Άριστες κατά Pareto Κατανομές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άριστες κατά Pareto Κατανομές"

Transcript

1 Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή j =, και U ( x ) > U ( x ) για κάποιον καταναλωτή j. j j j j - Δηλαδή: Δεν υπάρχει άλλη κατανομή x η οποία ωφελεί κάποιον καταναλωτή χωρίς ταυτόχρονα να ζημιώνει κάποιον άλλον. - Δεν υπάρχει δυνατότητα μετακίνησης από την κατανομή x κατά τρόπο ώστε να ωφελούνται όλα τα άτομα στην οικονομία. - Δεν υπάρχει δυνατότητα μετακίνησης από την κατανομή x κατά τρόπο ώστε να ωφεληθεί κάποιος καταναλωτής χωρίς ταυτόχρονα να ζημιωθεί κάποιος άλλος. - Οποιαδήποτε μετακίνηση η οποία ωφελεί κάποιον καταναλωτή πρέπει αναγκαστικά να ζημιώνει κάποιον άλλον. 1

2 - Δηλαδή: Δεν υπάρχει δυνατότητα να γίνουν αμοιβαία επωφελείς συναλλαγές μεταξύ των καταναλωτών (όλαταοφέληαπότις συναλλαγές έχουν εξαντληθεί). Διαγραμματική Απεικόνιση Άριστων κατά Pareto Κατανομών Α Β 1 Ο Β X Y ΙC ΙC e Ο Α Α 1 Β

3 -H κατανομή (σημείο) Υ δεν είναι άριστη κατά Pareto, διότι οποιοδήποτε σημείο εντός της γραμμοσκιασμένης περιοχής βελτιώνει την ευημερία τόσο του Α όσο και του Β σε σχέση με την κατανομή Υ. - Η κατανομή x είναι άριστη κατά Pareto, διότι δεν υπάρχει δυνατότητα μετακίνησης από το σημείο x κατά τρόπο ώστε να ωφελούνται ταυτόχρονα και οι δύο καταναλωτές Α, Β. - Σε κάθε άριστη κατά Pareto κατανομή που βρίσκεται στο εσωτερικό του κουτιού του Edgeworth, οι καμπύλες αδιαφορίας (IC, IC ) των καταναλωτών Α και Β πρέπει να εφάπτονται: Κλίση IC U/ U / = Κλίση IC MRS = = MRS = / / Δηλαδή: Σε κάθε άριστη κατά Pareto κατανομή, o οριακός λόγος υποκατάστασης πρέπει να είναι ο ίδιος για όλους τους καταναλωτές. 3

4 Σύνολο Pareto και Καμπύλη Ανταλλαγών Α Β 1 Ο Β F D C e o U Σύνολο Pareto o U Ο Α U Α 1 - Ορισμός. Το σύνολο όλων των άριστων κατά Pareto κατανομών (δηλαδή ο γεωμετρικός τόπος των σημείων επαφής μεταξύ των καμπυλών αδιαφορίας των καταναλωτών Α και Β) ονομάζεται σύνολο Pareto (Pareto Set). Β 4

5 - Παρατήρηση: Τα σημεία O, O είναι άριστα κατά Pareto (δηλαδή ανήκουν στο σύνολο Pareto). Εξήγηση: Οποιαδήποτε μετακίνηση από το σημείο O (O ) ηοποία ωφελεί τον καταναλωτή Α () πρέπει αναγκαστικά να ζημιώνει τον Β (). - Ορισμός. Το τμήμα CD του συνόλου Pareto, όπου και οι δύο καταναλωτές ωφελούνται σε σχέση με το σημείο (e) των αρχικών περιουσιών τους, ονομάζεται καμπύλη ανταλλαγών (contract curve). - Αν τα άτομα Α, Β καταναλώσουν απλώς τις αρχικές περιουσίες o τους, τότε η χρησιμότητα του Α θα είναι U και η χρησιμότητα του Β o θα είναι. U O καταναλωτής Α θα αποδεχτεί ηθελημένα μόνο εκείνες τις συναλλαγές που του αποφέρουν χρησιμότητα μεγαλύτερη από (δηλαδή μόνο εκείνες τις άριστες κατά Pareto κατανομές που βρίσκονται δεξιά του σημείου C πάνω στο σύνολο Pareto). o U 5

6 O καταναλωτής θα αποδεχτεί ηθελημένα μόνο εκείνες τις συναλλαγές που του αποφέρουν χρησιμότητα μεγαλύτερη από (δηλαδή μόνο εκείνες τις άριστες κατά Pareto κατανομές που βρίσκονται αριστερά του σημείου D πάνω στο σύνολο Pareto). - Άρα: Το σύνολο των άριστων κατά Pareto κατανομών που μπορούν να προκύψουν από ηθελημένες συναλλαγές μεταξύ των καταναλωτών είναι μόνο το τμήμα CD του συνόλου Pareto, δηλαδή η καμπύλη ανταλλαγών. - Για να βρούμε μια άριστη κατά Pareto κατανομή, υποθέτουμε ότι η χρησιμότητα του καταναλωτή Β παραμένει σταθερή στο επίπεδο U και βρίσκουμε το σημείο επί της καμπύλης αδιαφορίας U που μεγιστοποιεί τη χρησιμότητα του Α (δηλαδή το σημείο επαφής F στο διάγραμμα) => Το σημείο F είναι μια άριστη κατά Pareto κατανομή. - Δηλαδή: Μεγιστοποιούμε τη χρησιμότητα του καταναλωτή Α υπό τον περιορισμό ότι η χρησιμότητα του Β είναι (τουλάχιστον) ίση με U. o U 6

7 - Επαναλαμβάνουμε αυτή τη διαδικασία για όλα τα δυνατά επίπεδα χρησιμότητας U και παίρνουμε όλες τις άριστες κατά Pareto κατανομές (δηλαδή το σύνολο Pareto). Μαθηματική Διατύπωση του Προβλήματος Αριστοποίησης κατά Pareto - Για να υπολογίσουμε αλγεβρικά τις άριστες κατά Pareto κατανομές στην οικονομία, λύνουμε το ακόλουθο πρόβλημα: max U (, ) {,,, } st.. U (, ) U (1) 1 + e e,,, (α) (β) Περιορισμοί των Πόρων (PP) (Pareto Efficiency Problem) 7

8 - Δηλαδή, μεγιστοποιούμε τη χρησιμότητα του καταναλωτή Α υπό τους περιορισμούς ότι: Η χρησιμότητα του καταναλωτή Β είναι τουλάχιστον ίση με κάποιο στόχο χρησιμότητας (περιορισμός 1). U Η συνολική ποσότητα που καταναλώνεται από κάθε αγαθό δεν μπορεί να υπερβαίνει τη συνολική διαθέσιμη ποσότητα αυτού του αγαθού στην οικονομία (περιορισμοί α καιβ). - Οι περιορισμοί (α) και (β) ονομάζονται περιορισμοί των πόρων (Resource Constraints) και εξασφαλίζουν ότι η λύση του προβλήματος Pareto είναι μια εφικτή κατανομή. - Για να λύσουμε το πρόβλημα (PP), γράφουμε τη συνάρτηση Lagrange και τις συνθήκες 1 ης τάξης (FOCs): 8

9 L = U (, ) + λ[ U (, ) U ] + μ ( e ) + μ ( e ) FOCs : = μ 0, = = μ 0, = 0 = λ μ 0, = = λ μ 0, = 0 = U( 1, ) U 0, λ = 0 λ λ = e , μ1 = 0 μ μ μ 1 1 = e 0, μ = 0 μ 9

10 Υπόθεση:,,, > 0. Τότε: 1 1 > 0 = μ = 0 μ = > 0 + = e (3) > 0 = μ = 0 μ = > 0 + = e (4) μ1 / 1 Επίσης: = = MRS (5) μ / - Άρα: Για να είναι μια κατανομή άριστη κατά Pareto, οι περιορισμοί των πόρων πρέπει να ισχύουν με ισότητα (δηλαδή πρέπει να καταναλώνεται ολόκληρη η διαθέσιμη ποσότητα κάθε αγαθού). - Μια άριστη κατά Pareto κατανομή πρέπει να είναι μη σπάταλη. > 0 = λ μ = 0 μ = λ (6) μ / 1 1 (6) λ = = > 0 U( 1, ) = U (7) / 1 / 1

11 - Άρα: Για να είναι μια κατανομή άριστη κατά Pareto, πρέπει να επιτυγχάνεται ακριβώς ο στόχος χρησιμότητας. U > 0 = λ μ = 0 μ = λ (8) μ / 1 1 πό (6), (8) = = MRS (9) μ / μ / / Από (5), (9) = = MRS = = MRS (10) μ / / (Συνθήκη Αριστοποίησης κατά Pareto) - Άρα: Για να είναι μια κατανομή άριστη κατά Pareto, o οριακός λόγος υποκατάστασης μεταξύ των αγαθών 1 και πρέπει να είναι ο ίδιος για τους καταναλωτές Α και Β. - Σε κάθε άριστη κατά Pareto κατανομή, οι καμπύλες αδιαφορίας των καταναλωτών Α και Β πρέπει να εφάπτονται. 11

12 - Γνωρίζουμε ότι σε κάθε ανταγωνιστική ισορροπία ο οριακός λόγος υποκατάστασης πρέπει επίσης να είναι ο ίδιος για τους καταναλωτές Α, Β και ισούται με το λόγο των τιμών των δύο αγαθών (βλ. Lecture Notes Week 11, σελ. 1): p U / U / = MRS = = MRS = p U U / / - Δηλαδή: κάθε ανταγωνιστική ισορροπία ικανοποιεί τη συνθήκη αριστοποίησης κατά Pareto (τη συνθήκη 10). 1 ο Θεμελιώδες Θεώρημα Ευημερίας (First Fundamental Theorem of Welfare Economics - FWT). Κάθε ανταγωνιστική ισορροπία είναι άριστη κατά Pareto. - Μια πιο επίσημη διατύπωση του FWT είναι η εξής: Αν ( p*, x*) είναι μια ανταγωνιστική ισορροπία, τότε η κατανομή ισορροπίας x* είναι άριστη κατά Pareto. 1

13 Α Β 1 Ο Β Σύνολο Pareto Ε D C U* U* e o U o U Γραμμή Εισοδηματικού Περιορισμού (κλίση = - p 1 / p ) Ο Α Β Α 1 - Η ανταγωνιστική ισορροπία (σημείο Ε) ανήκει στο σύνολο Pareto. 13

14 Απόδειξη 1 ου Θεωρήματος Ευημερίας. - Έστω ότι η κατανομή ισορροπίας δεν είναι άριστη κατά Pareto. x* = ( x, x ) = ((, ),(, )) * * * * * * Τότε, υπάρχει μια άλλη μη σπάταλη κατανομή x = ( x τέτοια ώστε οι Α και Β προτιμούν, x ) = (( 1, ),( 1, )) την κατανομή x από την κατανομή x*: * * * * U (, ) > U (, ) και U (, ) > U (, ) (11) = e 1+ e 1 (1) + = e + e (13) - Με βάση τον ορισμό της ανταγωνιστικής ισορροπίας, οα μεγιστοποιεί τη χρησιμότητά του υπό τον εισοδηματικό του περιορισμό επιλέγοντας τον καταναλωτικό συνδυασμό x * = ( *, * ). 1 - Άρα, αν ο συνδυασμός x = ( 1, ) αποδίδει στον Α μεγαλύτερη * * * χρησιμότητα από το συνδυασμό ισορροπίας x = ( 1, ), τότε πρέπει το κόστος του συνδυασμού x να είναι μεγαλύτερο από το εισόδημα του Α: 14

15 p 1 1+ p > M = pe 1 1+ pe (14) - Όμοια, αν ο συνδυασμός x = ( 1, ) αποδίδει στον Β μεγαλύτερη * * * χρησιμότητα από το συνδυασμό ισορροπίας x = ( 1, ), τότε πρέπει το κόστος του συνδυασμού x να είναι μεγαλύτερο από το εισόδημα του Β: p + p > M = pe + pe (15) - Αθροίζουμε τις σχέσεις (1), (13) και παίρνουμε: p ( + ) + p ( + ) > p ( e + e ) + p ( e + e ) (16) Αντικαθιστούμε τις σχέσεις (1), (13) στην (16) και παίρνουμε: (1) (16) p ( e + e ) + p ( e + e ) > p ( e + e ) + p ( e + e ) : Αντίφαση (13) Άρα, ηαρχικήυπόθεση(ότι η κατανομή ισορροπίας x* δεν είναι άριστη κατά Pareto) πρέπει να απορριφθεί ως εσφαλμένη. Η κατανομή ισορροπίας x* είναι άριστη κατά Pareto. 15

16 - Παρατήρηση: Σε ισορροπία, η χρησιμότητα των καταναλωτών πρέπει να είναι μεγαλύτερη από τη χρησιμότητα που θα είχαν αν * o * κατανάλωναν απλώς τις αρχικές περιουσίες τους: U U, U U => Η ανταγωνιστική ισορροπία πρέπει να βρίσκεται πάνω στην καμπύλη ανταλλαγών CD. o Παρατηρήσεις για το 1 ο Θεώρημα Ευημερίας (1) Το 1ο Θεώρημα Ευημερίας (FWT) υποδεικνύει την ανταγωνιστική αγορά ως ένα γενικό μηχανισμό κατανομής των πόρων που μπορεί να χρησιμοποιηθεί για την επίτευξη άριστων κατά Pareto αποτελεσμάτων στην οικονομία. - Το FWT είναι η επίσημη διατύπωση της θέσης του dam Smith για το αόρατο χέρι της αγοράς. - Αφού κάθε ανταγωνιστική ισορροπία είναι άριστη κατά Pareto, η μόνη δικαιολογία που υπάρχει για παρέμβαση στην οικονομία είναι η επίτευξη αναδιανεμητικών σκοπών. 16

17 () Το FWT εξασφαλίζει την αποτελεσματικότητα (κατά Pareto) της ανταγωνιστικής ισορροπίας αλλά δεν εξασφαλίζει την ίση ( δίκαιη ) διανομή των οικονομικών οφελών μεταξύ των ατόμων. - Παράδειγμα: Έστω ότι το σημείο των αρχικών περιουσιών των καταναλωτών είναι το Ο Α (δηλαδή ο Β κατέχει αρχικά ολόκληρη τη διαθέσιμη ποσότητα των αγαθών 1 και ). Τότε, η ανταγωνιστική ισορροπία θα είναι πάλι η κατανομή Ο Α (δηλαδή δε θα γίνουν καθόλου συναλλαγές στην αγορά), ηοποία είναι μεν άριστη κατά Pareto αλλά συνεπάγεται μια άνιση διανομή των οικονομικών οφελών μεταξύ των καταναλωτών. - Γενικά: Αν η αρχική κατανομή των περιουσιών ευνοεί τον έναν από τους δύο καταναλωτές, τότε και η τελική κατανομή ισορροπίας θα ευνοεί επίσης τον ίδιο καταναλωτή. 17

18 - Εξήγηση: Κάθε καταναλωτής αποδέχεται ηθελημένα μόνο εκείνες τις συναλλαγές στην αγορά που του αποφέρουν χρησιμότητα μεγαλύτερη από τη χρησιμότητα που θα έχει αν καταναλώσει απλώς την αρχική περιουσία του (δηλαδή η κατανομή της ανταγωνιστικής ισορροπίας πρέπει να ανήκει στην καμπύλη ανταλλαγών CD). Η ανταγωνιστική ισορροπία αναπαράγει τις ανισότητες που χαρακτηρίζουν την αρχική κατανομή των περιουσιών μεταξύ των καταναλωτών. Η επίτευξη μιας λιγότερο άνισης διανομής των οικονομικών οφελών προϋποθέτει κάποιου είδους παρέμβαση στην αγορά (π.χ. με τη χρήση ενός συστήματος φόρων και μεταβιβάσεων) για την εκπλήρωση των επιθυμητών αναδιανεμητικών στόχων. 18

19 (3) Το FWT ισχύει υπό τις εξής υποθέσεις: (i) Οι αγορές είναι πλήρεις (κάθε τωρινό ή μελλοντικό αγαθό που αντιστοιχεί σε κάθε πιθανή κατάσταση του κόσμου αποτελεί αντικείμενο συναλλαγής σε μια αγορά). (ii) Όλες οι αγορές είναι τέλεια ανταγωνιστικές (οι καταναλωτές και οι επιχειρήσεις θεωρούν δεδομένες τις τιμές όλων των αγαθών). - Αν υπάρχει ατελής ανταγωνισμός (δηλαδή αν κάποιοι οικονομικοί παράγοντες κατέχουν δύναμη στην αγορά και οι αποφάσεις τους επηρεάζουν τις τιμές), τότε η ισορροπία δεν είναι άριστη κατά Pareto. (iii) Δενυπάρχουνεξωτερικέςεπιδράσεις(externalities) και δημόσια αγαθά στην οικονομία. - Αν υπάρχουν εξωτερικές επιδράσεις ή / και δημόσια αγαθά, τότε η ανταγωνιστική ισορροπία δεν είναι άριστη κατά Pareto. (iv) Οι καταναλωτές και οι επιχειρήσεις έχουν τέλεια πληροφόρηση. - Αν υπάρχει ατελής ή ασυμμετρική πληροφόρηση στην αγορά, τότε η ανταγωνιστική ισορροπία δεν είναι άριστη κατά Pareto.

20 - Παράδειγμα (συνέχεια). Υποθέτουμε μια ανταλλακτική οικονομία που αποτελείται από: Δύο καταναλωτές: Α, Β. Δύο αγαθά: 1,. - Οι καταναλωτές περιγράφονται από τις συναρτήσεις χρησιμότητας και τις περιουσίες τους: 1/ 1/ U( 1, ) = 1, e = ( e 1, e) = (1,0) 1/ 1/ U (, ) =, e = ( e 1, e) = (0,1) Έχουμε ήδη υπολογίσει την ανταγωνιστική ισορροπία στη συγκεκριμένη οικονομία (βλ. Lecture Notes Week 11, σελ. 3 30): * * ( p1, p) = (1,1) * * 1 1 * * 1 1 ( 1, ) = (, ), ( 1, ) = (, ) U U = * * (, ) (1,1) (Τιμές Ισορροπίας) (Χρησιμότητες Ισορροπίας) (Ποσότητες Ισορροπίας) 0

21 - Υπολογίζουμε όλες τις άριστες κατά Pareto κατανομές στην οικονομία, λύνοντας το ακόλουθο πρόβλημα μεγιστοποίησης: max U (, ) = {,,, } 1 1 1/ 1/ 1 1 st.. U (, ) = U 1/ 1/ e = e = 1,,, (PP) (Πρόβλημα Αριστοποίησης κατά Pareto) - Βοηθητικό βήμα: Βρίσκουμε το διάστημα των τιμών που μπορεί να πάρει η παράμετρος U. Η ελάχιστη τιμή της min U είναι: U = 0 (για Β =Β = 0) Τότε: U = (για = = 1) max 1 Α 1 [Σημείο O του συνόλου Pareto] 1

22 Η μέγιστη τιμή της max U είναι: U = (για Β =Β = 1) Τότε: U = 0 (για = = 0) max 1 Α 1 [Σημείο O Α του συνόλου Pareto] - Άρα: 0. Λύνουμε τώρα το πρόβλημα (PP) κατάταγνωστά: U L = + λ( U ) + μ (1 ) + μ (1 ) FOCs : 1/ 1/ 1/ 1/ = μ 0, = 0 1/ 1/ = μ 0, = 0 1/ 1/ 1 = λ μ 0, = 0 1/ 1/ = λ μ 0, = 0 1/ 1/ 1

23 1/ 1/ = 1 U 0, λ = 0 λ λ = 1 0, μ = 0 μ μ μ1 = 1 0, μ = 0 μ - ΗλύσητωνFOCs είναι: U 1 = = 1 U 1 = =, με 0 U (17) (Άριστες κατά Pareto Κατανομές) - Παρατήρηση: Οι συνθήκες ης τάξης για μεγιστοποίηση ικανοποιούνται, διότι οι συναρτήσεις χρησιμότητας είναι κοίλες και οι περιορισμοί των πόρων είναι επίσης κοίλες (γραμμικές) συναρτήσεις.

24 - Το σύνολο Pareto (το σύνολο όλων των άριστων κατά Pareto κατανομών στην οικονομία) παριστάνεται από την εξίσωση Α =Α 1, δηλαδή από την ευθεία Ο Α Ο Β στο κουτί του Edgeworth. Α Β 1 1 1/ Ο Β Σύνολο Pareto ( = 1 ) 1/ E 1/ Γραμμή Εισοδηματικού Περιορισμού ( Α +Α = 1) 1 Ο Α 1/ 1 e Α 1 Β 4

25 - Ορισμός. Το όριο ή σύνορο Pareto (Pareto Frontier) παριστάνει τους διαφορετικούς συνδυασμούς χρησιμοτήτων U,U που αντιστοιχούν στις άριστες κατά Pareto κατανομές. - ΓιαναυπολογίσουμετοόριοPareto, αντικαθιστούμε τις άριστες κατά Pareto ποσότητες 1, Α στη συνάρτηση χρησιμότητας του καταναλωτή Α και παίρνουμε: (17) 1/ 1/ U U = 1 = (1 ) U = U, 0 U (Όριο Pareto) U Όριο Pareto (U = U ) 1 Ε 0 1 U 5

26 - Πρόταση. Μια εφικτή κατανομή x = ( x, x) = (( 1, ),( 1, )) είναι άριστη κατά Pareto αν και μόνο αν ο συνδυασμός χρησιμοτήτων U ( 1, ), U ( 1, ) ανήκει στο όριο Pareto. Αξιολόγηση Ανταγωνιστικής Ισορροπίας - Επαληθεύουμε ότι η ανταγωνιστική ισορροπία είναι άριστη κατά Pareto (δηλαδή ότι ισχύει το 1 ο Θεώρημα Ευημερίας). 1 ος τρόπος. Επαληθεύουμε ότι οι χρησιμότητες ισορροπίας * * ( U ικανοποιούν την εξίσωση του ορίου Pareto (δηλαδή, U ) = (1,1) ότι η ανταγωνιστική ισορροπία ανήκει στο όριο Pareto): * - Για U = U = 1, η άριστη κατά Pareto (μέγιστη) τιμή της U είναι : U U U * = = 1 = 1 =, πράγματι. - Άρα, οι χρησιμότητες ισορροπίας (σημείο Ε στο διάγραμμα της σελ. 5) ανήκουν στο όριο Pareto. => H ανταγωνιστική ισορροπία είναι άριστη κατά Pareto, δηλαδή ισχύει το FWT. 6

27 ος τρόπος. Επαληθεύουμε ότι οι ποσότητες ισορροπίας * * * * ( 1, ), ( 1, ) είναι άριστες κατά Pareto (δηλαδή ότι η κατανομή ισορροπίας ανήκει στο σύνολο Pareto): * - Για U = U = 1, οι άριστες κατά Pareto ποσότητες είναι : U * i 1 = 1 = 1/ = 1, πράγματι. U * i = 1 = 1/ =, πράγματι. U * i 1 = = 1/ = 1, πράγματι. U * i = = 1/ =, πράγματι. - Άρα, η κατανομή ισορροπίας (σημείο Ε στο κουτί του Edgeworth της σελ. 4) ανήκει στο σύνολο Pareto. => H ανταγωνιστική ισορροπία είναι άριστη κατά Pareto, δηλαδή ισχύει το FWT. 7

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της προσφοράς προσδιορίζει την τιμή και την ποσότητα ισορροπίας

Διαβάστε περισσότερα

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή Διάκριση Τιμών ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) -H διάκριση τιμών 1 ου βαθμού προϋποθέτει ότι η μονοπωλιακή επιχείρηση γνωρίζει τις ατομικές συναρτήσεις ζήτησης όλων των καταναλωτών.

Διαβάστε περισσότερα

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά - Ορισμός: Η αγορά ενός αγαθού είναι η διαδικασία (θεσμικό πλαίσιο) μέσω της οποίας έρχονται σε επικοινωνία οι αγοραστές και οι πωλητές του συγκεκριμένου

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013 2014 Τμήμα Οικονομικών Επιστημών Χειμώνας Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου 1 ο Πακέτο Ασκήσεων. Απαντήσεις Ημερομηνία

Διαβάστε περισσότερα

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα.

1. Με βάση τον κανόνα της ψηφοφορίας με απλή πλειοψηφία, η ποσότητα του δημόσιου αγαθού που θα παρασχεθεί είναι η κοινωνικά αποτελεσματική ποσότητα. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Η εξέταση αποτελείται από δύο

Διαβάστε περισσότερα

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή

Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή Οικονομικά Υποδείγματα: Εισαγωγικές Έννοιες - Τα οικονομικά υποδείγματα περιγράφουν τη συμπεριφορά επιχειρήσεων-καταναλωτών και την αλληλεπίδρασή τους στις διάφορες αγορές. - Τα οικονομικά υποδείγματα:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 202-20 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου ο Πακέτο Ασκήσεων Απαντήσεις Ημερομηνία

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών Στις παρακάτω 10 ερωτήσεις, να γράψετε τον αριθμό της κάθε ερώτησης στην εργασία σας και δίπλα του το γράμμα που αντιστοιχεί στη σωστή απάντηση. Η κάθε σωστή απάντηση

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Εξεταστική περίοδος Φεβρουαρίου Η εξέταση αποτελείται από

Διαβάστε περισσότερα

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός

Γενικά. Διάλεξη 12. Υπερβάλλον βάρος: Ορισμός. Ορισμός. Ορισμός. Ορισμός Γενικά Διάλεξη Φορολογία και αποτελεσματικότητα ν η φορολογία από μηδέν που είναι τώρα αυξηθεί στο 0% π.χ., αυτό πως επηρεάζει την ευημερία του καταναλωτή; Σίγουρα η κατανάλωση θα μεταβληθεί λόγω της αύξησης

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

Αποτίμηση δημόσιων αγαθών

Αποτίμηση δημόσιων αγαθών : ορισμός Διάλεξη 5 Τα αμιγώς δημόσια αγαθά έχουν δύο βασικά χαρακτηριστικά Μη ανταγωνιστικάστην κατανάλωση Το κόστος για την κατανάλωση του αγαθού από ένα επιπλέον άτομο είναι μηδέν ή σχεδόν μηδέν. Αδυναμία

Διαβάστε περισσότερα

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές.

2. Σε ένα κλάδο που υπάρχει μονοπώλιο, το βάρος από την επιβολή ενός φόρου μετακυλύεται ολόκληρο στους καταναλωτές. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2011-2012 Τμήμα Οικονομικών Επιστημών Εξεταστική περίοδος Ιουλίου Εξέταση στο μάθημα: Δημόσια Οικονομική Διδασκαλία: Γεωργία Καπλάνογλου Βασίλης Θ. Ράπανος Η εξέταση

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ 100 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ ΠΡΟΣ ΕΠΙΛΥΣΗ Vol. 1 ΑΘΗΝΑ ΜΑΪΟΣ 2013 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ 1 ΤΟΜΟΣ 1 ΜIΚΡΟΟΙΚΟΝΟΜΙΑ ΘΕΩΡΙΑ ΚΑΤΑΝΑΛΩΤΗ 1) Εάν ο οριακός λόγος υποκατάστασης

Διαβάστε περισσότερα

Μακροοικονομική - Μικροοικονομική

Μακροοικονομική - Μικροοικονομική Μακροοικονομική Μικροοικονομική Η Μακροοικονομική είναι ο κλάδος της Οικονομικής Επιστήμης που ασχολείται με τη μελέτη του οικονομικού συστήματος στο σύνολό του ή μεγάλων επιμέρους τομέων του Η Μικροοικονομική

Διαβάστε περισσότερα

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης

Κεφάλαιο 5 Νίκολσον (κεφ. 6,7,8,14 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Συναρτήσεις ζήτησης Κεφάλαιο 5 Νίκολσον (κεφ. 6784 από Varian) Τα αποτελέσματα εισοδήματος και υποκατάστασης Τα άριστα επίπεδα των 2 n ως συναρτήσεις όλων των τιμών και του εισοδήματος n συναρτήσεις ζήτησης

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2012-2013 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Ημερομηνία παράδοσης: Ερωτήσεις πολλαπλών

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α κ ΙΑΓΩΝΙΣΜΑ Β Α.1. Να χαρακτηρίσετε ΣΩΣΤΗ ή ΛΑΘΟΣ καθεµία από τις παρακάτω προτάσεις. Α.1.1. Η ουσία του οικονοµικού προβλήµατος των κοινωνιών οφείλεται στην έλλειψη χρηµατικού

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα

Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα Κατανάλωση, Αποταμίευση και Προσδιορισμός του Εθνικού Εισοδήματος σε Κλειστή οικονομία χωρίς Δημόσιο Τομέα -Σκοπός: Εξήγηση Διακυμάνσεων του Πραγματικού ΑΕΠ - Δυνητικό Προϊόν: Το προϊόν που θα μπορούσε

Διαβάστε περισσότερα

Εισοδήματος και Απασχόλησης Determination of Income and Employment

Εισοδήματος και Απασχόλησης Determination of Income and Employment ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Προσδιορισμός Εισοδήματος και Απασχόλησης Determination of Income and Employment 1. Κεϋνσιανή θεωρία - Υπόδειγμα. Keynesian Model 1 Βασικές αρχές: Το μέγεθος του Εθνικού εισοδήματος (παραγόμενου

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ

Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Η ΛΕΙΤΟΥΡΓΙΑ ΤΩΝ ΑΓΟΡΩΝ Άντε πάλι.. Για να δούμε πόσες φορές θα κάνουμε αυτή τη δουλειά Κεφάλαιο 2 Οικονομικά των Επιχειρήσεων Ε.Σ.Σαρτζετάκης 1 Εισαγωγή? Η λειτουργία των αγορών προσδιορίζεται από δύο

Διαβάστε περισσότερα

Εισαγωγικό σεμινάριο στην Οικονομική θεωρία

Εισαγωγικό σεμινάριο στην Οικονομική θεωρία Εισαγωγικό σεμινάριο στην Οικονομική θεωρία Σκοπός των Σημειώσεων για το Εισαγωγικό Σεμινάριο στην Οικονομική Θεωρία είναι η εξοικείωση των μεταπτυχιακών φοιτητών με οικονομικές έννοιες και θεωρίες. Επιπλέον,

Διαβάστε περισσότερα

Μικροοικονομία. 1 ο εξάμηνο

Μικροοικονομία. 1 ο εξάμηνο Μικροοικονομία 1 ο εξάμηνο ΘΕΩΡΙΑ ΚΟΣΤΟΥΣ Συνολικό Κόστος (TC): Το χρηματικό ποσό που απαιτείται για την απόκτηση όλων των εισροών. Συνολικό Σταθερό Κόστος (TFC ή πάγια έξοδα): Το χρηματικό ποσό που δαπανά

Διαβάστε περισσότερα

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΣΒΑΣΗ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ Ε.Σ.Δ.Δ.Α. ΔΕΙΓΜΑ ΣΗΜΕΙΩΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΣΒΑΣΗ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ Ε.Σ.Δ.Δ.Α. ΔΕΙΓΜΑ ΣΗΜΕΙΩΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΣΒΑΣΗ ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ Ε.Σ.Δ.Δ.Α. ΔΕΙΓΜΑ ΣΗΜΕΙΩΣΕΩΝ ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Αντικείμενο της Πολιτικής Οικονομίας

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΚΟ-ΟΙΚΟΝΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ

ΚΟΙΝΩΝΙΚΟ-ΟΙΚΟΝΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΚΟΙΝΩΝΙΚΟ-ΟΙΚΟΝΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΠΡΟΛΟΓΟΣ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΟΙΝΩΝΙΚΟ-ΟΙΚΟΝΟΜΙΚΗ ΑΞΙΟΛΟΓΗΣΗ 1.1 Τι είναι η κοινωνικο-οικονομική αξιολόγηση

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και A5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ. Κεφάλαιο 5. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΘΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Κεφάλαιο 5. Σαρτζετάκης 1 Συνάρτηση παραγωγής Προσδιορίζει τις δυνατότητες παραγωγής ενός αγαθού ή υπηρεσίας (εκροής) ως συνάρτησης των παραγωγικών συντελεστών (εισροών) δεδομένης της τεχνολογίας.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ Οι τιµές Στην οικονοµία οι τιµές παίζουν βασικό ρόλο. Κατανέµουν τους παραγωγικούς πόρους στις τοµείς όπου υπάρχει µεγαλύτερη ζήτηση µε το πιο αποτελεσµατικό τρόπο. Αυτό το οποίο

Διαβάστε περισσότερα

Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και της ζήτησης

Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και της ζήτησης Πανεπιστήμιο Πειραιώς, Τμήμα Τραπεζικής και Χρηματοοικονομικής Διοικητικής Μεταπτυχιακό Πρόγραμμα «Χρηματοοικονομική Ανάλυση για Στελέχη» Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ (009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑΔΑ Α Α.1. Σωστό. Α.. Λάθος. Ο πληθωρισμός πλήττει όλα τα άτομα που το χρηματικό τους εισόδημα είναι σταθερό ή αυξάνεται

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ. Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ. Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Διπλωματική Εργασία ΠΑΡΟΧΗ ΑΣΦΑΛΙΣΗΣ ΥΓΕΙΑΣ ΑΠΟ ΙΔΙΩΤΙΚΟΥΣ ΚΑΙ ΚΡΑΤΙΚΟΥΣ ΦΟΡΕΙΣ ΕΠΙΜΕΛΕΙΑ ΣΑΛΜΑΝΛΗΣ ΖΑΦΕΙΡΙΟΣ ΕΠΙΒΛΕΠΟΥΣΑ ΚΑΘΗΓΗΤΡΙΑ

Διαβάστε περισσότερα

Εξωτερικές αλληλεπιδράσεις

Εξωτερικές αλληλεπιδράσεις η αποτυχία των νόµων της αγοράς Εξωτερικές αλληλεπιδράσεις Εξαιρέσεις και η αποτυχία των νόµων της αγοράς στον τοµέα των µεταφορών 1. Ο ανταγωνισµός είναι αρκετά ισχυρός έτσι ώστε να ωθήσει την τιµή στο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός

ΚΕΦΑΛΑΙΟ 2. ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός ΚΕΦΑΛΑΙΟ 2 ΤΟ ΝΕΟΚΛΑΣΙΚΟ ΥΠΟ ΕΙΓΜΑ ΑΚΡΑΙΩΝ ΑΓΟΡΩΝ ΜΕΡΟΣ Α: «Τέλειος» ανταγωνισµός A1. Το υπόδειγµα των εγχειριδίων Στον Πλούτο των Εθνών (1776) ο Adam Smith παρουσίασε το φηµισµένο πλέον επιχείρηµά του

Διαβάστε περισσότερα

K r i t i k i P u b l i s h i n g - d r a f t

K r i t i k i P u b l i s h i n g - d r a f t Κεφάλαιο 1 Η αγορά Το συμβατικό πρώτο κεφάλαιο ενός βιβλίου μικροοικονομικής αποτελεί μια πραγμάτευση των «ορίων και των μεθόδων» της Οικονομικής. Παρόλο που το αντικείμενο αυτό μπορεί να είναι πολύ ενδιαφέρον,

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model Πάντειο Πανεπιστήμιο Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics Lecture 1: Trading in a Ricardian Model Το Ρικαρδιανό υπόδειγμα με ένα συντελεστή (συνέχεια) 1. Ο μόνος σημαντικός

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθηµα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ηµεροµηνία και ώρα εξέτασης: ευτέρα 9 Ιουνίου 2008 7:30-10:00

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Ο Αντιπραγματισμός προϋποθέτει διπλή σύμπτωση επιθυμιών Σπατάλη Πόρων (Χρόνος, προσπάθεια)

Ο Αντιπραγματισμός προϋποθέτει διπλή σύμπτωση επιθυμιών Σπατάλη Πόρων (Χρόνος, προσπάθεια) Χρήμα, Τράπεζες και Ισορροπία στις Χρηματοπιστωτικές Αγορές - Χρήμα: Συνολικό Απόθεμα περιουσιακών στοιχείων που χρησιμοποιούν άμεσα οι άνθρωποι σε μια οικονομία για την αγορά αγαθών και υπηρεσιών. - Χρησιμότητα

Διαβάστε περισσότερα

Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση. 4.1 Κατανάλωση και αποταμίευση

Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση. 4.1 Κατανάλωση και αποταμίευση Μακροοικονομική Κεφάλαιο 4 Κατανάλωση, αποταμίευση και επένδυση 4.1 Κατανάλωση και αποταμίευση 1) Χωρίς πληθωρισμό και με ονομαστικό επιτόκιο (i).03, κάποιος μπορεί να ανταλλάξει μια μονάδα σημερινής κατανάλωσης

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16//201)-ΣΕΙΡΑ Α ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό Α2. (β) Α. (γ) ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.Η μεταβολή στην προσφερόμενη ποσότητα ενός αγαθού

Διαβάστε περισσότερα

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr

Ερώτηση Α.1 (α) (β) www.arnos.gr info@arnos.co.gr Ερώτηση Α.1 Σε μια κλειστή οικονομία οι αγορές αγαθών και χρήματος βρίσκονται σε ταυτόχρονη ισορροπία (υπόδειγμα IS-LM). Να περιγράψετε και να δείξετε διαγραμματικά το πώς θα επηρεάσει την ισορροπία των

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15

ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΚΠΑ Τμήμα Οικονομικών Επιστημών Ακ. Ετος 2014-15 ΕΝΟΤΗΤΑ Νο. 1 ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ : ΣΤΟΧΟΙ, ΜΕΘΟΔΟΛΟΓΙΑ, ΒΑΣΙΚΑ ΔΕΔΟΜΕΝΑ & ΜΕΤΡΗΣΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους;

ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ. 2. Τι περιλαμβάνει ο στενός και τι ο ευρύτερος δημόσιος τομέας και με βάση ποια λογική γίνεται ο διαχωρισμός μεταξύ τους; Μάθημα: Εισαγωγή στα δημόσια οικονομικά Διδάσκουσα: Καθηγήτρια Μαρία Καραμεσίνη Οι παρακάτω ερωτήσεις είναι οργανωτικές του διαβάσματος. Τα θέματα των εξετάσεων δεν εξαντλούνται σε αυτές, αλλά περιλαμβάνουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 3 (Μακροοικονομική) Ακαδ. Έτος: 2007-8 Οδηγίες

Διαβάστε περισσότερα

Στατικά Παίγνια Ελλιπούς Πληροφόρησης

Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΑΤΙΚΑ ΠΑΙΓΝΙΑ ΕΛΛΙΠΟΥΣ ΠΛΗΡΟΦΟΡΗΣΗΣ 67 Στατικά Παίγνια Ελλιπούς Πληροφόρησης ΣΤΟ ΠΑΡOΝ ΚΕΦAΛΑΙΟ ξεκινά η ανάλυση των παιγνίων ελλιπούς πληροφόρησης, τα οποία ονομάζονται και μπεϋζιανά παίγνια (bayesa

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία :

Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΗΣ Εισαγωγή Παραγωγή, ορίζεται η διαδικασία μετατροπής των παραγωγικών συντελεστών σε τελικά αγαθά προς κατανάλωση. Χαρακτηρίζεται δε από τα ακόλουθα στοιχεία : Συνειδητή προσπάθεια για το

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια

5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια 5. Tο προϊόν και η συναλλαγματική ισοτιμία βραχυχρόνια 1. Οι προσδιοριστικοί παράγοντες της συνολικής ζήτησης 2. H βραχυχρόνια ισορροπία στην αγορά προϊόντος 3. Η βραχυχρόνια ισορροπία στην αγορά περιουσιακών

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α Α.1: Σωστό, Α.: Λάθος, Α.: Σωστό, Α.: Λάθος, Α.5: Σωστό Α.6: β, Α.7: γ ΟΜΑ Α Β Υπάρχουν αγαθά στα οποία η τιµή του ενός αγαθού επηρεάζει τη ζήτηση ενός άλλου αγαθού. Τα αγαθά αυτά τα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α Στις προτάσεις, από Α.1. μέχρι και Α.5., να γράψετε τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Η προσέγγιση του Smith Καµπύλες χωρικού κόστους

Η προσέγγιση του Smith Καµπύλες χωρικού κόστους Η προσέγγιση του Smith Καµπύλες χωρικού κόστους O Smith (1966, 1981), διατύπωσε ένα άλλο υπόδειγµα, στο οποίο οι επιχειρήσεις µεγιστοποιούν τα κέρδη τους, συνδυάζοντας την καµπύλη των χωρικών εσόδων µε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Δ.Α.Π.-Ν.Δ.Φ.Κ. ΤΜΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ www.dap-papei.gr 1 ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΔΗΜΟΣΙΟΝΟΜΙΚΗΣ

Διαβάστε περισσότερα

είναι η καµπύλη συνολικής ζήτησης εργασίας από τις επιχειρήσεις και η καµπύλη S

είναι η καµπύλη συνολικής ζήτησης εργασίας από τις επιχειρήσεις και η καµπύλη S 3 Ασκήσεις πολλαπλής επιλογής στην 5 η ενότητα: Αµοιβές των ΠΣ διανοµή εισοδήµατος βασικά µακροοικονοµικά µεγέθη θεωρία κατανάλωσης και επένδυσης ισορροπία εισοδήµατος. Ο πραγµατικός µισθός των εργαζοµένων

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Συνολική Ζήτηση για εγχώριο προϊόν (ΑΕΠ/GDP) απαρτίζεται από Y = C + I + G + NX απάνες Κατανάλωσης από τα νοικοκυριά Επενδυτικές απάνες από τα νοικοκυριά

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 1 ο : Βασικές Οικονομικές Έννοιες Επαναληπτική άσκηση στο Κεφάλαιο 1 Δίνεται ο παρακάτω πίνακας

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 25/5/2015 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: . Σχολικό βιβλίο σελ.9. Σχολικό βιβλίο σελ.88 3. Σχολικό βιβλίο σελ.5. α) Λ Β. β) Σ γ) Λ δ) Σ ε) Σ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5/5/5 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ Α: ΘΕΜΑ Β: Έστω z=+yi. Κάνοντας πράξεις στη

Διαβάστε περισσότερα

Υποδείγματα Επαλλήλων Γενεών. Diamond και Blanchard- Weil

Υποδείγματα Επαλλήλων Γενεών. Diamond και Blanchard- Weil Υποδείγματα Επαλλήλων Γενεών Diamond και Blanchard- Weil 1 Υπoδείγματα Επαλλήλων Γενεών Το υπόδειγμα του αντιπροσωπευτικού νοικοκυριού βασίζεται στην υπόθεση ότι όλα τα νοικοκυριά είναι πανομοιότυπα. Μία

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΜΟΝΟΠΩΛΙΟ. Κεφάλαιο 12. Τα χαρακτηριστικά των µονοπωλιακών αγορών

ΜΟΝΟΠΩΛΙΟ. Κεφάλαιο 12. Τα χαρακτηριστικά των µονοπωλιακών αγορών ΜΟΝΟΠΩΛΙΟ Κεφάλαιο 12 Τα χαρακτηριστικά των µονοπωλιακών αγορών! Μονοπώλιο είναι η κατάσταση στην οποία µια µόνο επιχείρηση εξυπηρετεί ολόκληρη την αγορά! Ο µονοπωλητής σε αντίθεση µε την ανταγωνιστική

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα