Μικροοικονοµική Θεωρία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μικροοικονοµική Θεωρία"

Transcript

1 Μικροοικονοµική Θεωρία Θεωρία Χρησιµότητας και Προτιµήσεων. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. Συνολική και οριακή χρησιµότητα Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Ιστορική Αναδροµή Χαρακτηριστικά Καµπυλών Αδιαφορίας Οριακός λόγος υποκατάστασης Φθίνον Οριακός Λόγος Υποκατάστασης (αφορά κυρτές καµπύλες αδιαφορίας) Είδη Καµπυλών Αδιαφορίας 1

2 Θεωρία Χρησιµότητας και Προτιµήσεων. έσµη ή δεσµίδα ή συνδυασµός κατανάλωσης είναι ένα διάνυσµα Χ= (χ 1, χ 2, χ 3..χ ν ) n που περιέχει αγαθά. Ανήκει σε ένα σύνολο κατανάλωσης Χ ( x X ) όπου X R1 (το Χ υποσύνολο του θετικού τεταρτηµορίου) > : τουλάχιστον τόσο προτιµητέο όσο > : αυστηρά προτιµητέο ~ : αδιάφορο Κάθε συνδυασµός καταναλωτικών αγαθών δίδεται από ένα διατεταγµένο σύνολο µη αρνητικών πραγµατικών αριθµών και απεικονίζεται γεωµετρικά ως ένα σηµείο στο µη αρνητικό τµήµα του σχετικού χώρου. Καταναλωτικές Προτιµήσεις: Βασικά Αξιώµατα. 1. Συγκρισιµότητα Πληρότητα Για οποιουσδήποτε συνδυασµούς αγαθών Α και Β, ο καταναλωτής µπορεί να προσδιορίσει ποιος συνδυασµός του αποφέρει µεγαλύτερη ικανοποίηση. Αν ο Α παρέχει µεγαλύτερη ικανοποίηση από τον Β, τότε λέµε ότι ο Α είναι προτιµητέος έναντι του Β και το αντίστροφο. Αν και οι δυο συνδυασµοί παρέχουν την ίδια ικανοποίηση, τότε λέµε ότι ο καταναλωτής είναι αδιάφορος µεταξύ των Α και Β. 2. Μεταβατικότητα Συνέπεια Αν ο συνδυασµός Α προτιµάται έναντι του συνδυασµού Β και ο Β προτιµάται έναντι του συνδυασµού Γ, τότε ο Α προτιµάται έναντι του. Παρόµοια αν ο καταναλωτής είναι αδιάφορος µεταξύ των συνδυασµών Α και Β και µεταξύ Β και Γ, τότε είναι αδιάφορος και µεταξύ Α και Γ. Το αξίωµα αυτό εξασφαλίζει την εσωτερική συνέπεια των επιλογών του καταναλωτή. Τα σύνολα αδιαφορίας δεν έχουν κοινά σηµεία, δηλαδή οι καµπύλες αδιαφορίας δεν τέµνονται. Ορθολογικός Καταναλωτής: ο καταναλωτής του οποίου οι επιλογές εκπληρούν τις δυο παραπάνω ιδιότητες. 3. Συνεχεία εδοµένου ενός συνδυασµού αγαθών Α, υπάρχουν συνδυασµοί αγαθών, τους οποίους ο καταναλωτής προτιµά έναντι του Α, άλλοι συνδυασµοί έναντι των οποίων ο Α είναι προτιµότερος και τέλος, υπάρχουν οπωσδήποτε συνδυασµοί αγαθών, διάφοροι ποσοτικά του Α, οι οποίοι του παρέχουν την ίδια ικανοποίηση. Άρα οι καµπύλες δεν µπορούν να είναι διακεκοµµένες, αλλά είναι συνεχείς, δεν υπάρχουν δηλαδή ασυνέχειες. 4. Ανακλαστικότητα Το Αξίωµα της Ανακλαστικότητας, σύµφωνα µε το οποίο ένας συνδυασµός είναι εξίσου καλός µε τον εαυτό του. Κάθε δεσµίδα ανήκει σε κάποιο σύνολο αδιαφορίας, έστω και στον εαυτό της. 2

3 Τα παραπάνω 4 αξιώµατα θεωρούνται τα βασικά υπάρχουν όµως και δυο επικουρικά αξιώµατα. 5. Μονοτονικότητα? Ασθενής Μονοτονικότητα: ο καταναλωτής προτιµά µια δεσµίδα που έχει περισσότερες ποσότητες από µια άλλη που έχει λιγότερες. Άρα θέλει και τα δυο αγαθά να έχουν περισσότερη ποσότητα από την άλλη δεσµίδα για να την προτιµήσει. Ισχυρή Μονοτονικότητα: ο καταναλωτής προτιµά µια δεσµίδα αρκεί το ένα αγαθό να είναι σε µεγαλύτερη ποσότητα από το άλλο για να την προτιµήσει. Αντιπροσώπευση Εκπροσώπηση Μια συνάρτηση Μ(χ) που αντίστοιχη έναν αριθµό σε κάθε δεσµίδα κατανάλωσης, αντιπροσωπεύει τις προτιµήσεις του καταναλωτή, δηλαδή αποτελεί συνάρτηση χρησιµότητας. Το µόνο που απαιτείται από την συνάρτηση χρησιµότητας είναι να εκφράζει απλά, την κατάταξη των συνδυασµών των αγαθών κατά τις προτιµήσεις του καταναλωτή, δίδοντας µεγαλύτερη τιµή σε ορισµένους συνδυασµούς έναντι άλλων χωρίς, όµως να έχουν σηµασία οι αριθµοί αυτοί καθαυτοί και, εποµένως και οι µεταξύ τους διαφορές. (µιλάµε για την χρησιµότητα ως τακτικό µέγεθος και όχι ως απόλυτο) Πολλές συναρτήσεις χρησιµότητας µπορούν να περιγράψουν εξίσου καλά τις προτιµήσεις του καταναλωτή: Π.χ. u 1 = u(x,y) = xy & u 2 = u(u) 2 =(xy) 2 x y u 1 u Άρα ο συγκεκριµένος καταναλωτής είναι αδιάφορος µεταξύ των τριών αυτών συνδυασµών παρόλο που η απόλυτη τιµή (αριθµός) της χρησιµότητας διαφέρει. Η απόλυτη τιµή της χρησιµότητας εξαρτάται από τη συγκεκριµένη συνάρτηση χρησιµότητας που θα πάρουµε. Έχοντας µια συνάρτηση, που αντανακλά τις τακτικές προτιµήσεις του καταναλωτή, µπορούµε να κατασκευάσουµε έναν οποιοδήποτε αριθµό εναλλακτικών συναρτήσεων χρησιµότητας που να αντανακλούν τις ίδιες τακτικές προτιµήσεις. Συνολική και οριακή χρησιµότητα Η γενικευµένη µορφή της συνάρτησης χρησιµότητας είναι: u(x 1, x 2,x 3 x v ) όπου: u= συνολική χρησιµότητα και x 1, x 2,x 3 x v = ποσότητες των αγαθών 1,.., ν 3

