Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000"

Transcript

1 Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 0, 00,.000 α. Τα παιδιά ενός σχολείου πλήρωσαν για την εκδρομή τους 0. Πόσο κόστισε το εισιτήριο για κάθε παιδί αν πάρουν μέρος στην εκδρομή συνολικά 00 παιδιά; Εκτιμώ: Υπολογίζω με ακρίβεια: β. Ποιοι αριθμοί είναι; Eξηγώ πώς σκέφτηκα κάθε φορά. αν πολλαπλασιάσουμε τον αν διαιρέσουμε τον με 0, παίρνουμε 00 εκατ. με το 00, παίρνουμε εκατ. το του 0 είναι 0 εκατ. το του.000 είναι γ. Βρίσκω το λάθος. Εξηγώ κάνοντας δίπλα τους σωστούς υπολογισμούς., εκ. x 00 = εκ. 0, εκ. : 0 = 0,0 εκ. 0, εκ. x 0 =, εκ. 0,00 εκ. x.000 = 00,000 εκ. Σύντομος πολλαπλασιασμός και διαίρεση δεκαδικών με 0, 00,.000. Στρογγυλοποίηση/βαθμός σφάλματος. 6

2 Eνότητα δ. Αν κιλό αυγά οξύρρυγχου (χαβιάρι) κοστίζει.000, πόσο κοστίζουν: τα 0 γραμμ.; τα 00 γραμμ.; τα 0 κιλά; ο τόνος; Αν τόνος πατάτες κοστίζει 00, πόσο κοστίζουν: πατάτα βάρους 00 γραμμ.; κιλό πατάτες; 0 κιλά πατάτες; ε. Ποιος αριθμός είναι; : 00 =, μ. : 00 =,0 ευρώ. : 00 = γραμμ. : 00 =, εκ. : 00 =,0 τόνοι. στ. Αντιστοιχίζω όσα είναι ίσα:, : 00 0,00 x.000, : 0 0,0 x 00 0,0 x 0 0,00 x 0 Eξηγώ πώς σκέφτηκα. Συζητάμε στην τάξη: Ποιοι υπολογισμοί ήταν οι πιο δύσκολοι;

3 Aναγωγή στη δεκαδική κλασματική μονάδα ( 0,, ) α. Ποιο ζώο είναι βαρύτερο; Eκτιμώ: Τα 0, του βάρους μου είναι.0 γραμμ. Τα του βάρους μου 0 είναι κιλά. β. Αγοράσαμε κ. πορτοκάλια για να φτιάξουμε χυμό. O χυμός που φτιάξαμε ήταν τα του 0 βάρους των πορτοκαλιών που στύψαμε. Πόσα γραμμάρια χυμό φτιάξαμε; γ. Πόση είναι όλη η επιφάνεια του παραλληλόγραμμου; Τα που φαίνονται είναι τα της συνολικής επιφάνειας. 0 Η συνολική επιφάνεια έχει.. Εξηγώ: δ. Φτιάχνουμε ένα πρόβλημα με αναγωγή στη μονάδα χρησιμοποιώντας τα παρακάτω δεδομένα. 0,0 κιλό 0 Στρατηγικές επίλυσης προβλήματος: Αναγωγή στη δεκαδική κλασματική μονάδα (έννοια και υπολογισμός).

4 Eνότητα ε. Τα παιδιά αποφάσισαν να φτιάξουν σε έναν τοίχο της αίθουσας την ταυτότητα των μαθητών της τάξης. Το καθένα ετοίμασε το γενεαλογικό του δέντρο. Oι γονείς της Θεοδώ ρας της έδωσαν τα παρακάτω στοιχεία. Τη βοηθώ να συμπληρώσει ό,τι λείπει: Μαρία-γιαγιά Κωνσταντίνος-παππούς Αναστασία-γιαγιά Μιχάλης-παππούς ετών-δασκάλα ετών-βιβλιοπώλης ετών-οικιακά ετών-συνταξιούχος Eιρήνη-μητέρα ετών-δασκάλα Στέφανος-πατέρας ετών-μηχανικός Δίδυμα Πέτρος ετών-μαθητής Η Θεοδώρα είναι έναν χρόνο μικρότερη από το άθροισμα των ηλικιών των δίδυμων αδερφών της. O πατέρας της έχει τη διπλάσια ηλικία από το άθροισμα των ηλικιών των παιδιών του. Η ηλικία του Πέτρου είναι το της ηλικίας της γιαγιάς Μαρίας. 0 Η μητέρα της Θεοδώρας έχει τη μισή ηλικία του δικού της πατέρα. Το άθροισμα των ηλικιών τους είναι 6 έτη. Η ηλικία της Θεοδώρας είναι το Η γιαγιά Αναστασία έχει ηλικία τα Νικόλας ετών-μαθητής της ηλικίας του παππού Μιχάλη. 0 του αιώνα. Θεοδώρα ετών-μαθήτρια Με τη βοήθεια των δικών μου γονέων ετοιμάζω το γενεαλογικό μου δέντρο.

5 6 Kλασματικές μονάδες α. Αν τσίχλες κοστίζουν 0 λ., πόσο κοστίζει η τσίχλα; β. Αν η μονάδα είναι: Χρωματίζω κόκκινο το. 0 Χρωματίζω μπλε το. 0 Τι σχέση έχει το της μονάδας με το της μονάδας; γ. Στο πορτοφόλι του κυρ Hλία υπάρχει το της αξίας των χρημάτων που βλέπουμε: Τα χρήματα που έχει στο πορτοφόλι είναι Αν ξόδεψε το των χρημάτων, πόσα χρήματα θα έχει τότε; δ. Παρατηρώ και μετά χρωματίζω: Mε κόκκινο το της μονάδας κάθε φορά. Τι μέρος της μονάδας έμεινε αχρωμάτιστο κάθε φορά;. Μπορώ να χρωματίσω το Mε πράσινο το της μονάδας κάθε φορά. με διαφορετικό τρόπο; Τι μέρος της μονάδας έμεινε αχρωμάτιστο κάθε φορά;. Μπορώ να χρωματίσω το με διαφορετικό τρόπο; Τοποθετώ στην αριθμογραμμή τα κλάσματα και. Ποιο είναι το μεγαλύτερο;. 0 0, Με το εκφράζω κάθε κλάσμα σε δεκαδικό αριθμό όπως το παράδειγμα: =: =... Σύγκριση-διάταξη κλασματικών μονάδων. Σύνθεση μονάδας αναφοράς. Χρήση ομώνυμων και ετερώνυμων. 0

6 Eνότητα ε. Φτιάχνω διαφορετικά κλάσματα, μικρότερα του, παίρνοντας κάθε φορά δύο από τις παρακάτω κάρτες με τους αριθμούς: 0 Βάζω στην αριθμογραμμή τα παραπάνω κλάσματα: 0 Διατάσσω τα κλάσματα από το μικρότερο στο μεγαλύτερο: στ. Συμπληρώνω: = = = = 0 Ποιο από τα παραπάνω κλάσματα που πρότεινα είναι πιο μεγάλο;. Eξηγώ πώς σκέφτηκα: ζ. Εκτιμώ ποιο άθροισμα είναι μεγαλύτερο. Σημειώνω τα σύμβολα της ανισότητας: Eξηγώ στην τάξη πώς σκέφτηκα:

7 Iσοδύναμα κλάσματα α. Βάζω στο σωστό: = το του πενταγώνου = τα του πενταγώνου 0 Εξηγώ: Αν η περίμετρος του πενταγώνου είναι 0 εκ., πόσα εκατοστόμετρα είναι κάθε πλευρά; β. Παρατηρώ και συμπληρώνω τον πίνακα:. = ή. ή. ή ή = ή. ή. ή ή γ. Φτιάχνω ισοδύναμα κλάσματα με τα αρχικά. Δείχνω πώς τα δημιούργησα: x x 0 6 = = 6 0 x x 0 = = = = Ισοδύναμα κλάσματα: Αναγνώριση και δημιουργία. Η έννοια της απλοποίησης.

8 Eνότητα δ. Ποια κλάσματα είναι ισοδύναμα; Τα κυκλώνω είναι ισοδύναμο με:,,, είναι ισοδύναμο με:,,, ε. Ποια κλάσματα εκφράζουν την ίδια ποσότητα (είναι ισοδύναμα); Τα κυκλώνω. Η διαδρομή σπίτι - σχολείο είναι: Tο ψωμί ζυγίζει: Eλέγχω με μ. μ..00 μ ή, μ. ή, μ. ή, μ. κ. 0 κ., κ ή, κ. ή, κ. ή, κ. τις μετατροπές των κλασμάτων σε δεκαδικούς αριθμούς. στ. Βρίσκω δύο διαφορετικά κλάσματα για τους αριθμούς:,6 0,0, = Eλέγχω με = τις μετατροπές των δεκαδικών σε κλάσματα. = ζ. Σπαζοκεφαλιά! Βρίσκω ψηφία ώστε να ισχύει η ισότητα (χρησιμοποιώ κάθε ψηφίο όσες φορές θέλω): 0, 6 = ή Εξηγώ πώς σκέφτηκα. Επαληθεύω με το κομπιουτεράκι.

9 Mετατροπή κλάσματος σε δεκαδικό α. Ποιο παιδί έφαγε περισσότερη πίτσα; O Μίλτος έφαγε τα της πίτσας. Έχει μείνει: Εκτιμώ: Εξηγώ παίρνοντας υπόψη μου πόση πίτσα έμεινε. O Tάσος έφαγε τα της πίτσας. Έχει μείνει: Εξηγώ μετατρέποντας τα κλάσματα σε δεκαδικούς αριθμούς ή σε ισοδύναμα κλάσματα. β. Βρίσκω με διαίρεση τα δεκαδικά κλάσματα που είναι ισοδύναμα με τα παρακάτω κλάσματα:..000 = : = 0,... ή Επαληθεύω με το κομπιουτεράκι. =... =... =... Tοποθετώ τα κλάσματα στην αριθμογραμμή: 0,00 γ. Ποιο κλάσμα είναι μεγαλύτερο και ποιο μικρότερο; Εκτιμώ: 6 0 μεγαλύτερο είναι το..., γιατί.. μικρότερο είναι το..., γιατί... ή ή Μετατροπή κλάσματος σε δεκαδικό αριθμό, σύγκριση, διάταξη. Tο κλάσμα ως διαίρεση.

10 Eνότητα Διατάσσω τα κλάσματα με εκτίμηση. < < < Επαληθεύω την εκτίμησή μου μετατρέποντας τα κλάσματα σε δεκαδικούς κάνοντας κάθετη διαίρεση. 6 Βάζω σε σειρά από το μικρότερο στο μεγαλύτερο τις ποσότητες που είναι εκφρασμένες: με δεκαδικούς < < < ή με κλάσματα < < <.. δ. Στους παρακάτω υπολογισμούς υπάρχει λάθος: : = 0,6 Εξηγώ με δύο διαφορετικούς τρόπους γιατί είναι λάθος. Χρησιμοποιώντας ισοδύναμα με γινόμενο δεκαδικά κλάσματα : 0 = 0, Μπορούμε να προτείνουμε άλλη στρατηγική για να εξηγήσουμε ότι υπάρχει λάθος; Βρίσκω το σωστό αποτέλεσμα με κάθετη διαίρεση. Επαληθεύω το αποτέλεσμα με γινόμενο. Μπορούμε να προτείνουμε άλλη στρατηγική για να επαληθεύσουμε το αποτέλεσμα;

11 Στρατηγικές διαχείρισης αριθμών α. Η Άννα έφτιαξε ένα βραχιόλι με χρωματιστές χάντρες. Τα από το βραχιόλι της ήταν κόκκινες χάντρες. Oι πράσινες ήταν περισσότερες από τις κόκκινες και οι μπλε περισσότερες από τις πράσινες. Πόσες κόκκινες, μπλε και πράσινες χάντρες χρησιμοποίησε; Παρατηρώ τον πίνακα και βρίσκω: Όλες οι χάντρες Κόκκινες χάντρες Πράσινες χάντρες Μπλε χάντρες =, =... =... = Ζωγραφίζω το βραχιόλι με τις χάντρες: β. Στη γιορτή του Νίκου, τα παιδιά πήγαν στο λούνα παρκ. Παρατηρώ τις εικόνες και απαντώ: Aν έμειναν μετά τη βολή όρθια τα Aν έμειναν όρθια τα των κουτιών, έπεσαν. κουτιά. Συνολικά δηλαδή είχαν στηθεί κουτιά. Στη συνέχεια τα παιδιά έστησαν τα διπλάσια κουτιά. Μετά την πρώτη βολή έμειναν: Όρθια πάλι τα των κουτιών. H Zωή πόσα κουτιά έριξε; Πόσα έμειναν όρθια; Διαφορετικοί αλγεβρικοί τρόποι έκφρασης μιας ποσότητας. Μεικτοί αριθμοί. Απλοποίηση. 6 των κουτιών, τα κουτιά που έπεσαν είναι. Συνολικά δηλαδή είχαν στηθεί κουτιά. Όρθια πάλι τα των κουτιών. O Mίλτος πόσα κουτιά έριξε; Πόσα έμειναν όρθια;

12 Eνότητα γ. Παρατηρώ και συμπληρώνω τον πίνακα: Tα είναι: Σχεδιάζω για να σχηματίσω το ολόκληρο: Πόσο είναι το μισό των ; Tο σχεδιάζω: Yπάρχουν άλλες λύσεις; Yπάρχουν άλλες λύσεις; το μισό Σχεδιάζω για να σχηματίσω το ολόκληρο: Πόσο είναι το Tο σχεδιάζω: του μισού; δ. Στο νερό χάνουμε τα του βάρους μας λόγω της άνωσης. Στη Σελήνη χάνουμε τα του βάρους μας λόγω της μικρότερης βαρύτητας. 6 Αν ο Νικόλας ζυγίζει στο νερό κιλά, βρίσκω το βάρος του στην ξηρά πάνω στη Γη και πάνω στη Σελήνη. Óˆ Πάνω ÛÙË στη Ë: Γη: Óˆ ÛÙË ÂÏ ÓË: Πάνω στη Σελήνη: ε. Αν με της κανάτας γεμίζουμε ίδια ποτήρια, με, κανάτα πόσα λίτρο τέτοια ποτήρια γεμίζουμε;

13 0 Διαχείριση αριθμών α. Βρίσκω το μισό και το διπλάσιο της ποσότητας. Η ποσότητα είναι: Το μισό της ποσότητας είναι: μονάδα μονάδα μονάδα μονάδα της μονάδας 6 της μονάδας 6 η ποσότητα είναι: = της μονάδας 6 6 ή = ή ή, της μονάδας της μονάδας = της μονάδας ή της μονάδας ή = της μονάδας ή 0,... της μονάδας Το διπλάσιο της αρχικής ποσότητας είναι: Με κλάσμα: Με δεκαδικό: β. Βρίσκω τους αριθμούς που λείπουν. = = = = = 0 _ = γ. Παρατηρώ και συμπληρώνω. _ 6 = 6 6 Διαχείριση διαφορετικών μορφών αριθμών: Mετατροπές από τη μια μορφή στην άλλη, νοεροί υπολογισμοί, αθροιστική ανάλυση.

14 Eνότητα δ. Συμπληρώνω τους αριθμούς που λείπουν.,,,,,,, (6 x ) , 00 : 0, ( x ).000 : ε. Βρίσκω τους αριθμούς που λείπουν. =, < x < =,0 < 6 < = στ. Η ηλικία της Γεωργίας είναι τα Η αδερφή της η Λαμπρινή είναι τα Ποιο κορίτσι έχει τη μεγαλύτερη ηλικία; Αν η γιαγιά έχει ηλικία τα και ποια της Λαμπρινής; της ηλικίας της γιαγιάς της. 0 της ηλικίας της γιαγιάς. του αιώνα (00 χρόνια), ποια είναι η ηλικία της Γεωργίας

15 Στατιστική Mέσος Όρος α. Γιατί υπάρχει η ένδειξη στο ασανσέρ; Γιατί επιτρέπεται η είσοδος μέχρι άτομα; β. Τα παρακάτω ραβδογράμματα δείχνουν τις θερμοκρασίες που μέτρησε η Ε.Μ.Υ. μια ημέρα σε δύο ελληνικές πόλεις. Ποια πόλη ήταν η πιο ζεστή εκείνη την ημέρα; ΛAPIΣA :00 :00 :00 :00 0:00 Πόση είναι η μέση θερμοκρασία κάθε πόλης τη συγκεκριμένη ημέρα; Χαράζω σε κάθε γραφική παράσταση τη μέση θερμοκρασία με μια κόκκινη ευθεία γραμμή παράλληλη στον άξονα που δείχνει τις ώρες των μετρήσεων. Γράφω παρατηρήσεις που κάναμε στην ομάδα για τον μέσο όρο σε κάθε γράφημα: Συζητάμε στην τάξη για την αύξηση της θερμοκρασίας στον πλανήτη και το φαινόμενο του θερμοκηπίου. 6 0 IΩANNINA :00 :00 :00 :00 0:00 H έννοια του μέσου όρου, η αξιοποίησή του στη διαδικασία πρόβλεψης. 0

16 Eνότητα γ. Αν ο μέσος όρος βροχόπτωσης ανά μήνα την άνοιξη στο οροπέδιο του Λασιθίου είναι χιλιοστά, πόση προβλέπεται να είναι η βροχόπτωση τον Μάιο, αν ξέρουμε τις τιμές για τον Μάρτιο και τον Απρίλιο; Μάρτιος: χιλ. Απρίλιος: χιλ. Μάιος: χιλιοστά. Μπορούμε προκαταβολικά να προβλέψουμε αν ο Μάιος είναι λιγότερο ή περισσότερο βροχερός από τους δύο άλλους μήνες; δ. Ένας εκδοτικός οίκος αποφάσισε να δωρίσει λογοτεχνικά βιβλία για τα παιδιά που πηγαίνουν στην Στ τάξη σε σχολεία της Χίου και της Λέσβου. O υπάλληλος πρότεινε να δώσουν τον ίδιο αριθμό βιβλίων σε όλα τα σχολεία, γι αυτό και ζήτησε τον Μ.O. των παιδιών που φοιτούν στην Στ τάξη στα σχολεία αυτά. ο ο ο Ποιος είναι ο Μ.O. των μαθητών της Στ τάξης στα παραπάνω σχολεία; ο ο 6ο ο Πόσα βιβλία θα στείλουν τελικά σε κάθε σχολείο αν βασιστούν στον Μ.O.; ο ΜΑΘΗΤΕΣ ΣΤ ΤΑΞΗΣ Μερικοί μαθητές σχολίασαν ότι δεν ήταν δίκαιος ο τρόπος που δώρισαν τα βιβλία. Το κριτήριο του Μ.O. με το οποίο μοίρασαν τα βιβλία ήταν το κατάλληλο; Εξηγώ: ε. O Μ.O. είναι ο ίδιος σε όλες τις σειρές. Συμπληρώνω ό,τι λείπει: Μ.O. σειρά η, 0, 0,,... σειρά η σειρά η 0,......

17 Kεφάλαια - α. Συζητάμε με την ομάδα μας... Πώς χρησιμοποιούμε τη στρατηγική της αναγωγής στη μονάδα στην καθημερινή ζωή; Δίνουμε ένα παράδειγμα. Πότε χρησιμοποιούμε τον μέσο όρο; Δίνουμε παραδείγματα. Πώς τον υπολογίζουμε; β. Τι μέρος της συνολικής επιφάνειας είναι χρωματισμένο; Βάζω στο σωστό Ποιος δεκαδικός αριθμός αντιστοιχεί κάθε φορά; Βάζω στο σωστό. 0,,0 = : ή = : 0 ή,0 0, Ποια διάταξη κλασμάτων δεν είναι σωστή; Eξηγώ με όποιον τρόπο θέλω: < < < < < < γ. Συμπληρώνω ό,τι λείπει. = 6 = 0 = < < = 6 = 0 0 = > > δ. Υπολογίζω κάθε φορά το αποτέλεσμα. Βάζω στο σωστό. Με εκτίμηση Με ακρίβεια 6 x 0 0 ( x ) 6 ( x ) 0 6 (6 : ) :,, 6 ( : ),0 x ( x ) (0,0 x ) 6 6,,0 :, ( : ) (0,0 : ),0,0 Εμπέδωση - επέκταση των γνώσεων και δεξιοτήτων που διδάχτηκαν στην ενότητα.

18 ε. Συμπληρώνω τους αριθμούς που λείπουν:, : 0 0, : 0, 0,0 x,,0 : στ. Τα 0 των χρημάτων του Στέφανου είναι. Πόσα χρήματα έχει συνολικά; ζ. Bρίσκω με όποιον τρόπο θέλω πόσο χυμό ήπιαν συνολικά τα παιδιά. Ηρώ: 0 του λίτρου πορτοκαλάδα και του λίτρου χυμό ανανά. Ρούλα: του λίτρου πορτοκαλάδα και του λίτρου χυμό ανανά. 6 Ποιο παιδί ήπιε περισσότερο χυμό; Eξηγώ. η. Πόσο κοστίζει το κουτί γάλα σε κάθε περίπτωση; κουτιά γάλα κουτιά γάλα 6 κουτιά γάλα ( δώρο),,0 (α) (β) (γ) (α) (β) (γ) Εκτιμώ: Yπολογίζω με ακρίβεια:

Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος

Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός Γεωργία Χρονοπούλου, Εκπαιδευτικός

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ

ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΣΧΕΔΙΑΣΜΟΣ ΙΣΟΔΥΝΑΜΑ ΚΛΑΣΜΑΤΑ ΒΙΩΝΟΝΤΑΣ ΤΟ ΓΝΩΣΤΟ ΔΡΑΣΤΗΡΙΟΤΗΤΑ 1 Δέκα μαθητές (εθελοντές) θα μοιραστούν 6 σοκολάτες που βρίσκονται πάνω σε 3 καρέκλες, όπως δείχνει η εικόνα. Κάθε ένας πρέπει να κατευθυνθεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ 1. Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μία παρόμοια πυραμίδα με 5 σειρές; Α. Β. Γ. Δ. 2. Πόσα κουτιά θα χρειαστούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Ε Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Ε Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις αθηματικά ημοτικού ΚΟΣΙΣ ΠΑΠΑΟΠΟΥΛΟΣ Περιεχόμενα νότητα Κεφάλαιο Υπενθύμιση Τάξης... 5 Κεφάλαιο 2 Υπενθύμιση Οι αριθμοί μέχρι το.000.000... 8 Κεφάλαιο 3 Οι αριθμοί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000

ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Γ Δ η μ ο τ ι κ ο ύ 1 ΕΝΟΤΗΤΑ 1 1. ΟΙ ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1.000 Μαθαίνω... Τριψήφιοι λέγονται οι αριθμοί που έχουν τρία ψηφία. Οι τριψήφιοι αριθμοί αποτελούνται από Εκατοντάδες (Ε), Δεκάδες (Δ) και Μονάδες

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις

3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις 3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια

Διαβάστε περισσότερα

Αισθητοποίηση, γραφή και ονομασία αριθμών

Αισθητοποίηση, γραφή και ονομασία αριθμών Αριθμοί Θέματα: - Αισθητοποίηση, γραφή και ονομασία αριθμών - Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών - Σύγκριση αριθμών - Στρογγυλοποίηση - Πράξεις και ιδιότητες πράξεων - Κλάσματα - εκαδικοί - Αναλογίες

Διαβάστε περισσότερα

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος 10-0124-02.indd 1 27/2/2013 9:26:16 πµ ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος )

Μετρήσεις. Απόστασης ( μήκος, πλάτος, ύψος ) Μετρήσεις Απόστασης ( μήκος, πλάτος, ύψος ) Την απόσταση την μετράμε με το μέτρο και μπορούμε να την εκφράζουμε και σε δέκατα, εκατοστά, χιλιοστά και για μεγάλες αποστάσεις χρησιμοποιούμε το χιλιόμετρο.

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

Πρόσθεση και αφαίρεση κλασμάτων

Πρόσθεση και αφαίρεση κλασμάτων Πρόσθεση και αφαίρεση κλασμάτων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Γνωρίζω μέχρι τώρα Στην πρόσθεση, οι προσθετέοι και το άθροισμα είναι ομοειδείς αριθμοί. Π.χ 8 κεράσια + 6 κεράσια = κεράσια

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Mαθηµατικά. E ηµοτικού

Mαθηµατικά. E ηµοτικού Mαθηµατικά E ηµοτικού ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚΔΟΣΗΣ ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός Γεωργία Χρονοπούλου, Εκπαιδευτικός KPITEΣ-AΞIOΛOΓHTEΣ

Διαβάστε περισσότερα

Mαθηματικά E Δημοτικού Tετράδιο εργασιών γ~ τεύχος

Mαθηματικά E Δημοτικού Tετράδιο εργασιών γ~ τεύχος Mαθηματικά E Δημοτικού Tετράδιο εργασιών γ~ τεύχος ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός Γεωργία Χρονοπούλου, Εκπαιδευτικός

Διαβάστε περισσότερα

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε 30 Λόγος δύο µεγεθών B ÛÈÎ ÛËÌ ıâˆú Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε τη σχέση τους. Tο αποτέλεσµα της σύγκρισης των δύο µεγεθών που εκφράζεται ως κλάσµα ονοµάζεται

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα: ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι Υποστόχοι Δραστηριότητες Πετράκη Ζαχαρούλα Προύντζου Δέσποινα Χριστοπούλου Ευθαλεία Κανονικότητες Συναρτήσεις Αλγεβρικές Παραστάσεις Ισότητα Ανισότητα

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ

Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ ÅÕÁÃÃÅËIÁ ÄÅÓYÐÑÇ Öýëëá åñãáóßáò ãéá ôá ÌáèçìáôéêÜ Â Äçìïôéêïý ÅÊÄÏÓÅÉÓ ÐÁÐÁÄÏÐÏÕËÏÓ Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό Ευαγγελία Δεσύπρη, Φύλλα εργασίας για τα Μαθηματικά Β Δημοτικού Υπεύθυνη

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Τάξη: Ε Δημοτικού ΠΟΣΟΣΤΑ ENOTHTA 4: Έννοια του ποσοστού

Τάξη: Ε Δημοτικού ΠΟΣΟΣΤΑ ENOTHTA 4: Έννοια του ποσοστού Τάξη: Ε Δημοτικού ΠΟΣΟΣΤΑ ENOTHTA 4: Έννοια του ποσοστού Στάδιο 1- Επιθυμητά Αποτελέσματα Στόχοι μαθήματος(οι μαθητές θα είναι ικανοί): 1. Να κατανοήσουν την έννοια του ποσοστού καθώς και να τα χρησιμοποιούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Πηγή: e-selides 1. Βρίσκω και γράφω τα γινόμενα: 4Χ8= 3Χ8= 4Χ9= 3Χ9= 2Χ8= 8Χ8= 6Χ8= 8Χ9= 6Χ9= 2Χ9=

Διαβάστε περισσότερα

κάθε σχήματος. 1. Σκιάζω τα 3 4

κάθε σχήματος. 1. Σκιάζω τα 3 4 Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΑΘΗΝΑ Τηλ. 665-6778 - Fax: 605 ος Μαθητικός Διαγωνισμός Για μαθητές της Ε Τάξης Δημοτικού Ονοματεπώνυμο:. Δημοτικό Σχολείο. Τάξη/Τμήμα. Σκιάζω τα κάθε σχήματος..

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης

Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης Εισηγήσεις για δημιουργική και αποτελεσματική διαχείριση του χρόνου της Εμπέδωσης Η Εμπέδωση αποτελεί ένα νέο στοιχείο του ωρολογίου προγράμματος του σχολείου και έχει ως στόχο τη διαφοροποίηση και εξατομίκευση

Διαβάστε περισσότερα

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά

Mαρία Πριοβόλου. Οδηγός προετοιμασίας. για τα Πρότυπα Πειραματικά Γυμνάσια. Μαθηματικά Mαρία Πριοβόλου Οδηγός προετοιμασίας για τα Πρότυπα Πειραματικά Γυμνάσια Μαθηματικά Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Το παρόν

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ Α.1. Να γράψετε τις παρακάτω εκφράσεις με τη βοήθεια μιας μεταβλητής: i) Το πενταπλάσιο ενός αριθμού. ii) Το διπλάσιο

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Ανακεφαλαίωση ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ: 1, 2,,, Άρτιοι αριθμοί είναι οι φυσικοί

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

ΕΝΟΤΗΤΑ 10 ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ-ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα και δεκαδικούς αριθμούς, χρησιμοποιώντας κατάλληλο υλικό όπως επιφάνειες,

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ραστηριότητα - Ανακάλυψη...

ραστηριότητα - Ανακάλυψη... 1 Θυμάμαι ό, τι έμαθα από τη Γ τάξη ραστηριότητα - Ανακάλυψη... Η Φανή, με την έναρξη της σχολικής χρονιάς, πήρε 30 και πήγε στο βιβλιοπωλείο να αγοράσει σχολικά είδη. Κοίταξε τον τιμοκατάλογο και αγόρασε

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ. Δέσπω Σωτηρίου

ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ. Δέσπω Σωτηρίου ΠΡΟΣΘΕΣΗ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ ΜΕ ΑΘΡΟΙΣΜΑ ΜΕΧΡΙ ΤΟ 1000 Δέσπω Σωτηρίου Ε Δημοτικό Σχολείο Αγλαντζιάς Γενικές πληροφορίες Σχολείο: Ε Δημοτικό Αγλαντζιάς Τμήμα: Γ 2 Αριθμός μαθητών: 16 Όνομα Συμβούλου: Ιφιγένεια

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 61652-617784 - Fax: 641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος ΜΕΤΡΗΣΗ Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος 1 Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία)

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ

C Y M B ȦIJȠıIJȠȚȤİȚȠșİıȓĮ Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ %ȚȕȜȚȠʌȦȜİȓȠ (.ǻ2ȉ(,ȉ =+7+ ĭȧijƞıijƞțȥițƞșiıȓį Ȇ =+7+ ȈȚĮ 2( (țijȫʌȧıș ǺȚȞȜȚȠįİıȓĮ ΘΕΣΣΑΛΟΝΙΚΗ www.ziti.gr www.ziti.gr Πρόλογος Το βιβλίο αυτό αποτελεί μια υπεύθυνη και εμπεριστατωμένη προσέγγιση της ύλης των δύο τελευταίων τάξεων Εʹ και Στʹ του Δημοτικού σχολείου, στα βασικά μαθήματα

Διαβάστε περισσότερα