμότητας.) Αλλά οι προτιμήσεις δεν μπορεί να είναι ομοθετικές καθώς η ευθεία από την αρχή των αξόνων τέμνει την δεύτερη καμπύλη αδιαφορίας σε σημείο που θα ο ΟΛΥ είναι μεγαλύτερος (σε απόλυτα μεγέθη). Η μόνη περίπτωση να μην ισχύει αυτό είναι αν οι πίτσες και οι μπύρες είναι τέλεια υποκατάστατα και η τιμή της πίτσας και της μπύρας είναι ίδιες. Σε αυτήν την περίπτωση όλα τα σημεία στον ΕΠ είναι βέλτιστα (καθώς και τα σημεία Α και Β). Θα ήταν και η μοναδική περίπτωση οι προτιμήσεις να είναι ταυτόχρονα οιονεί γραμμικές και ομοθετικές. (γ) Πώς θα άλλαζε η απάντησή σου αν είχα παρατηρήσει μια μείωση στην κατανάλωση της μπύρας όταν το εισόδημα αυξανόταν; Απάντηση: Αν έβλεπα μόνο μια μείωση της κατανάλωσης της μπύρας θα μπορούσα να πω πως οι προτιμήσεις δεν είναι οιονεί γραμμικές ως προς τις μπύρες (εκτός αν μπύρες και πίτσες είναι τέλεια υποκατάστατα και οι τιμές 8

9 τυχαίνει να είναι τέτοιες ώστε η κλίση του ΕΠ είναι ίδια με τον ΟΛΥ παντού). Θα μπορούσα επίσης να συμπεράνω ότι οι προτιμήσεις δεν είναι οιονεί γραμμικές ως προς τις πίτσες γιατί εφόσον καταναλώνεις λιγότερη μπύρα με περισσότερο εισόδημα πρέπει να καταναλώνεις περισσότερες πίτσες εφόσον ξοδεύεις όλο το εισόδημα σου στα δύο αγαθά. Τέλος, θα μπορούσα να πως επίσης πως οι προτιμήσεις σου δεν είναι ομοθετικές γιατί σε μια τέτοια περίπτωση θα αυξανόταν η κατανάλωση όλων των αγαθών με μια αύξηση του εισοδήματος. Η μία εξαίρεση είναι αυτή που αναφέραμε στο τέλος της απάντησης (β). (δ) Τι θα απαντούσατε αν η κατανάλωση της μπύρας και της πίτσας αυξανόταν αναλογικά με το εισόδημα; Απάντηση: Δείτε το διάγραμμα (β). Το Α και Β βρίσκονται στην ευθεία που ξεκινάει από τις αρχές των αξόνων που συμβαδίζει με ομοθετικές προτιμήσεις. Οι οριζόντιες και κάθετες γραμμές κρατώντας την ποσότητα της πίτσας και μπύρας αντίστοιχα τέμνουν την καμπύλη αδιαφορίας σε σημεία με διαφορετικό ΟΛΥ οπότε οι προτιμήσεις δεν μπορεί να είναι οιονεί γραμμικές. Τέλος, ισχύει η ίδια εξαίρεση με τις παραπάνω δύο απαντήσεις. 15. Έστω τώρα πως οι προτιμήσεις σου για μπύρα και πίτσα μπορεί να αποτυπωθούν με την συνάρτηση χρησιμότητας κ u( ) = 2 x 2 και τιμές και εβδομαδιαίο εισόδημα p 1 = 2, p 2 = 10, I = 180. (α) Υπολογίστε την βέλτιστη ποσότητα Α στην κατανάλωση μπύρας και πίτσας κάνοντας απλά χρήση του γεγονότος πως αν έχουμε εσωτερικό βέλτιστο ισχύει MRS = p 1. p 2 Απάντηση: Γνωρίζουμε πως στο βέλτιστο σημείο MRS = u u x 2 = 2 x 2 2 = 2x 2 = 1 5 x 2 = 10. οπότε μαζί με τον ΕΠ που είναι 180 = 2 +10x 2 βρίσκουμε πως 180 = = 3 = 60 = 6. (β) Με πόση χρησιμότητα αντιστοιχεί αυτή η βέλτιστη ποσότητα; Απάντηση: u(60,6) = (60 2 )(6) = (γ) Παρουσιάστε το γενικότερο πρόβλημα βελτιστοποίησης για τις γενικές τιμές και εισόδημα p 1, p 2, I λύνοντας για τις βέλτιστες ποσότητες κατανάλωσης. Απάντηση: Το πρόβλημα μεγιστοποίησης είναι maxu( ) = x 2 1 x 2, υπό τον περιορισμό p 1 + p 2 x 2 = I, με συνάρτηση Lagrange,x 2 9

10 L(,λ) = 2 x 2 + λ(i p 1 p 2 x 2 ). Οι ΣΠΤ είναι: 2 x 2 = λ p 1 2 = λ p 2 2 x 2 2 = p 1 p 2 x 2 = (p 1 ) / (2 p 2 ). Αντικαθιστώντας στον ΕΠ βρίσκουμε I = p 1 + p 2 p 1 2 p 2 = 3p 1 2. Οπότε λύνοντας για βρίσκουμε = 2Ι και εφόσον x 2 = (p 1 ) / (2 p 2 ) 3p 1 λύνουμε για x 2 = I. 3p 2 (δ) Με την λύση που βρήκατε στο (γ) επιβεβαιώστε ότι οι προτιμήσεις είναι ομοθετικές. Απάντηση: Με διαφοροποίηση των συναρτήσεων ζήτησης ως προς το εισόδημα βρίσκουμε ότι I = 2, x 2 3p 1 I = 1. 3p 1 Με αυξήσεις του εισοδήματος η κατανάλωση των αγαθών αυξάνεται γραμμικά. Δηλαδή, αν διπλασιαστεί το εισόδημα θα διπλασιαστεί η κατανάλωση. Αυτό ισχύει μόνο για ομοθετικές προτιμήσεις όπου ο ΟΛΥ είναι ίδιος σε κάθε ευθεία από την αρχή των αξόνων. 16. Η Σοφία καταναλώνει 3 σοκολάτες μόνο με κάθε ποτήρι γάλα. Δείξετε τον χάρτη προτιμήσεων σε διάγραμμα με σοκολάτα στον οριζόντιο άξονα και γάλα στον άλλο. Ποια είναι η συνάρτηση χρησιμότητας της; Απάντηση. Οι καμπύλες αδιαφορίας της είναι ορθογώνιες. 10

11 Η συνάρτηση χρησιμότητάς της είναι U = min(σ,3γ). 17. Σε μια έκτακτη ανάγκη οι αρχές αποφασίζουν να θέσουν όριο στο πόση βενζίνη μπορεί να καταναλώνει κανείς ανά μήνα. Αν οι καταναλωτές μπορούσαν να αγοράζουν μέχρι λίτρα το μήνα με το εισόδημα τους αλλά οι αρχές θέτουν όριο μέχρι 8000 το μήνα για τον καθένα, δείξετε πώς θα είναι το εφικτό σύνολο κατανάλωσης. Απάντηση: Στο διάγραμμα είναι η σκιασμένη χρωματισμένη περιοχή το σύνολο εφικτών επιλογών. 18. Η συνάρτηση χρησιμότητας ενός καταναλωτή είναι : U x, y = (x a)! (y b)!!!. Ζητείται να προσδιοριστούν : 1. Ο οριακός λόγος υποκατάστασης. 2. Οι κατά Marshall συναρτήσεις ζήτησης 3. Οι καμπύλες Engel και να ερμηνευτούν 4. Εάν μας δοθούν τιμές των παραμέτρων και των μεταβλητών ως ακολούθως να υπολογιστούν τα αποτελέσματα εισοδήματος και κατανάλωσης εάν η τιμή του αγαθού x αυξηθεί από 1 στο 2. Δεδομένα p! = p! = 1, ω = 0,5 a = 10, b = 40, I =

12 Απάντηση 1. MRS = U x U y ω(x a) ω 1 (y b) 1 ω (1 ω )(x a) ω (y b) = ω(y b) ω (1 ω )(x a) Απάντηση 2. Οι κατά Marshall συναρτήσεις ζήτησης προκύπτουν από την μεγιστοποίηση της Stone- Geary ως: y * (p x, I) = b + (1 ω )(I p x a p y b) p y x * (p x, I) = a + ω(i p x a p y b) p x Απάντηση 3. Οι καμπύλες Engel είναι ευθείες μεταξύ x = f (I), y = g(i) με κλίσεις αντίστοιχα ω p x, 1 ω p y Απάντηση 4. Το συνολικό αποτέλεσμα για το αρχικό καλάθι όπως και το τελικό καλάθι μας δίδουν τα εξής νούμερα. Αρχικό: (x * 0, y * 0 ) = (35,65) (x * 1, y * 1 ) = (20,60) Για να υπολογίσουμε τα αποτελέσματα εισοδήματος και υποκατάστασης πρέπει να βρούμε το εισόδημα που ο καταναλωτής με τις νέες τιμές απολαμβάνει την αρχική ευημερία. Με (35,65)U 0 = 25 άρα το εισόδημα είναι: x 25 = (x 10) 0,5 (y 40) 0,5 = 0,5 0,5 (I ' 20 40) 2 (I ' 20 40) 1 Οπότε λύνοντας για Ι έχουμε Ι=130,71 και με αυτό το εισόδημα το άριστο επίπεδο κατανάλωσης είναι (27,68, 75,35). Άρα για x το συνολικό αποτέλεσμα είναι - 15, το αποτέλεσμα υποκατάστασης - 7,32 και το αποτέλεσμα εισοδήματος - 7,68. Για το y το συνολικό αποτέλεσμα είναι - 5 με αποτέλεσμα εισοδήματος 10,35 και αποτέλεσμα εισοδήματος - 15, Η Τούλα έχει συνάρτηση χρησιμότητας U = q a 1 a 1 q 2 1/2 1/2 όπου a είναι μια θετική σταθερά όπου 0 < a < 1, q1 είναι ο αριθμός των τραγουδιών που αγοράζει το χρόνο και q2 είναι ο αριθμός των ταινιών που αγοράζει. (α) Ποιος είναι ο οριακός λόγος υποκατάστασης της Τούλας για τα δύο αγαθά; Απάντηση. ΟΛΥ = aq 2 (1 a)q 1 (β) Τι ποσοστό του εισοδήματος θα ξοδέψει για ταινίες; Τι παρατηρούμε; 12

13 Απάντηση. Βρίσκουμε πρώτα την Μαρσαλιανή ζήτηση για τις ταινίες που είναι (1 a)i p q 2 = 2 q 2 p, και από αυτήν την ισότητα βρίσκουμε = 1 a 2 Ι. Δηλαδή η Μαρία θα ξοδέψει 100(1 a) % του εισοδήματός της στις ταινίες. Βλέπουμε πως σε αυτήν την συνάρτηση Cobb- Douglas οι εκθέτες μας δείχνουν και το ποσοστό του εισοδήματος που ξοδεύουν οι καταναλωτές στα αγαθά. 20. Έστω μία οικονομία που προστατεύει την κατανάλωση του αγαθού x., π.χ. απαγορεύεται η κατανάλωση του φρέσκου τόνου. Οι προτιμήσεις του καταναλωτή είναι : U x, y = 10x!/! + y Η κυβέρνηση αποφασίζει όμως μετά από μακρά περίοδο απαγόρευσης να άρει τον περιορισμό. Το εισόδημα του καταναλωτή είναι 100 και οι τιμές των αγαθών είναι ίσες και p x = p y = 1. Να προσδιοριστεί η άριστη κατανάλωση για κάθε αγαθό. Εάν η κυβέρνηση θέλει να συγκεντρώσει φόρους επιβάλλοντας ένα φόρο στο εισόδημα έτσι ώστε όμως να μην επηρεάσει την ευημερία του καταναλωτή προ και μετά την απαγόρευση πόσο πρέπει να μειώσει το εισόδημα του καταναλωτή; Απάντηση: Ελαχιστοποιούμε τις δαπάνες υπό τον περιορισμό της συνάρτησης χρησιμότητας: L(x, y,λ) = p x x + p y y + λ(u 10/2 y) L x = p x λ5x 1/2 = 0 L x = p λ = 0 y L λ = U y 10x1/2 = 0 x = 25 p 2 y 2 p x Μπορεί να λυθεί και με μεγιστοποίηση αλλά στην προκειμένη περίπτωση είναι εξίσου (αν όχι πιο) εύκολο με το δυαδικό τρόπο. Παρατηρούμε ότι αρχικά το άτομο αγοράζει y=100 και έχει αρχική ευημερία U=100. Πρέπει να βρούμε τις συναρτήσεις δαπανών. Από την ελαχιστοποίηση προκύπτει ότι οι κατά Hicks συναρτήσεις ζήτησης είναι x = 25 p 2 y, y = U 50 p y. 2 p x p x Εφόσον οι τιμές είναι p x = p y = 1 το άριστο καλάθι προκύπτει από το πρόβλημα μεγιστοποίησης ως (x *, y * ) = (25,75). Η συνάρτηση δαπανών είναι E(p x,u) = p y U 25(p y 2 / p x ). Προκύπτει ότι οι δαπάνες που απαιτούνται για να πετύχει ο καταναλωτής U=100 στις νέες τιμές είναι 75. Άρα η κυβέρνηση μπορεί να εισπράξει φόρο

14 21. Ο Νίκος έχει συνάρτηση χρησιμότητας u(x, y) = 20/2 y 1/2, όπου x, y είναι οι ποσότητες των αγαθών x και y αντίστοιχα. Το εισόδημα του Νίκου είναι M, η τιμή του αγαθού x είναι, και η τιμή του αγαθού y είναι. p x (α) Να βρείτε τις αντισταθμιστικές συναρτήσεις ζήτησης του Νίκου. Απάντηση: Οι αντισταθμιστικές συναρτήσεις μπορεί να βρεθούν από την λύση του προβλήματος ελαχιστοποίησης δαπανών (μπορεί να βρεθούν και με αντικατάσταση της συνάρτησης δαπανών στις Μαρσαλιανές συναρτήσεις ζήτησης). Από τις συνθήκες πρώτης τάξης έχουμε MRS xy = y / x = p x / p y και u = 20/2 y 1/2 όπου u είναι το επίπεδο ωφέλειας που προσπαθεί να πετύχει ο καταναλωτής με το ελάχιστο κόστος. Λύνοντας το σύστημα έχουμε x(p x,u) = (1/ 20)(p y / p x ) 1/2 u και y(p x,u) = (1/ 20)(p x / p y ) 1/2 u. (β) Να βρείτε την έμμεση συνάρτηση χρησιμότητας και εξηγείστε τί εκφράζει. Απάντηση: Αντικαθιστώντας τις αντισταθμιστικές συναρτήσεις ζήτησης στις αρχικές δαπάνες που ελαχιστοποιούμε βρίσκουμε την συνάρτηση δαπανών e(p x,u) = (1/10)p 1/2 x p 1/2 y u. Αν λύσουμε την συνάρτηση δαπανών ως προς την χρησιμότητα βρίσκουμε την έμμεση συνάρτηση χρησιμότητας v(p x, M ) = 10M / p 1/2 1/2 x p y, που εκφράζει την μέγιστη ωφέλεια που μπορεί να πετύχει το άτομο στις τιμές p x και εισόδημα M. (γ) Ο Νίκος αντιμετωπίζει αρχικές τιμές p x = 1 = 1 και εισόδημα M=80. Οι αρχές αποφασίζουν να φορολογήσουν το αγαθό x με 3 ευρώ ανά μονάδα ενώ η τιμή του y παραμένει ίδια. Πόσα παραπάνω χρήματα θα χρειαζόταν ο Νίκος για να είναι εξίσου ικανοποιημένος με την αρχική του κατάσταση (προ της αύξησης της τιμής του x) ; Δείξτε διαγραμματικά το αποτέλεσμα υποκατάστασης και εισοδήματος που σχετίζεται με την αύξηση της τιμής του x από 1 σε 4. Προσοχή να είναι καλή και ολοκληρωμένη η σήμανση του διαγράμματος. Απάντηση: Βρίσκουμε την αρχική χρησιμότητα του Νίκου βάζοντας τις τιμές και εισόδημα στην έμμεση συνάρτηση χρησιμότητας v(1,1,80) = 10 i 80 /1 1/2 i1 1/2 = 800. Τα χρήματα που χρειάζεται για να διατηρήσει αυτήν την χρησιμότητα στις νέες τιμές είναι e(4,1,800) = (1/10)i1 1/2 i1 1/2 i 800 = 160. Οπότε χρειάζεται ο Νίκος άλλα 80 ευρώ για να πετύχει την αρχική του χρησιμότητα. Στο παρακάτω διάγραμμα βρίσκουμε το αποτέλεσμα υποκατάστασης που είναι η πτώση της αντισταθμιστικής ζήτησης που επιφέρει η αύξηση της τιμής του x (δηλαδή διατηρώντας την χρησιμότητα στο αρχικό επίπεδο). Το αποτέλεσμα εισοδήματος είναι η διαφορά της αντισταθμισμένης ζήτησης με την τελική ζήτηση (αντισταθμισμένη ζήτηση με τις νέες τιμές και το αρχικό εισόδημα). p y 14

15 15

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Φεβρουαρίου

Διαβάστε περισσότερα

1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε

1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Πρώτου Πακέτου Ασκήσεων 1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε με το

Διαβάστε περισσότερα

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ 2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 6 η και 7 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν

Διαβάστε περισσότερα

Ιδιότητες καµπυλών ζήτησης

Ιδιότητες καµπυλών ζήτησης Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΚΑΙ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Εξέταση Φεβρουαρίου 2012 / ιάρκεια: 2 ώρες ιδάσκοντες: Μ. Αθανασίου, Γ.

Διαβάστε περισσότερα

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων Ορθολογισµός στην οικονοµική Διάλεξη 3 Προτιµήσεις!1 Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη

Διαβάστε περισσότερα

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ Άσκηση 1 Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ και Υ. Α Β Γ Δ Ε Χ 90 30 5 55 50 Υ 10 80 40 0 55 Ποιες από τις παρακάτω προτάσεις θεωρείτε ότι αντιστοιχούν σε ορθολογική

Διαβάστε περισσότερα

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι.

ηµόσια Οικονοµική Βασίλης Ράπανος, Γεωργία Καπλάνογλου µόνο Τµήµα Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2013-2014 Τµήµα Οικονοµικών Επιστηµών Εξεταστική περίοδος Απριλίου Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Ράπανος, Γεωργία Καπλάνογλου Η εξέταση αποτελείται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Ερωτήσεις πολλαπλών

Διαβάστε περισσότερα

Προτιµήσεις-Υπενθύµιση

Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση ιάλεξη 4 Χρησιµότητα x y: To x προτιµάται σαφώς από το y. x y: Το x και το y προτιµούνται εξίσου. y: Το x προτιµάται τουλάχιστο όσο και το y. x f Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση

Διαβάστε περισσότερα

Λύσεις Δεύτερου Πακέτου Ασκήσεων

Λύσεις Δεύτερου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Δεύτερου Πακέτου Ασκήσεων 1. Αν οι προτιμήσεις της Κατερίνας είναι μονοτονικές (προτιμά δηλαδή μεγαλύτερες

Διαβάστε περισσότερα

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική 5 Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Τέσσερα βασικά στοιχεία του υποδείγματος επιλογής του καταναλωτή Το εισόδημα του καταναλωτή. Οι τιμές των αγαθών. Οι προτιμήσεις του καταναλωτή. Η υπόθεση

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 7: Εξίσωση Slutsky Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οι επιδράσεις μιας μεταβολής

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Θεωρία Χρησιµότητας και Προτιµήσεων. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. Συνολική και οριακή χρησιµότητα Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Ιστορική Αναδροµή

Διαβάστε περισσότερα

Μεγιστοποίηση της Χρησιμότητας

Μεγιστοποίηση της Χρησιμότητας Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά

Διαβάστε περισσότερα

Η θεωρία των επιλογών του καταναλωτή

Η θεωρία των επιλογών του καταναλωτή Η θεωρία των επιλογών του καταναλωτή Ο εισοδηµατικός περιορισµός του καταναλωτή Λίτρα Αριθµός από πίτσες απάνες για (σε ευρώ) απάνες για πίτσα (σε ευρώ) Συνολικές δαπάνες (σε ευρώ) 1 1. 1. 5 9 1 9 1. 1

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2

Δεύτερο πακέτο ασκήσεων. έχει φθίνον τεχνικό λόγο υποκατάστασης (RTS); Απάντηση: Όλες τις τιμές αφού ο RTS = MP 1 MP 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Μαρτίου

Διαβάστε περισσότερα

Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της

Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της Οι επιδράσεις µιας µεταβολής της τιµής Διάλεξη 7 Εξίσωση Slutsk Τι θα συµβεί όταν µειωθεί η τιµή ενός αγαθού; Αποτέλεσµα υποκατάστασης : το αγαθό γίνεται σχετικά πιο φτηνό και γι αυτό ο καταναλωτής υποκαθιστά

Διαβάστε περισσότερα

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης 3. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΠΡΟΣΦΟΡΑ ΕΡΓΑΣΙΑΣ Ως προσφορά εργασίας ορίζεται το σύνολο των ωρών εργασίας που προσφέρονται προς εκμίσθωση μία δεδομένη χρονική στιγμή.

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2015-2016 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Συμπληρωματικές Ασκήσεις (Διαλέξεις 10-13) Ερώτηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Συναρτήσεις ζήτησης Κεφάλαιο 5 Νίκολσον (κεφ. 6784 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Τα άριστα επίπεδα των 2 n ως συναρτήσεις όλων των τιμών και του εισοδήματος n συναρτήσεις ζήτησης

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

) = 2lnx lnx 2

) = 2lnx lnx 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Σεπτέµβριος 8 Τµήµα Οικονοµικών Επιστηµών Μάθηµα: Μικροοικονοµική Ι ιδάσκοντες: Β. Ράπανος-Ι Χειάς Εξέταση στη Μικροοικονοµική Ι Στην εξέταση αυτή δίνονται δύο σύνοα το Α και το Β.

Διαβάστε περισσότερα

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ελαστικότητες Ζήτησης

Ελαστικότητες Ζήτησης Ελαστικότητες Ζήτησης - Η ευαισθησία της ζητούμενης ποσότητας x σε μεταβολές της τιμής μπορεί να μετρηθεί άμεσα από το λόγο Δx / Δ (ήαπότην παράγωγο x / ). - Αυτό το μέτρο ευαισθησίας έχει το μειονέκτημα

Διαβάστε περισσότερα

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ

E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ E7 ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΤΗ ΚΑΤΑΝΑΛΩΣΗ.Εισοδηματικός περιορισμός.μεγιστοποίηση χρησιμότητας 3.Γραμμική χρησιμότητα 4.Λογαριθμική χρησιμότητα τύπου -D 5.Χρησιμότητα τύπου Lontif-min 6.Μεγιστοποίηση χρησιμότητας-κανονικές

Διαβάστε περισσότερα

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης)

2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 2 ο ΚΕΦΑΛΑΙΟ (Προκαταρκτικές ασκήσεις για εξάσκησης) 1. Χρησιμοποιώντας τα στοιχεία του παρακάτω πίνακα που δείχνουν τις ζητούμενες ποσότητες του αγαθού Χ από τρεις διαφορετικούς καταναλωτές, οι οποίες

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή-Προτιμήσεις Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιμήσεις 3 Οκτωβρίου 2012 1 / 19 Προτιμήσεις καταναλωτών Θέλουμε

Διαβάστε περισσότερα

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός Γενικά Διάλεξη Φορολογία και αποτελεσματικότητα ν η φορολογία από μηδέν που είναι τώρα αυξηθεί στο 0% π.χ., αυτό πως επηρεάζει την ευημερία του καταναλωτή; Σίγουρα η κατανάλωση θα μεταβληθεί λόγω της αύξησης

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

Ποιες οικονομικές αρχές βρίσκονται πίσω από την ζήτηση Θεωρία Συμπεριφοράς του. Καταναλωτή. Θεωρία της Απόλυτης. Θεωρία της Τακτικής Ωφέλειας

Ποιες οικονομικές αρχές βρίσκονται πίσω από την ζήτηση Θεωρία Συμπεριφοράς του. Καταναλωτή. Θεωρία της Απόλυτης. Θεωρία της Τακτικής Ωφέλειας Ποιες οικονομικές αρχές βρίσκονται ; πίσω από την ζήτηση Θεωρία Συμπεριφοράς του Καταναλωτή Θεωρία της Τακτικής Ωφέλειας Θεωρία της Απόλυτης Ωφέλειας Θεωρία των Επιλογών Θεωρία των επιλογών Οικουμενικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Χειμώνας- Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου 3 ο Πακέτο Ασκήσεων, Απαντήσεις

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Μακροοικονομική - Μικροοικονομική

Μακροοικονομική - Μικροοικονομική Μακροοικονομική Μικροοικονομική Η Μακροοικονομική είναι ο κλάδος της Οικονομικής Επιστήμης που ασχολείται με τη μελέτη του οικονομικού συστήματος στο σύνολό του ή μεγάλων επιμέρους τομέων του Η Μικροοικονομική

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 10: Τεχνολογία Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τεχνολογίες Τεχνολογία είναι μια

Διαβάστε περισσότερα

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D )

Ασκήσεις 1. Με τα δεδομένα του παρακάτω πίνακα: Τιμή (Ρ) Ποσότητα (Q D ) 2 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ 1. Ποια είναι η επιδίωξη του καταναλωτή και ποιοι παράγοντες την περιορίζουν; 2. Ποιος καταναλωτής ονομάζεται ορθολογικός και πότε λέμε ότι βρίσκεται σε ισορροπία; 3. Να διατυπώσετε

Διαβάστε περισσότερα

Πολιτική Οικονομία Ενότητα

Πολιτική Οικονομία Ενότητα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 03: Ζήτηση και προσφορά αγαθών Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 2. Σύνολα καταναλωτικών επιλογών. Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή. Εισοδηµατικοί περιορισµοί

Κεφάλαιο 2. Σύνολα καταναλωτικών επιλογών. Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή. Εισοδηµατικοί περιορισµοί Κεφάλαιο 2 Εισοδηµατικοί και άλλοι περιορισµοί στην επιλογή Σύνολα καταναλωτικών επιλογών p Ένα σύνολο καταναλωτικών επιλογών είναι η δέσµη καταναλωτικών επιλογών που είναι στη διάθεση του καταναλωτή!

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα

Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου

Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου 1 Θεωρία της συμπεριφοράς του καταναλωτή Καμπύλη αδιαφορίας του καταναλωτή Όλοι οι συνδυασμοί κατανάλωσης δύο προϊόντων που προσφέρουν

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλών επιλογών

Ερωτήσεις πολλαπλών επιλογών Ερωτήσεις πολλαπλών επιλογών Β1) Υποθέστε ότι στη θέση ισορροπίας της αγοράς ενός αγαθού η ζήτησή του ως προς την τιμή του είναι ελαστική. Μία μείωση της προσφοράς του αγαθού, με όλους τους άλλους παράγοντες

Διαβάστε περισσότερα

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Στο προηγούμενο κεφάλαιο εξετάσαμε τα βασικά οικονομικά προβλήματα που αντιμετωπίζει κάθε κοινωνία και στα οποία πρέπει να δίνει λύση. Παρουσιάσαμε επίσης

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση)

Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση) Μάθηµα Τρίτο -Ασκήσεις Μικροοικονοµικής (Ζήτηση) Όταν σχεδιάζουµε την ατοµική καµπύλη ζήτησης ενός αγαθού, ποιο από τα παρακάτω δε διατηρείται σταθερό: Α. Το ατοµικό χρηµατικό εισόδηµα Β Οι τιµές των άλλων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου 2 ο Πακέτο Ασκήσεων Ημερομηνία παράδοσης:

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ

ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ ΠΑΡΑΡΤΗΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΡΙΣΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΥ ΦΟΡΟΥ Ας υποθέσουμε ότι έχουμε ένα αγαθό το οποίο δημιουργεί κατά την παραγωγή ή την κατανάλωσή του έναν ρύπο, και ας υποθέσουμε ότι για κάθε μία μονάδα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διάλεξη 11. Γενική Ισορροπία με Παραγωγή VA 31

Διάλεξη 11. Γενική Ισορροπία με Παραγωγή VA 31 Διάλεξη 11 Γενική Ισορροπία με Παραγωγή VA 31 1 Οικονομίες ανταλλαγής (ξανά) Καθόλου παραγωγή, μόνο αρχικά αποθέματα, οπότε δεν υπάρχει περιγραφή του πώς οι πόροι μετατρέπονται σε αγαθά. Γενική ισορροπία:

Διαβάστε περισσότερα

Εξεταστική περίοδος Σεπτεµβρίου

Εξεταστική περίοδος Σεπτεµβρίου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Εξέταση στο µάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Εξεταστική περίοδος Σεπτεµβρίου Η εξέταση

Διαβάστε περισσότερα

Οικονοµικό Πανεπιστήµιο Αθηνών. Ε. Ο. Σ. Μικροοικονοµική ΙΙ Εξετάσεις Ιανουαρίου ιδάσκων : Ρουµανιάς Κώστας

Οικονοµικό Πανεπιστήµιο Αθηνών. Ε. Ο. Σ. Μικροοικονοµική ΙΙ Εξετάσεις Ιανουαρίου ιδάσκων : Ρουµανιάς Κώστας Οικονοµικό Πανεπιστήµιο Αθηνών. Ε. Ο. Σ. Μικροοικονοµική ΙΙ Εξετάσεις Ιανουαρίου 2014 ιδάσκων : Ρουµανιάς Κώστας 24-2-2015 ΕΠΩΝΥΜΟ : ΟΝΟΜΑ : ΠΑΤΡΩΝΥΜΟ : ΑΡ. ΜΗΤΡΩΟΥ : Ο ΗΓΙΕΣ : Να απαντηθούν όλα τα ακόλουθα

Διαβάστε περισσότερα

Δεύτερο πακέτο ασκήσεων και λύσεων

Δεύτερο πακέτο ασκήσεων και λύσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 04-05 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Δεύτερο πακέτο ασκήσεων και λύσεων Αντιστοιχούν τέσσερις μονάδες

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

9 Η θεωρία του καταναλωτή

9 Η θεωρία του καταναλωτή 9 Η θεωρία του καταναλωτή Σκοπός Στο κεφάλαιο αυτό ο αναγνώστης εξοικειώνεται με την ανάλυση καμπυλών αδιαφορίας με την οποία μπορεί να αναλυθεί πιο τυπικά η επιλογή του καταναλωτή. Προσδοκώμενα αποτελέσματα

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.

10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών. ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται

Διαβάστε περισσότερα

Επιχειρησιακά Μαθηματικά (1)

Επιχειρησιακά Μαθηματικά (1) Τηλ:10.93.4.450 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Α Επιχειρησιακά Μαθηματικά (1) ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 Τηλ:10.93.4.450 ΚΕΦΑΛΑΙΟ 1 Ο Συνάρτηση μιας πραγματικής μεταβλητής Ορισμός : Συνάρτηση f μιας πραγματικής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ

ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ ΑΣΚΗΣΕΙΣ ΖΗΤΗΣΗ-ΠΡΟΣΦΟΡΑ Άσκηση 3 Η ζήτηση τυριού τύπου δίνεται από τη συνάρτηση: Q 300 35P 14PB 24 20B όπου: Q η ζητούμενη ποσότητα τυριού τύπου P η τιμή τυριού τύπου P B η τιμή τυριού τύπου B η δαπάνη

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. Όνομα/Επίθετο: ΟΜΑΔΑ Α ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 8 ΝΟΕΜΒΡΙΟΥ 2015- ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Όνομα/Επίθετο: ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση της ζήτησης και της προσφοράς.

Διαβάστε περισσότερα

Χρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8

Χρηµατικά µέτρα των ωφελειών από ανταλλαγή. ανταλλαγή. ανταλλαγή. Πλεόνασµα καταναλωτή. Διάλεξη 8 Χρηµατικά µέτρα των ωφελειών από ανταλλαγή Διάλεξη 8 Πλεόνασµα καταναλωτή Μπορείτε να αγοράσετε όσο βενζίνη θέλετε, µε το λίτρο, όταν µπείτε στην αγορά πετρελαιοειδών. Ε: Ποιο είναι το µέγιστο που θα πληρώνατε

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση Ι

Μικροοικονομική Ανάλυση Ι Μικροοικονομική Ανάλυση Ι Θεωρία συμπεριφοράς καταναλωτή Ιδιότητες Καμπυλών Αδιαφορίας Συνάρτηση Ωφέλειας και Οριακός Λόγος υποκατάστασης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης

Διαβάστε περισσότερα

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).

Διαβάστε περισσότερα

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων

Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων Ισορροπία σε Αγορές Διαφοροποιημένων Προϊόντων - Στο υπόδειγμα ertrand, οι επιχειρήσεις, παράγουν ένα ομοιογενές αγαθό, οπότε η τιμή είναι η μοναδική μεταβλητή που ενδιαφέρει τους καταναλωτές και οι καταναλωτές

Διαβάστε περισσότερα

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές.

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Βασίλης Θ. Ράπανος Η εξέταση

Διαβάστε περισσότερα

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ

και να σχολιαστεί το αποτέλεσμα. ΤΕΛΟΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι 7 Διάρκεια εξέτασης: ώρες Μέρος Α. (4 μονάδες) (α). Μια συνάρτηση () έχει το γράφημα του παραπλεύρως σχήματος. Να γίνουν τα γραφήματα των συναρτήσεων () οριακής τιμής:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ Οι τιµές Στην οικονοµία οι τιµές παίζουν βασικό ρόλο. Κατανέµουν τους παραγωγικούς πόρους στις τοµείς όπου υπάρχει µεγαλύτερη ζήτηση µε το πιο αποτελεσµατικό τρόπο. Αυτό το οποίο

Διαβάστε περισσότερα

Εισαγωγή στην Οικονομική Ανάλυση

Εισαγωγή στην Οικονομική Ανάλυση ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΠΟΛΙΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ Εισαγωγή στην Οικονομική Ανάλυση Εξετάσεις περιόδου Ιουνίου-Ιουλίου 011 1 Ιουλίου 011 Νίκος Θεοχαράκης

Διαβάστε περισσότερα

Διάλεξη 15. Αποτελεσματική και δίκαιη φορολογία

Διάλεξη 15. Αποτελεσματική και δίκαιη φορολογία Διάλεξη 15 Αποτελεσματική και δίκαιη φορολογία 1 Άριστη φορολογία αγαθών Ας υποθέσουμε ότι η κυβέρνηση επιδιώκει να εισπράξει κάποια έσοδα από ένα φόρο για να χρηματοδοτήσει κάποιες δαπάνες. Ποιος είναι

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας

Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας Άριστες κατά Pareto Κατανομές και το Πρώτο Θεώρημα Ευημερίας - Υποθέτουμε μια οικονομία που αποτελείται από: Δύο καταναλωτές 1,. Μία επιχείρηση. Δύο αγαθά: τον ελεύθερο χρόνο Χ και το καταναλωτικό αγαθό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών Χειμώνας Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου 1 ο Πακέτο Ασκήσεων. Απαντήσεις Ημερομηνία

Διαβάστε περισσότερα

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1

Philip McCann Αστική και περιφερειακή οικονομική. 2 η έκδοση. Chapter 1 Philip McCann Αστική και περιφερειακή οικονομική 2 η έκδοση Chapter 1 Κεφάλαιο 1 Χωροθέτηση δραστηριοτήτων Περιεχόμενα διάλεξης Υπόδειγμα για τη χωροθέτηση της παραγωγής Weber και Moses Ανάλυση της περιοχής

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w

Η αρχική γραμμή του εισοδηματικού περιορισμού είναι: Η νέα γραμμή του εισοδηματικού περιορισμού είναι: wt + V w Επιπτώσεις μιας Μεταβολής του Εισοδήματος (V) που δεν προέρχεται από Εργασία - Κανονικά και Κατώτερα Αγαθά (i) Αν η ζήτηση ενός αγαθού αυξάνεται καθώς αυξάνεται το εισόδημα του ατόμου, τότε το αγαθό ονομάζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 202-20 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου ο Πακέτο Ασκήσεων Απαντήσεις Ημερομηνία

Διαβάστε περισσότερα

3. Παίγνια Αλληλουχίας

3. Παίγνια Αλληλουχίας 3. Παίγνια Αλληλουχίας Τα παίγνια αλληλουχίας πραγµατεύονται περιπτώσεις όπου οι κινήσεις των παικτών διαδέχονται η µια την άλλη, σε αντίθεση µε τα παίγνια όπου οι αποφάσεις των παικτών γίνονται ταυτόχρονα

Διαβάστε περισσότερα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα

g= x + y 1}. Να βρεθεί γραφικά και αναλυτικά η MR Π(Q) = R(Q) C(Q). Στο παραπλεύρως σχήμα ΔΙΑΓΩΝΙΣΜΑ 0 Μέρος Α. (.6 μονάδες) α). Οι μεταβλητές {,,} συνδέονται με τις εξισώσεις κανόνας αλυσωτής παραγώγισης. { = e +, = ln}. Να επαληθευτεί ο β). Οι μεταβλητές {, y} συνδέονται με μια εξίσωση. Για

Διαβάστε περισσότερα

Κεφάλαιο 6. Θεωρία της Συμπεριφοράς του Καταναλωτή

Κεφάλαιο 6. Θεωρία της Συμπεριφοράς του Καταναλωτή Κεφάλαιο 6 Θεωρία της Συμπεριφοράς του Καταναλωτή Μαθησιακά Αποτελέσματα Μετά την ολοκλήρωση του κεφαλαίου αυτού, θα είστε σε θέση να: 1. Κάνετε διάκριση μεταξύ συνολικής και οριακής χρησιμότητας. 2. Εξηγήσετε

Διαβάστε περισσότερα

25. Μία τυπική επιχείρηση που λειτουργεί σε καθεστώς τέλειου ανταγωνισμού, στη μακροχρόνια θέση ισορροπίας της: α. πραγματοποιεί θετικά οικονομικά κέρδη. β. πραγματοποιεί μηδενικά οικονομικά κέρδη. γ.

Διαβάστε περισσότερα

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I

6. Το Υπόδειγμα των Επικαλυπτόμενων Γενεών: Ανταλλαγή I 6. Το Υπόδειγμα τν Επικαλυπτόμενν Γενεών: Ανταλλαγή I 6.. Ερτήσεις Σχολιάστε την εγκυρότητα τν παρακάτ προτάσεν. Αν πιστεύετε ότι μια πρόταση είναι σστή κάτ από ορισμένες προϋποθέσεις τότε να αναφέρετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 20-202 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Απριλίου 202 Οι

Διαβάστε περισσότερα