4 Η οριακή χρησιµότητα είναι: η χρησιµότητα που επιτυγχάνεται από την κατανάλωση u µιας επιπλέον µονάδας του αγαθού X, ux Καµπύλη αδιαφορίας ή ισοϋψής καµπύλη χρησιµότητας. Είναι ο γεωµετρικός τόπος των σηµείων (ή των συνδυασµών αγαθών) µεταξύ των οποίων ο καταναλωτής είναι αδιάφορος. Κάθε σηµείο µιας καµπύλης αδιαφορίας αποφέρει την ίδια συνολική χρησιµότητα µε οποιαδήποτε άλλο σηµείο της ίδιας καµπύλης αδιαφορίας. Αν η συνάρτηση χρησιµότητας δίνεται από τον τύπο u(x 1, x 2,x 3 x v ) όπου χ 1 είναι η καταναλισκόµενη ποσότητα του αγαθού 1, χ 2 είναι η καταναλισκόµενη ποσότητα του αγαθού 2 κ.τ.λ., τότε η καµπύλη αδιαφορίας ορίζεται ως το σύνολο όλων των συνδυασµών των αγαθών (χ 1, χ 2, χ 3, χ v ) που ικανοποιούν την εξίσωση u(x 1, x 2,x 3 x v ) = c όπου c είναι το σταθερό επίπεδο χρησιµότητας για αυτή τη καµπύλη αδιαφορίας. Ένας Χάρτης καµπυλών αδιαφορίας δηµιουργείται αν δοθούν διάφορες τιµές στη σταθερά c της εξίσωσης u(x 1, x 2,x 3 x v ) = c Π.χ. Όταν u(x,y) = xy οι καµπύλες αδιαφορίας δίνονται από την εξίσωση xy=c όπου c είναι η σταθερή τιµή της χρησιµότητας κατά µήκος µιας καµπύλης αδιαφορίας. Τα σηµεία (x,y) : (1,5) και (2,5, 2) βρίσκονται πάνω στην ίδια καµπύλη αδιαφορίας µιας και αποδίδουν την ίδια χρησιµότητα c=5. Έστω ότι αλλάζουµε τις απόλυτες τιµές χρησιµότητας µε την ύψωση τους στο τετράγωνο έτσι ώστε u (x,y) = [u(x,y)] 2 = x 2 y 2. ιαπιστώνουµε ότι βρισκόµαστε πάνω στην ίδια καµπύλη αδιαφορίας αλλά τώρα c=25. Εποµένως οι καµπύλες αδιαφορίας παραµένουν αµετάβλητες (εκτός από τις αριθµητικές ταµπέλες τους) µετά από µονοτονικούς µετασχηµατισµούς της συνάρτησης χρησιµότητας. Ιστορική Αναδροµή Jeremy Bentham 1789 = απόλυτη χρησιµότητα 1. Stanley Jevons 1871, Carl Menger 1871, Leon Warlas 1874 = Απόλυτη, Αθροιστική Χρησιµότητα u= u(x 1 ) + u(x 2 ) + u(x 3 ) +.. u(x n ) 2. Francis Edgeworth 1881, G.B. Antonelli 1886, Irving Fisher 1892 = Μετρήσιµο µέγεθος (απόλυτη χρησιµότητα) αλλά όχι αθροιστική. u(x 1, x 2,x 3 x v ) 3. Vilfredo Pareto 1906 = Τακτική χρησιµότητα Χαρακτηριστικά Καµπυλών Αδιαφορίας 1. Το πεδίο των καµπυλών αδιαφορίας είναι πυκνό. Υπάρχει µια καµπύλη αδιαφορίας που περνά από κάθε σηµείο του χώρου των αγαθών. 4

5 2. Ο χάρτης αδιαφορίας είναι µοναδικός για κάθε καταναλωτή. 3. Οι συνδυασµοί πάνω στην ίδια καµπύλη αδιαφορίας δίνουν την ίδια ικανοποίηση στον καταναλωτή. 4. Κάθε συνδυασµός δεξιά της καµπύλη αδιαφορίας προτιµάται και αριστερά της καµπύλη αδιαφορίας δίνει λιγότερη ικανοποίηση. 5. Καµπύλες αδιαφορίας που παριστούν διαφορετικά επίπεδα προτίµησης δεν µπορούν να τέµνονται. Σηµεία πάνω σε δυο καµπύλες αδιαφορίας: Α, Β, Γ. Τα σηµεία Α,Β ανήκουν στην καµπύλη αδιαφορίας Ι, και τα σηµεία Α, Γ ανήκουν στην καµπύλη αδιαφορίας ΙΙ. Ο καταναλωτής είναι αδιάφορος µεταξύ των συνδυασµών Α και Β αφού ανήκουν στην ίδια καµπύλη αδιαφορίας. Αντίστοιχα ο καταναλωτής είναι αδιάφορος µεταξύ των συνδυασµών Α και Γ αφού ανήκουν στην ίδια καµπύλη αδιαφορίας. Σύµφωνα µε την ιδιότητα της Μεταβατικότητας: οι συνδυασµοί Β, Γ θα πρέπει να µας είναι αδιάφοροι (ταυτίζονται). Εδώ εµφανίζεται µια αντίφαση µιας και οι συνδυασµοί Β, Γ ανήκουν σε ξεχωριστή καµπύλη αδιαφορίας. 6. Μονοτονικές προτιµήσεις η οποία και συνεπάγεται αρνητική κλίση στις καµπύλες αδιαφορίας Αυστηρή Μονοτονικότητα: ο συνδυασµός Α είναι αυστηρά µεγαλύτερος από τον Β διότι έστω ο πρώτος περιέχει περισσότερες µονάδες για κάθε αγαθό σε σχέση µε τον συνδυασµό Β. Στον χώρο των αγαθών αυτό φαίνεται επειδή ο Α βρίσκεται βορειοανατολικά του Β. Αν ο καταναλωτής δεν έχει φτάσει σε σηµείο κορεσµού και για τα δυο αγαθά, τότε προτιµά τον Α από τον Β: κατά συνέπεια οι καµπύλες αδιαφορίας έχουν αρνητική κλίση. Γιατί έστω ότι ο καταναλωτής είναι αδιάφορος µεταξύ των συνδυασµών Γ,, ο Γ δεν µπορεί να περιέχει µεγαλύτερες ποσότητες και των δυο αγαθών από ότι ο και το αντίστροφο (θα είχαµε θετική κλίση). Αντίθετα κάθε συνδυασµός πρέπει να περιέχει µεγαλύτερη ποσότητα του ενός αγαθού και µικρότερη ποσότητα του αλλού. 5

6 Η κλίση τους (δηλ. ο MRS) µειώνεται όσο προχωρούµε από πάνω προς τα κάτω. Αυτό σχετίζεται µε το νόµο της φθίνουσας οριακής χρησιµότητας. Όσο αυξάνεται η ποσότητα του Χ και µειώνεται η ποσότητα του Υ η οριακή χρησιµότητα του Χ µειώνεται ενώ η οριακή χρησιµότητα του Υ αυξάνεται. 7. Κυρτότητα (ή φθίνων οριακός λόγος Υποκατάστασης) ένας καταναλωτής που είναι αδιάφορος ανάµεσα στο Α και το Β θα προτιµούσε αυστηρά έναν γραµµικό συνδυασµό Γ = αα + (1-α)Β από είτε απλά Α είτε απλά Β. Άρα προτιµά µίγµατα. Σε περίπτωση κοίλης καµπύλης αδιαφορίας ο καταναλωτής απεχθάνεται τα µίγµατα. Κυρτές προτιµήσεις -ο σταθµισµένος µέσος όρος δύο αδιάφορων συνδυασµών είναι αυστηρά προτιµότερος από τους δύο ακραίους συνδυασµούς- συνεπάγεται καµπύλες αδιαφορίας κυρτές ως προς την αρχή των αξόνων. Η διαπίστωση της κυρτότητας (ή κοιλότητας) γίνεται πιο εύκολα εάν η καµπύλη βρίσκεται πάνω (κάτω) από την εφαπτόµενη της σε κάθε σηµείο. Οριακός λόγος υποκατάστασης Ο λόγος υποκατάστασης του Υ σε όρους του Χ µετράει τον αριθµό των µονάδων του Υ οι οποίες πρέπει να θυσιαστούν για την απόκτηση µιας επί πλέον µονάδας του Χ, έτσι ώστε ο καταναλωτής να απολαµβάνει το ίδιο επίπεδο ικανοποίησης (να διατηρήσει το επίπεδο χρησιµότητας στην ίδια καµπύλη αδιαφορίας) Η κλίση των καµπυλών αδιαφορίας ονοµάζεται οριακός λόγος υποκατάστασης (marginal rate of substitution, MRS) Ορίζεται µόνο για µετακινήσεις κατά µήκος µιας καµπύλης αδιαφορίας και ποτέ για µετακινήσεις µεταξύ καµπυλών. Y ΟΛΥ= MRS = Χ Έστω ότι η συνάρτηση χρησιµότητας είναι u(x,y). Η µεταβολή της χρησιµότητας που προέρχεται από µια µικρή µεταβολή του χ (ή του y) είναι η οριακή χρησιµότητα του χ u (ή του y). Άρα η οριακή χρησιµότητα του χ είναι ux και η οριακή χρησιµότητα 6

7 u του y είναι uy. Μια καµπύλη αδιαφορίας δίνεται από τον τύπο u(x,y = c µια y σταθερά. Παίρνοντας την ολική παράγωγο βρίσκουµε u ( x, y) dx+ u ( x, y) dy= 0 και λύνοντας ως προς την κλίση της καµπύλης x αδιαφορίας βρίσκουµε ότι: dy ux( x, y) =ΟΛΥ y/ x = dx u ( x, y) y y Άρα ο λόγος υποκαταστάσεως του y µε χ (κλίση) είναι ο λόγος των οριακών χρησιµοτήτων του Χ και του Υ. Φθίνον Οριακός Λόγος Υποκατάστασης (αφορά κυρτές καµπύλες αδιαφορίας) Ο ΟΛΥ του Υ µε Χ µειώνεται σε απόλυτους όρους καθώς το Υ υποκαθίσταται µε το Χ κατά µήκος µιας κυρτής καµπύλης αδιαφορίας. Η κυρτότητα των καµπυλών αδιαφορίας δικαιολογείται συνήθως µε το επιχείρηµα ότι καθώς ο καταναλωτής αποκτά ολοένα και µεγαλύτερες ποσότητες του Χ, η οριακή χρησιµότητα µιας επιπλέον αυξήσεως του Χ µειώνεται. Ενώ αντίθετα η οριακή χρησιµότητα του Υ διαρκώς αυξάνει, µε αποτέλεσµα η µείωση της καταναλώσεως του Υ κατά µια επιπλέον µονάδα να απαιτεί όλο και µεγαλύτερη ποσότητα του Χ για να αντισταθµίσει ο καταναλωτής την απώλεια χρησιµότητας του. ΟΛΥ Υµε Χ =7 αυξάνεται το Χ µια µονάδα, µειώνεται το Υ κατά 7 ΟΛΥ Υµε Χ =5 αυξάνεται το Χ µια µονάδα, µειώνεται το Υ κατά 5 ΟΛΥ Υµε Χ =3 αυξάνεται το Χ µια µονάδα, µειώνεται το Υ κατά 3 Όσο αυξάνεται το Χ τόσο µειώνεται ο ΟΛΥ Υµε Χ εξαιτίας του βαθµιαίου κορεσµού που επέρχεται στον καταναλωτή όταν αυξάνεται η κατανάλωση του Χ. Συνεπώς καθώς αυξάνεται η κατανάλωση του Χ ο καταναλωτής είναι διατεθειµένος να θυσιάσει ολοένα και µικρότερες ποσότητες του Υ για την απόκτηση µιας προσθετής µονάδας του Χ. dy ux( x, y) u =ΟΛΥ y/ x = µειώνεται ux( x. y) dx u ( x, y) y u αυξάνεται uy ( x, y) y Π.χ. ένας καταναλωτής που έχει 1000 λίτρα νερού εβδοµαδιαίως µπορεί να είναι απόλυτα ευχαριστηµένος από την ανταλλαγή ενός λίτρου νερού µε µια φέτα ψωµί. Αν όµως µόνο ένα λίτρο νερού την εβδοµάδα µπορεί να δίσταζε, ίσως να ανταλλάξει ακόµα και ένα ποτήρι νερού έστω και µε ένα ολόκληρο φούρνο ψωµιά. Θεώρηµα: Εάν υποθέσουµε ότι οι προτιµήσεις του καταναλωτή είναι πλήρεις, ανακλαστικές, µεταβατικές και συνεχείς, τότε υπάρχει µια συνεχής συνάρτηση χρησιµότητας, η οποία αντιπροσωπεύει αυτές τις προτιµήσεις. 7

8 Αυστηρά κοίλη συνάρτηση χρησιµότητας + αυστηρά κυρτή καµπύλη αδιαφορίας + φθίνοντας οριακός λόγος υποκαταστάσεως. Τα παραπάνω ισχύουν όταν 2 y y ΟΛΥ Υµε X = < 0και > 0 2 Η συνάρτηση χρησιµότητας τύπου Cobb Douglas προϋπόθεσης. u a b = x y πλήρη τις πιο πάνω Είδη Καµπυλών Αδιαφορίας 1. Οι καµπύλες αδιαφορίας είναι ευθείες γραµµές (U(x,y) = ax + by) για αγαθά τέλεια υποκατάστατα µε MRS = - a / b 2. Οι καµπύλες αδιαφορίας έχουν σχήµα L για αγαθά τέλεια συµπληρωµατικά µε U(x,y) = min(ax, by) µε MRS είτε 0 είτε άπειρος. 3. Στα ουδέτερα αγαθά οι καµπύλες αδιαφορίας είναι κάθετες γραµµές µε MRS παντού άπειρος. 4. Στα ανεπιθύµητα αγαθά η κατεύθυνση αύξουσας προτίµησης των καµπυλών αδιαφορίας είναι προς τα κάτω και δεξιά προς το «αγαθό». 5. Οι καµπύλες αδιαφορίας που παριστάνουν κορεσµένες προτιµήσεις είναι κυκλικές 6. Οι (κυρτές) Καµπύλες Αδιαφορίας εµφανίζουν έναν µειούµενο οριακό λόγο υποκατάστασης Οµοθετικές και Μη Οµοθετικές προτιµήσεις Οµοθετικές συναρτήσεις: ο οριακός λόγος υποκατάστασης στις συναρτήσεις χρησιµότητας εξαρτάται µόνο από το λόγο των ποσοτήτων των δύο αγαθών και όχι από τις συνολικές ποσότητες των δύο αγαθών. Οι οριακές χρησιµότητες και των δύο αγαθών εξαρτώνται από τα Χ και Υ. οι κλίσεις των καµπυλών αδιαφορίας εξαρτώνται µόνο από τον λόγο Υ / Χ και όχι από το πόσο µακριά είναι η καµπύλη από την αρχή των αξόνων. Μη Οµοθετικές συναρτήσεις: ο οριακός λόγος υποκατάστασης στις συναρτήσεις χρησιµότητας εξαρτάται µόνο από την µια ποσότητα του Υ ή Χ. 8

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει

Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x 1,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει Ατομικές Προτιμήσεις και Συνάρτηση Χρησιμότητας - Έστω x=(x,,x n ) ένας καταναλωτικός συνδυασμός, όπου x i η ποσότητα του αγαθού i που καταναλώνει το άτομο (i =,,n). - Πρόβλημα καταναλωτή: Κάθε άτομο (καταναλωτής)

Διαβάστε περισσότερα

Προτιµήσεις-Υπενθύµιση

Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση Διάλεξη 4 x y: To x προτιµάται σαφώς από το y.! x ~ y: Το x και το y προτιµούνται εξίσου. Χρησιµότητα! x y: Το x προτιµάται τουλάχιστο όσο και το y.!1! 1 Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση

Διαβάστε περισσότερα

Προτιµήσεις-Υπενθύµιση

Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση ιάλεξη 4 Χρησιµότητα x y: To x προτιµάται σαφώς από το y. x y: Το x και το y προτιµούνται εξίσου. y: Το x προτιµάται τουλάχιστο όσο και το y. x f Προτιµήσεις-Υπενθύµιση Προτιµήσεις-Υπενθύµιση

Διαβάστε περισσότερα

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων

Διάλεξη 3. Προτιµήσεις. Ορθολογισµός στην οικονοµική. Σχέσεις προτιµήσεων Ορθολογισµός στην οικονοµική Διάλεξη 3 Προτιµήσεις!1 Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ

ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Ένθετο Κεφάλαιο ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ ΚΑΤΑΝΑΛΩΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ Μικροοικονομική Ε. Σαρτζετάκης 1 Καταναλωτική συμπεριφορά Σκοπός αυτής της διάλεξης είναι να εξετάσουμε τον τρόπο με τον οποίο οι καταναλωτές

Διαβάστε περισσότερα

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A)

Προσφορά Εργασίας Προτιμήσεις και Συνάρτηση Χρησιμότητας ( Χ,Α συνάρτηση χρησιμότητας U(X,A) Προσφορά Εργασίας - Έστω ότι υπάρχουν δύο αγαθά Α και Χ στην οικονομία. Το αγαθό Α παριστάνει τα διάφορα καταναλωτικά αγαθά. Το αγαθό Χ παριστάνει τον ελεύθερο χρόνο. Προτιμήσεις και Συνάρτηση Χρησιμότητας

Διαβάστε περισσότερα

ιάλεξη 3 Προτιµήσεις ~ σηµαίνει ότι το x προτιµάται τουλάχιστο όσο και ~ f Ορθολογισµός στην οικονοµική Σχέσεις προτιµήσεων

ιάλεξη 3 Προτιµήσεις ~ σηµαίνει ότι το x προτιµάται τουλάχιστο όσο και ~ f Ορθολογισµός στην οικονοµική Σχέσεις προτιµήσεων Ορθολογισµός στην οικονοµική ιάλεξη 3 Προτιµήσεις Υπόθεση συµπεριφοράς: Ένας λήπτης αποφάσεων επιλέγει πάντοτε τον πλέον προτιµώµενο συνδυασµό από το σύνολο των εναλλακτικών συνδυασµών που έχει στη διάθεση

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ. Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ Θεωρία Χρησιµότητας και Συµπεριφοράς του Καταναλωτή Εισαγωγή: Όπως γνωρίζουµε, το οικονοµικό πρόβληµα εστιάζεται στην αποτελεσµατική κατανοµή των ανεπαρκών οικονοµικών πόρων στις εναλλακτικές

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΕΚΤΟ ΕΚΤΟ ΘΕΩΡΙΑ ΧΡΗΣΙΜΟΤΗΤΑΣ-ΙΣΟΡΡΟΠΙΑ ΙΣΟΡΡΟΠΙΑ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική

Διαβάστε περισσότερα

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών

Μικροοικονομική Ι. Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Μικροοικονομική Ι Ενότητα # 3: Θεωρία επιλογών καταναλωτή Διδάσκων: Πάνος Τσακλόγλου Τμήμα: Διεθνών και Ευρωπαϊκών Οικονομικών Σπουδών Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 28 Φεβρουαρίου

Διαβάστε περισσότερα

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II

E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II E5 ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ II 1.Εισροές-Συντελεστές παραγωγής.εκροές-παραγόμενα προιόντα 3.Εξωτερικότητες 4.Εισροές-Καταναλωτικά αγαθά 5.Καμπύλες αδιαφορίας 6.Βελτιστοποίηση Σε μια παραγωγική διαδικασία

Διαβάστε περισσότερα

Ιδιότητες καµπυλών ζήτησης

Ιδιότητες καµπυλών ζήτησης Ιδιότητες καµπυλών ζήτησης Διάλεξη 6 ΖΗΤΗΣΗ Συγκριτική στατική ανάλυση των συναρτήσεων της κανονικής ζήτησης είναι η µελέτη του πώς οι συναρτήσεις κανονικής ζήτησης (, 2,) και (, 2,) αλλάζουν όταν οι τιµές,

Διαβάστε περισσότερα

1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε

1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Πρώτου Πακέτου Ασκήσεων 1. Η ερώτηση ίσως δέχεται διαφορετικές ερμηνείες για το τί ακριβώς εννοούμε με το

Διαβάστε περισσότερα

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5

Άσκηση 3: Έστω η συνάρτηση χρησιμότητας για δύο αγαθά Χ και Υ έχει τη μορφή Cobb- Douglas U (X,Y) = X o,5 Y 0,5 ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 3 η και 4 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν προσωπική

Διαβάστε περισσότερα

4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες.

4. Σωστό ή Λάθος (εξηγείστε): Κάποια καταναλωτικά προϊόντα είναι αγαθά επιθυμητά για κάποιες ποσότητες και κακά ανεπιθύμητα για άλλες. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2014-2015 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Πρώτο πακέτο ασκήσεων και λύσεων 1. Σωστό ή Λάθος (εξηγείστε):

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση Ι

Μικροοικονομική Ανάλυση Ι Μικροοικονομική Ανάλυση Ι Θεωρία συμπεριφοράς καταναλωτή Ιδιότητες Καμπυλών Αδιαφορίας Συνάρτηση Ωφέλειας και Οριακός Λόγος υποκατάστασης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 4: Θεωρία Χρησιμότητας και Καταναλωτική Συμπεριφορά Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ

ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ ΜΕΡΟΣ ΙΙΙ: ΘΕΩΡΙΑ ΠΑΡΑΓΩΓΟΥ ΚΑΙ ΠΡΟΣΦΟΡΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής -H πλευρά της προσφοράς στην οικονομία μελετάει τη διαδικασία παραγωγής των αγαθών και υπηρεσιών που καταναλώνονται από τα

Διαβάστε περισσότερα

Μεγιστοποίηση της Χρησιμότητας

Μεγιστοποίηση της Χρησιμότητας Μεγιστοποίηση της Χρησιμότητας - Πρόβλημα Καταναλωτή: Επιλογή καταναλωτικού συνδυασμού x=(x, x ) υπό ένα σύνολο φυσικών, θεσμικών και οικονομικών περιορισμών κατά τρόπο ώστε να μεγιστοποιεί τη χρησιμότητά

Διαβάστε περισσότερα

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική

Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Εκδόσεις Κριτική 5 Επιλογές του Καταναλωτή και Αποφάσεις Ζήτησης Τέσσερα βασικά στοιχεία του υποδείγματος επιλογής του καταναλωτή Το εισόδημα του καταναλωτή. Οι τιμές των αγαθών. Οι προτιμήσεις του καταναλωτή. Η υπόθεση

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Λύσεις Πρώτου Πακέτου Ασκήσεων

Λύσεις Πρώτου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2016-17 Λύσεις Πρώτου Πακέτου Ασκήσεων Άσκηση 1 1. α) Αν βάλουµε την ποσότητα του αγαθού X στον οριζόντιο και την ποσότητα

Διαβάστε περισσότερα

Οικονοµικός ορθολογισµός

Οικονοµικός ορθολογισµός Οικονοµικός ορθολογισµός Διάλεξη 5 Επιλογή!1 Η βασική παραδοχή για τη συµπεριφορά του λήπτη αποφάσεων είναι ότι αυτός/αυτή επιλέγει την πλέον προτιµώµενη εναλλακτική επιλογή που του/της είναι διαθέσιµη.

Διαβάστε περισσότερα

Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις

Σύνολο ασκήσεων 5. Άσκηση 1. Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις Σύνολο ασκήσεων 5. Άσκηση 1 Υπολογίστε τις μερικές παραγώγους ως προς 1 ή κτλ (συμβολισμός ή κτλ) για τις παρακάτω συναρτήσεις = 1 3 Για τη συνάρτηση CES (σταθερής ελαστικότητας υποκατάστασης) = ( ) =

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

1 Μερική παραγώγιση και μερική παράγωγος

1 Μερική παραγώγιση και μερική παράγωγος Περίγραμμα διάλεξης 5 Βιβλίο Chiang και Wainwright (κεφ 74,75,76) 1 Μερική παραγώγιση και μερική παράγωγος Έστω η συνάρτηση (x) όπου x R ή εναλλακτικά γράφουμε ( 1 2 ) Το διάνυσμα x περιέχει τις ανεξάρτητες

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση Ι: Θεωρία Συμπεριφοράς Καταναλωτή

Μικροοικονομική Ανάλυση Ι: Θεωρία Συμπεριφοράς Καταναλωτή Μικροοικονομική Ανάλυση Ι: Θεωρία Συμπεριφοράς Καταναλωτή Ανδρέας Δριχούτης, hd Επίκουρος Καθηγητής Τμ. Αγροτικής Οικονομίας & Ανάπτυξης Γεωπονικό Πανεπιστήμιο Αθηνών Ποιες οικονομικές αρχές βρίσκονται

Διαβάστε περισσότερα

) = 2lnx lnx 2

) = 2lnx lnx 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Σεπτέµβριος 8 Τµήµα Οικονοµικών Επιστηµών Μάθηµα: Μικροοικονοµική Ι ιδάσκοντες: Β. Ράπανος-Ι Χειάς Εξέταση στη Μικροοικονοµική Ι Στην εξέταση αυτή δίνονται δύο σύνοα το Α και το Β.

Διαβάστε περισσότερα

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή

Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Οικονομικά για Μη Οικονομολόγους Ενότητα 2: Θεωρία Καταναλωτή Καθηγητής: Κώστας Τσεκούρας Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Οικονομικών Επιστημών Σκοποί ενότητας Στην ενότητα αυτή παρουσιάζονται

Διαβάστε περισσότερα

Η θεωρία των επιλογών του καταναλωτή

Η θεωρία των επιλογών του καταναλωτή Η θεωρία των επιλογών του καταναλωτή Ο εισοδηµατικός περιορισµός του καταναλωτή Λίτρα Αριθµός από πίτσες απάνες για (σε ευρώ) απάνες για πίτσα (σε ευρώ) Συνολικές δαπάνες (σε ευρώ) 1 1. 1. 5 9 1 9 1. 1

Διαβάστε περισσότερα

Ποιες οικονομικές αρχές βρίσκονται πίσω από την ζήτηση Θεωρία Συμπεριφοράς του. Καταναλωτή. Θεωρία της Απόλυτης. Θεωρία της Τακτικής Ωφέλειας

Ποιες οικονομικές αρχές βρίσκονται πίσω από την ζήτηση Θεωρία Συμπεριφοράς του. Καταναλωτή. Θεωρία της Απόλυτης. Θεωρία της Τακτικής Ωφέλειας Ποιες οικονομικές αρχές βρίσκονται ; πίσω από την ζήτηση Θεωρία Συμπεριφοράς του Καταναλωτή Θεωρία της Τακτικής Ωφέλειας Θεωρία της Απόλυτης Ωφέλειας Θεωρία των Επιλογών Θεωρία των επιλογών Οικουμενικό

Διαβάστε περισσότερα

Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία

Τεχνολογίες. Διάλεξη 10. Τεχνολογίες. Συνδυασµοί εισροών. Τεχνολογία Τεχνολογίες Διάλεξη 0 Τεχνολογία Τεχνολογία είναι µια διαδικασία µε την οποία εισροές µετατρέπονται σε εκροές. π.χ. εργασία, ένας υπολογιστής, ένας προβολέας, ηλεκτρισµός, κ.α. Συνδυάζονται για την παραγωγή

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes

Notes. Notes. Notes. Notes Θεωρία Καταναλωτή-Προτιμήσεις Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Οκτωβρίου 2012 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιμήσεις 3 Οκτωβρίου 2012 1 / 19 Προτιμήσεις καταναλωτών Θέλουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ ΚΕΦΑΛΑΙΟ 2 ΘΕΩΡΙΑ ΖΗΤΗΣΗΣ Οι τιµές Στην οικονοµία οι τιµές παίζουν βασικό ρόλο. Κατανέµουν τους παραγωγικούς πόρους στις τοµείς όπου υπάρχει µεγαλύτερη ζήτηση µε το πιο αποτελεσµατικό τρόπο. Αυτό το οποίο

Διαβάστε περισσότερα

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία

Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η. Αποτελεσματικότητα και Ευημερία Κοινωνικοοικονομική Αξιολόγηση Επενδύσεων Διάλεξη 3 η Αποτελεσματικότητα και Ευημερία Ζητήματα που θα εξεταστούν: Πότε και πως επιτυγχάνεται η οικονομική αποτελεσματικότητα Θεωρήματα των οικονομικών της

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ

Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ Άσκηση 1 Στον πίνακα που ακολουθεί δίνονται πέντε δέσμες (Α, Β, Γ, Δ και Ε) των αγαθών Χ και Υ. Α Β Γ Δ Ε Χ 90 30 5 55 50 Υ 10 80 40 0 55 Ποιες από τις παρακάτω προτάσεις θεωρείτε ότι αντιστοιχούν σε ορθολογική

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 10: Τεχνολογία Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Τεχνολογίες Τεχνολογία είναι μια

Διαβάστε περισσότερα

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι

E1. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι E. ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΑ ΟΙΚΟΝΟΜΙΚΑ Ι.Κόστος.Παραγωγή 3.Χρησιµότητα 4.Ζήτηση-Προσφορά 5.Φόρος. Κόστος Θεωρούµε ότι το κόστος παραγωγής (cost) ενός προιόντος είναι συνάρτηση της ποσότητας παραγωγής (production)

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης

3.1 Ανεξάρτητες αποφάσεις - Κατανομή χρόνου μεταξύ εργασίας και σχόλης 3. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΑΓΟΡΑΣ ΕΡΓΑΣΙΑΣ (ΝΕΟΚΛΑΣΙΚΟ ΥΠΟΔΕΙΓΜΑ). ΠΡΟΣΦΟΡΑ ΕΡΓΑΣΙΑΣ Ως προσφορά εργασίας ορίζεται το σύνολο των ωρών εργασίας που προσφέρονται προς εκμίσθωση μία δεδομένη χρονική στιγμή.

Διαβάστε περισσότερα

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Οικονοµικών Επιστηµών Ακαδηµαϊκό έτος 2016-17 ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ (διαβάζουμε κεφ. 4 από Μ. Χλέτσο και σημειώσεις στο eclass) 1 ιάλεξη2 Ανταγωνισμός, οικονομική

Διαβάστε περισσότερα

Οµάδες ψηφοφόρων Αρ. Μελών Οµάδων Προτιµήσεις Α 1 x > y > z Β 1 y > z >x Γ 1 z > x > y

Οµάδες ψηφοφόρων Αρ. Μελών Οµάδων Προτιµήσεις Α 1 x > y > z Β 1 y > z >x Γ 1 z > x > y 0. Mη Μεταβατικές Συλλογικές Προτιµήσεις Το αξίωµα της µεταβατικότητας στην περίπτωση των προτιµήσεων ενός µεµονωµένου φορέα αποφάσεων, επιτρέπει την επέκταση της ικανότητας σύγκρισης ζευγών επιλογών στο

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 3: Εργαλεία Κανονιστικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση Ι

Μικροοικονομική Ανάλυση Ι Μικροοικονομική Ανάλυση Ι Θεωρία συμπεριφοράς καταναλωτή Ιδιότητες Συνάρτησης ωφέλειας Εισοδηματικός περιορισμός Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι

Διαβάστε περισσότερα

Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της

Διάλεξη 7. Εξίσωση Slutsky. Οι επιδράσεις µιας µεταβολής της Οι επιδράσεις µιας µεταβολής της τιµής Διάλεξη 7 Εξίσωση Slutsk Τι θα συµβεί όταν µειωθεί η τιµή ενός αγαθού; Αποτέλεσµα υποκατάστασης : το αγαθό γίνεται σχετικά πιο φτηνό και γι αυτό ο καταναλωτής υποκαθιστά

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ

ΑΠΑΝΤΗΤΙΚΟ ΔΕΛΤΙΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΕΜ ΕΞΑΜΗΝΟ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ: ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΑΙ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑ: Μικροοικονομική Ι ΔΙΔΑΣΚΩΝ: Νίκος

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)

Διαβάστε περισσότερα

α β. M x f x. f x x x = = =.

α β. M x f x. f x x x = = =. Κυρτές συναρτήσεις σηµεία καµπής, Έστω συνάρτηση f συνεχής στο [ α β ] και παραγωγίσιµη στο ( α, β ) (α) Αν η f είναι γνησίως αύξουσα στο ( α, β ), τότε η fείναι κυρτή ή στρέφει τα κοίλα πάνω στο [ α,

Διαβάστε περισσότερα

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση

Διάλεξη 11. Μεγιστοποίηση κέρδους. Οικονοµικό κέρδος. Η ανταγωνιστική επιχείρηση Οικονοµικό κέρδος Διάλεξη Μεγιστοποίηση Μια επιχείρηση χρησιµοποιεί εισροές j,m για να παραγάγει n προϊόντα i, n. Τα επίπεδα του προϊόντος είναι,, n. Τα επίπεδα των εισροών είναι,, m. Οι τιµές των προϊόντων

Διαβάστε περισσότερα

Διάλεξη 5- Σημειώσεις

Διάλεξη 5- Σημειώσεις Διάλεξη 5- Σημειώσεις 1 Κοίλες (concave) και κυρτές (convex) συναρτήσεις Σημείωση: Μόνο για συναρτήσεις που είναι συνεχείς σε ένα (κυρτό) διάστημα R και παραγωγίσιμες τουλάχιστον δύο φορές στο εσωτερικό

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 3: Ο καταναλωτής επιλέγει να μεγιστοποιήσει τη χρησιμότητά του Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I Τέσσερα σηµαντικά στοιχεία: Το εισόδηµα του καταναλωτή Οι τιµές των αγαθών Οι ροτιµήσεις των καταναλωτών Η υ όθεση ότι ο καταναλωτής λαµβάνει α οφάσεις ου µεγιστο οιούν

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Πολιτική Οικονομία Ενότητα

Πολιτική Οικονομία Ενότητα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 03: Ζήτηση και προσφορά αγαθών Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΝΤΑΛΛΑΓΗ. Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα. και. και το αρχικό απόθεμα και.

ΑΝΤΑΛΛΑΓΗ. Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα. και. και το αρχικό απόθεμα και. ΑΝΤΑΛΛΑΓΗ Άσκηση 5 Οι συναρτήσεις χρησιμότητας των ατόμων Α και Β είναι αντίστοιχα u ( x, x ) = x + x 1 2 1 2 και u ( x, x ) = x + x 1 2 1 2 Ω = (2,0) Ω = (0,1) και το αρχικό απόθεμα και. Να προσδιοριστεί

Διαβάστε περισσότερα

Notes. Notes. Notes. Notes. A B C x y z y z x z x y

Notes. Notes. Notes. Notes. A B C x y z y z x z x y Κοινωνική επιλογή και Ευημερία Κώστας Ρουμανιάς Ο.Π.Α. Τμήμα Δ. Ε. Ο. Σ. 3 Δεκεμβρίου 01 Κώστας Ρουμανιάς (Δ.Ε.Ο.Σ.) Κοινωνική επιλογή και Ευημερία 3 Δεκεμβρίου 01 1 / 50 Κοινωνική επιλογή. Κοινωνική επιλογή.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

Ελαστικότητες Ζήτησης

Ελαστικότητες Ζήτησης Ελαστικότητες Ζήτησης - Η ευαισθησία της ζητούμενης ποσότητας x σε μεταβολές της τιμής μπορεί να μετρηθεί άμεσα από το λόγο Δx / Δ (ήαπότην παράγωγο x / ). - Αυτό το μέτρο ευαισθησίας έχει το μειονέκτημα

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία

Μικροοικονοµική Θεωρία Μικροοικονοµική Θεωρία Ειδικά Θέµατα της Θεωρίας της Συµπεριφοράς του Καταναλωτή Το Συνολικό Αποτέλεσµα. Το Αποτέλεσµα Υποκατάστασης. Το Εισοδηµατικό Αποτέλεσµα. Κανονικά Αγαθά. Κατώτερα Αγαθά. Παράδοξο

Διαβάστε περισσότερα

4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη.

4.1 Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. 4. Ζήτηση για Ασφάλιση. Πλήρη κάλυψη. Η αγορά ασφαλιστικών συµφωνιών είναι µία ιδιαίτερη περίπτωση αγοράς δικαιωµάτων. Αντικείµενο της αγοράς αυτής είναι να δώσει την ευκαιρία µεταβίβασης εισοδήµατος από

Διαβάστε περισσότερα

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ 2 ο SET ΑΣΚΗΣΕΩΝ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Σημείωση: Κάποιες από τις παρακάτω ασκήσεις θα λυθούν στην 6 η και 7 η διάλεξη του μαθήματος (στις ημερομηνίες που αναγράφονται στο πρόγραμμα) και οι υπόλοιπες θα αποτελέσουν

Διαβάστε περισσότερα

Καλάθι αγαθών. Σχέσεις προτίµησης. Ιδιότητες σχέσεων προτίµησης. Notes. Notes. Notes. Notes

Καλάθι αγαθών. Σχέσεις προτίµησης. Ιδιότητες σχέσεων προτίµησης. Notes. Notes. Notes. Notes Θεωρία Καταναλωτή-Προτιµήσεις Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Θεωρία Καταναλωτή-Προτιµήσεις 22 Σεπτεµβρίου 2014 1 / 17 Προτιµήσεις καταναλωτών Θέλουµε

Διαβάστε περισσότερα

Παραγωγική διαδικασία. Τεχνολογία

Παραγωγική διαδικασία. Τεχνολογία Σκοπός: Η μελέτη της σχέσης εισροών και εκροών Συντελεστές παραγωγής (Εισροές) Παραγωγική διαδικασία Παραγόμενο Προϊόν (Εκροές) Κεφαλαιουχικά αγαθά Εργασία Γή Επιχειρηματικές ή διοικητικές ικανότητες κλπ

Διαβάστε περισσότερα

9 Η θεωρία του καταναλωτή

9 Η θεωρία του καταναλωτή 9 Η θεωρία του καταναλωτή Σκοπός Στο κεφάλαιο αυτό ο αναγνώστης εξοικειώνεται με την ανάλυση καμπυλών αδιαφορίας με την οποία μπορεί να αναλυθεί πιο τυπικά η επιλογή του καταναλωτή. Προσδοκώμενα αποτελέσματα

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 13: Κυρτότητα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ

B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ B1. ΜΕΡΙΚΗ ΠΑΡΑΓΩΓΟΣ-ΑΛΥΣΩΤΗ ΠΑΡΑΓΩΓΙΣΗ 1.Συναρτήσεις δύο µεταβλητών.μερικές παράγωγοι 3.Γραφήµατα-Επιφάνειες 4.Ειδικές συναρτήσεις 5.Μερικές ελαστικότητες 6.Γραµµική προσέγγιση-εφαπτόµενο επίπεδο 7.Μονοτονία

Διαβάστε περισσότερα

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f

ΤΕΣΤ Α2 ΟΜΑΔΑ Ι. παράγωγος είναι αρνητική: f (x) = 1 2x, f ΤΕΣΤ Α ΟΜΑΔΑ Ι Θεωρούμε την συνάρτηση: f() = pln(+ ) για, με p>. Να διερευνηθεί αν είναι κυρτή η κοίλη. Να βρεθούν οι τιμές της παραμέτρου p για τις οποίες η μέγιστη τιμή της βρίσκεται στο =.. Η συνάρτηση

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου

Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου Τα μικροοικονομικά εργαλεία της νεοκλασσικής ανάλυσης του διεθνούς εμπορίου 1 Θεωρία της συμπεριφοράς του καταναλωτή Καμπύλη αδιαφορίας του καταναλωτή Όλοι οι συνδυασμοί κατανάλωσης δύο προϊόντων που προσφέρουν

Διαβάστε περισσότερα

0 χ1 χ2 Ι2 χ3 Ι5 Ι3 χ

0 χ1 χ2 Ι2 χ3 Ι5 Ι3 χ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ - ΤΜΗΜ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΘΗΓΗΤΗΣ ΚΩΣΤΣ ΕΛΕΝΤΖΣ ΠΟΤΕΛΕΣΜΤ ΥΠΟΚΤΣΤΣΗΣ ΚΙ ΕΙΣΟ ΗΜΤΟΣ Ι1 χ/ Ρ=0 χ/ Ρ>0 χ/ Ρ

Διαβάστε περισσότερα

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές

ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής παραγωγή εισροές εκροές επιχείρηση παραγωγικοί συντελεστές ΖΗΤΗΣΗ ΕΡΓΑΣΙΑΣ Τεχνολογία και Συναρτήσεις Παραγωγής - Η παραγωγή είναι η δραστηριότητα μέσω της οποίας κάποια αγαθά και υπηρεσίες (εισροές) μετατρέπονται σε άλλα αγαθά και υπηρεσίες (εκροές ή προϊόντα).

Διαβάστε περισσότερα

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 3 Ιανουάριος 2014

Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 3 Ιανουάριος 2014 Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 3 Ιανουάριος 2014 Καμπύλη παραγωγικών δυνατοτήτων ΚΠΔ Production possibility frontier PPF Ορισμός Η

Διαβάστε περισσότερα

Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς.

Γενική Ισορροπία-Ευηµερία. 2ο Θεµελιώδες Θεώρηµα των Οικονοµικών της ευηµερίας. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. Γενική Ισορροπία-Ευηµερία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 19 Απριλίου 2013 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Γενική Ισορροπία-Ευηµερία 19 Απριλίου 2013 1 / 20 Το πρώτο Θ.Θ.Ο.Ε. µας λέει ότι κάθε Βαλρασιανή

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΘΗΓΗΤΗΣ ΚΩΣΤΑΣ ΒΕΛΕΝΤΖΑΣ Η ΘΕΩΡΙΑ ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ. Μερικές έννοιες Η συνάρτηση παραγωγής (, ), όπου είναι το συνολικό προϊόν και και οι συντελεστές

Διαβάστε περισσότερα

Μικροοικονοµική Θεωρία. Τιµές και εισόδηµα. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014

Μικροοικονοµική Θεωρία. Τιµές και εισόδηµα. Notes. Notes. Notes. Notes. Κώστας Ρουµανιάς. 22 Σεπτεµβρίου 2014 Μικροοικονοµική Θεωρία Κώστας Ρουµανιάς Ο.Π.Α. Τµήµα. Ε. Ο. Σ. 22 Σεπτεµβρίου 2014 Κώστας Ρουµανιάς (.Ε.Ο.Σ.) Μικροοικονοµική Θεωρία 22 Σεπτεµβρίου 2014 1 / 30 Τιµές και εισόδηµα Η συνάρτηση χρησιµότητας

Διαβάστε περισσότερα

Κεφάλαιο 11. Συναρτήσεις με δύο συντελεστές. Συναρτήσεις παραγωγής. τεχνολογικά σύνολα

Κεφάλαιο 11. Συναρτήσεις με δύο συντελεστές. Συναρτήσεις παραγωγής. τεχνολογικά σύνολα Κεφάλαιο Συναρτήσεις παραγωγής Συναρτήσεις παραγωγής Η συνάρτηση παραγωγής μιας επιχείρησης για ένα προϊόν (q) δείχνει τη μέγιστη ποσότητα του αγαθού που μπορεί να παραχθεί με εναλλακτικούς συνδυασμούς

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια

Διαβάστε περισσότερα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα

1. Ολικά και τοπικά ακρότατα. 2. Εσωτερικά και συνοριακά ακρότατα Β3. ΠΟΛΛΑΠΛΑΣΙΑΣΤΕΣ LAGRANGE.Ολικά και τοπικά ακρότατα.εσωτερικά και συνοριακά ακρότατα 3. Χωριζόμενες μεταβλητές 4.Ισοτικός περιορισμός 5.Περιορισμένη στασιμότητα 6.Πολλαπλασιαστής Lagrange 7.Συνάρτηση

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης

Διάλεξη 3. Οικονομικά της ευημερίας. Οικονομικά της ευημερίας 3/9/2017. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης Συνθήκες για αποτελεσματικότητα κατά areto Συνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση της ζήτησης και της προσφοράς.

Διαβάστε περισσότερα

2.10. Τιμή και ποσότητα ισορροπίας

2.10. Τιμή και ποσότητα ισορροπίας .. Τιμή και ποσότητα ισορροπίας ίδαμε ότι η βασική επιδίωξη των επιχειρήσεων είναι η επίτευξη του μέγιστου κέρδους με την πώληση όσο το δυνατόν μεγαλύτερων ποσοτήτων ενός αγαθού στη μεγαλύτερη δυνατή τιμή

Διαβάστε περισσότερα

Διεθνές εµπόριο-1 P 1 P 2

Διεθνές εµπόριο-1 P 1 P 2 Διεθνές εµπόριο-1 Το διεθνές εµπόριο συµβάλλει στην καλύτερη αξιοποίηση των παραγωγικών πόρων της ανθρωπότητας γιατί ελαχιστοποιεί το κόστος παραγωγής της συνολικής προσφοράς αγαθών και υπηρεσιών που διακινείται

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς.

Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ. οι τιμές των αγαθών προσδιορίζονται στην αγορά από την αλληλεπίδραση των δυνάμεων της ζήτησης και της προσφοράς. ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Η ΖΗΤΗΣΗ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Στο προηγούμενο κεφάλαιο εξετάσαμε τα βασικά οικονομικά προβλήματα που αντιμετωπίζει κάθε κοινωνία και στα οποία πρέπει να δίνει λύση. Παρουσιάσαμε επίσης

Διαβάστε περισσότερα

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός.

Διάλεξη 3. Οικονομικά της ευημερίας 2/26/2016. Περίγραμμα. Εργαλεία δεοντολογικής ανάλυσης. Αποτελεσματικότητα κατά Pareto: ορισμός. ορισμός. Περίγραμμα Διάλεξη Εργαλεία δεοντολογικής ανάλυσης υνθήκες για αποτελεσματικότητα κατά areto υνθήκες για ισορροπία σε ανταγωνιστικές αγορές Το πρώτο θεώρημα των οικονομικών της ευημερίας Το δεύτερο θεώρημα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ιοίκηση Επιχειρήσεων & Οργανισµών Θεµατική Ενότητα: ΕΟ 34 - Οικονοµική Ανάλυση & Πολιτική Ακαδ. Έτος: 2009-10 ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΟΝΟΜΑ - ΕΠΩΝΥΜΟ:.

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 7: Εξίσωση Slutsky Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οι επιδράσεις μιας μεταβολής

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Λύσεις Δεύτερου Πακέτου Ασκήσεων

Λύσεις Δεύτερου Πακέτου Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι 2015-16 Λύσεις Δεύτερου Πακέτου Ασκήσεων 1. Αν οι προτιμήσεις της Κατερίνας είναι μονοτονικές (προτιμά δηλαδή μεγαλύτερες

Διαβάστε περισσότερα

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά

Οικονοµία. Βασικές έννοιες και ορισµοί. Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά Οικονοµία Βασικές έννοιες και ορισµοί Οικονοµική Η οικονοµική επιστήµη εξετάζει τη συµπεριφορά των ανθρώπινων όντων αναφορικά µε την παραγωγή, κατανοµή και κατανάλωση υλικών αγαθών και υπηρεσιών σε έναν

Διαβάστε περισσότερα

Η Καμπύλη Παραγωγικών Δυνατοτήτων

Η Καμπύλη Παραγωγικών Δυνατοτήτων Η Καμπύλη Παραγωγικών Δυνατοτήτων - Έστω ότι μια οικονομία παράγει δύο αγαθά : Χ και Υ - Η οικονομία διαθέτει 4 μονάδες εργασίας και δεδομένη ποσότητα των υπόλοιπων παραγωγικών συντελεστών (κεφάλαιο, έδαφος,

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα