Τι είναι: μονάδα, δεκάδα και εκατοντάδα
|
|
- Πρίαμ Ανδρεάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν στην τάξη των μονάδων. Λέμε π.χ. 0 μηδέν μονάδες 1 μία μονάδα 2 δύο μονάδες 9 εννιά μονάδες
2 1 ο Κεφάλαιο 4 Ενώ οι αριθμοί 10, 11,..., 99 που είναι διψήφιοι αριθμοί αποτελούνται από μονάδες και δεκάδες. Πάντα ο τελευταίος αριθμός εκφράζει μονάδες ενώ ο πρώτος εκφράζει δεκάδες. Λέμε π.χ. 10 μία δεκάδα και μηδέν μονάδες 11 μία δεκάδα και μία μονάδα Παρατηρούμε ότι διαβάζουμε τους αριθμούς από την αρχή προς το τέλος. Τώρα αν μιλήσουμε για αριθμούς όπως 100, 101, 102,...999, οι οποίοι είναι αριθμοί τριψήφιοι μιλάμε για εκατοντάδες, δεκάδες και μονάδες. ΠΑΡΑΤΗΡΗΣΗ Το τριψήφιο τμήμα ενός αριθμού που βρίσκεται στα δεξιά π.χ αντιστοιχεί στην κλάση των μονάδων. Η κλάση αυτή αποτελείται από τάξεις που είναι οι εξής: «τάξη των μονάδων», «τάξη των δεκάδων» και «τάξη των εκατοντάδων». Ας δούμε μερικά παραδείγματα 1. Τοποθετούμε το μονοψήφιο αριθμό 9 στη σωστή θέση ΜΟΝΑ ΕΣ Ε= εκατοντάδες Ε Μ = δεκάδες 9 Μ = μονάδες ιαβάζουμε: 9 μονάδες 2. Τοποθετούμε το διψήφιο αριθμό 15 στη σωστή θέση. ΜΟΝΑ ΕΣ Ε Μ 1 5 ιαβάζουμε: 1 δεκάδα και 5 μονάδες
3 Μαθηματικά 5 3. Τοποθετούμε τον τριψήφιο αριθμό 145 στη σωστή θέση ΜΟΝΑ ΕΣ Ε Μ ιαβάζουμε: 1 εκατοντάδα, 4 δεκάδες και 5 μονάδες. Όπως παρατηρούμε στα πινακάκια η τοποθέτηση των αριθμών γίνεται από δεξιά προς τα αριστερά. Ξέροντας αυτά λοιπόν ας θυμηθούμε πως λογαριάζουμε χιλιάδες. Ξέρουμε ότι =10 (το 10 είναι μία μονάδα δεκαδικών ή μία δεκάδα). Προσθέτουμε διαδοχικά στο 9 και το 1 μηδενικά και προσπαθούμε να λογαριάσουμε: = 100. Σκεφτόμαστε πόσα μηδενικά γράψαμε δεξιά και του 9 και του 1: γράψαμε ένα μηδενικό. Άρα στο άθροισμα που πήραμε από την πρόσθεση γράφουμε δεξιά ένα μηδενικό: = = 100 Προχωράμε παρακάτω με τον ίδιο τρόπο: =1.000 (αυτός είναι ο α- ριθμός χίλια ή αλλιώς μια μονάδα χιλιάδων). Με τον ίδιο τρόπο: = (δέκα χιλιάδες ή αλλιώς μία δεκάδα χιλιάδων) = (εκατό χιλιάδες ή αλλιώς μία εκατοντάδα χιλιάδων). ΠΑΡΑΤΗΡΗΣΗ Το δεύτερο τριψήφιο τμήμα από τα δεξιά ενός αριθμού αντιστοιχεί στην κλάση των χιλιάδων ή πιο απλά στις χιλιάδες. Π.χ Η κλάση αυτή αποτελείται από την τάξη των μονάδων, την τάξη των δεκάδων και την τάξη των εκατοντάδων.
4 1 ο Κεφάλαιο 6 Ας δούμε τα πινακάκια: Θα τοποθετήσουμε σ αυτό το πινακάκι το (δηλαδή τη μία μονάδα χιλιάδων) ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Ε Δ Μ Ε Δ Μ Διαβάζουμε: 1 μονάδα χιλιάδων Θα τοποθετήσουμε τώρα στον πίνακα τον αριθμό ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Ε Δ Μ Ε Δ Μ Διαβάζουμε: 1 δεκάδα χιλιάδων Τέλος τοποθετούμε στον πίνακα τον αριθμό ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Ε Δ Μ Ε Δ Μ Διαβάζουμε: 1 εκατοντάδα χιλιάδων Ας δούμε μερικά παραδείγματα 1. Να τοποθετήσετε τους παρακάτω αριθμούς σε πινακάκια και να τους διαβάσετε: 1) ) ) ) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ ιαβάζουμε (πάντα από την αρχή προς το τέλος): 7 εκατοντάδες χιλιάδων, 5 δεκάδες χιλιάδων, 3 μονάδες χιλιάδων, 4 εκατοντάδες, 8 δεκάδες και 9 μονάδες.
5 Μαθηματικά 7 2) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ ιαβάζουμε: 1 εκατοντάδα χιλιάδων, 2 δεκάδες χιλιάδων, 5 μονάδες χιλιάδων, 8 εκατοντάδες, 1 δεκάδα και 3 μονάδες. 2) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ ιαβάζουμε: 3 εκατοντάδες χιλιάδων, 4 δεκάδες χιλιάδων, 1 μονάδα χιλιάδων, 7 εκατοντάδες, 6 δεκάδες και 9 μονάδες. Τι είναι σύγκριση; Έστω ότι έχουμε δύο αριθμούς το 8 και το 3. Όλοι ξέρουμε ότι το 8 είναι μεγαλύτερο από το 3. Στη μαθηματική γλώσσα γράφουμε: 8 > 3 και διαβάζουμε: «8 μεγαλύτερο του 3». Τώρα θέλουμε να πούμε ότι το 3 είναι μικρότερο του 8 γράφουμε: 3 < 8 και διαβάζουμε «3 μικρότερο του 8». Επομένως, για να συγκρίνουμε δύο αριθμούς χρησιμοποιούμε τα σύμβολα > και <. Πώς όμως χρησιμοποιούμε αυτά τα σύμβολα; Το μεγαλύτερο από τους δύο αριθμούς που συγκρίνουμε τον βάζουμε στο «άνοιγμα» του συμβόλου ενώ το μικρότερο το βάζουμε στη μύτη». Κάθε αριθμός που έχει περισσότερα ψηφία από κάποιον άλλο θα είναι ο μεγαλύτερος αριθμός στη σύγκριση και ο άλλος ο μικρότερος.
6 1 ο Κεφάλαιο 8 Εάν όμως οι αριθμοί που θέλουμε να συγκρίνουμε έχουν ίδιο πλήθος ψηφίων, π.χ. το 200 και το 100 τότε τη σύγκριση την κάνουμε συγκρίνοντας ένα προς ένα τα ψηφία, ξεκινώντας από τα πρώτα ψηφία των αριθμών: το πρώτο ψηφίο του 200 είναι το 2, ενώ το πρώτο ψηφίο του 100 είναι το 1 και επειδή 2> 1 θα είναι και 200 > 100. Έστω ότι έχουμε δύο αριθμούς που έχουν για πρώτο ψηφίο τον ίδιο αριθμό π.χ και Η σύγκριση σ αυτήν την περίπτωση θα γίνει από το δεύτερο ψηφίο. Το δεύτερο ψηφίο του είναι το 5 ενώ το δεύτερο ψηφίο του είναι το 2 και επειδή 5 > 2 θα είναι > Εάν είναι και τα δεύτερα ψηφία των αριθμών ίδια τότε πηγαίνουμε στα τρίτα ψηφία κτλ. Ας δούμε μερικά παραδείγματα: Θέλουμε να συγκρίνουμε τους αριθμούς και Γράφουμε τους αριθμούς τον έναν κάτω από τον άλλο: Βλέπουμε ότι οι δύο αριθμοί έχουν από έξι ψηφία ο καθένας. Το πρώτο ψηφίο και των δύο αριθμών είναι το 1, Το δεύτερο ψηφίο και των δύο αριθμών είναι το 5, Το τρίτο ψηφίο και των δύο αριθμών είναι το 8, Το τέταρτο ψηφίο του πρώτου αριθμού είναι το 9 ενώ το τέταρτο ψηφίο του δεύτερου αριθμού είναι το 3. Επειδή το 9 είναι μεγαλύτερο του 3 (9>3) ο πρώτος αριθμός θα είναι μεγαλύτερος από το δεύτερο, δηλαδή >
7 Μαθηματικά 9 Πρόβλημα Για τις διακοπές της μια οικογένεια ξόδεψε ενώ μια άλλη Για να δούμε ποια από τις δύο οικογένειες ξόδεψε περισσότερα χρήματα; Αρκεί να συγκρίνουμε τους αριθμούς 2500 και Επειδή οι δύο αριθμοί έχουν το ίδιο πλήθος ψηφίων δεν μπορούμε ακόμη να πούμε ποιος είναι ο μεγαλύτερος. Σκεφτόμαστε! Το πρώτο ψηφίο του 2500 είναι το 2 ενώ το πρώτο ψηφίο του 1250 είναι το 1 και επειδή 2>1 θα είναι και 2500>1250. Βλέπουμε λοιπόν ότι η πρώτη οικογένεια ξόδεψε περισσότερα χρήματα για τις διακοπές της. Τι είναι διάταξη; Όταν λέμε διάταξη εννοούμε την τακτοποίηση μιας σειράς αριθμών από το μικρότερο προς το μεγαλύτερο ή από το μεγαλύτερο προς το μικρότερο. Έστω ότι θέλουμε να διατάξουμε τους αριθμούς: , και από το μικρότερο προς το μεγαλύτερο. Για να κλείσουμε τη διάταξη θα τους συγκρίνουμε μεταξύ τους. Συγκρίνουμε τους αριθμούς , Παρατηρούμε ότι έχουν το ίδιο πλήθος ψηφίων οπότε θα πρέπει να κάνουμε τη σύγκριση ψηφίο προς ψηφίο ίσοι Βλέπουμε ότι το τέταρτο κατά σειρά ψηφίο του πρώτου αριθμού είναι το 5 και είναι μικρότερο από το 8 που είναι το αντίστοιχο ψηφίο του δεύτερου αριθμού. Λέμε λοιπόν ότι: < ίσοι ίσοι 5 < 8 Συγκρίνουμε τους αριθμούς , Παρατηρούμε ότι έχουν το ίδιο πλήθος ψηφίων οπότε θα πρέπει να κάνουμε τη σύγκριση ψηφίο προς ψηφίο.
8 1 ο Κεφάλαιο ίσοι ίσοι ίσοι 8 > 6 Επειδή το τέταρτο ψηφίο του πρώτου αριθμού είναι μεγαλύτερο από το αντίστοιχο ψηφίο του άλλου θα είναι: < Συγκρίνουμε τους αριθμούς , Παρατηρούμε ότι έχουν το ίδιο πλήθος ψηφίων οπότε θα πρέπει να κάνουμε τη σύγκριση ψηφίο προς ψηφίο ίσοι ίσοι ίσοι 5 < 6 Επειδή το τέταρτο ψηφίο του πρώτου αριθμού είναι μικρότερο από το αντίστοιχο ψηφίο του δεύτερου αριθμού θα είναι: < Από τις συγκρίσεις που κάναμε είδαμε ότι ο είναι μικρότερος από τον και αυτός είναι μικρότερος από τον Γράφουμε λοιπόν: < < Για να διατάξουμε κάποιους αριθμούς που μας έχουν δοθεί τους συγκρίνουμε πρώτα και έπειτα τους τοποθετούμε στη σειρά από το μεγαλύτερο προς το μικρότερο ή από το μικρότερο προς το μεγαλύτερο (ανάλογα με το τι μας έχει ζητηθεί) βάζοντας ανάμεσά τους ένα από τα σύμβολα: > ή <.
9 Μαθηματικά 11 Τι είναι στρογγυλοποίηση; Στρογγυλοποίηση λέμε τη διαδικασία με την οποία αντικαθιστούμε έναν αριθμό με κάποιον άλλο που είναι πολύ κοντά στον αρχικό μας αριθμό. Για παράδειγμα αν ο μισθός κάποιου εργάτη είναι 738 αυτός μπορεί να λέει για συντομία ότι πληρώνεται 740. Η στρογγυλοποίηση μπορεί να γίνει σ οποιοδήποτε ψηφίο του αριθμού. Έστω π.χ. ο αριθμός 253: μπορούμε να στρογγυλοποιήσουμε στο ψηφίο των μονάδων, δηλαδή το 3 ή στο ψηφίο των δεκάδων, που είναι το 5 ή στο ψηφίο των εκατοντάδων που είναι το 2. Για να κάνουμε στρογγυλοποίηση πρέπει να προσέχουμε τον αριθμό που υπάρχει πίσω (δεξιά) απ αυτόν που θέλουμε να στρογγυλοποιήσουμε. Αν αυτός ο αριθμός είναι 0, 1, 2, 3 ή 4 τότε φεύγει και στη θέση αυτού και των ψηφίων που ακολουθούν βάζουμε μηδενικά. Αν ο αριθμός που ακολουθεί το ψηφίο που θέλουμε να στρογγυλοποιήσουμε είναι ένας από τους 5, 6, 7, 8, ή 9 τότε στη θέση αυτού του αριθμού και των υπολοίπων που ακολουθούν βάζουμε μηδενικά ενώ το ψηφίο στο οποίο κάνουμε τη στρογγυλοποίηση αυξάνεται κατά μία μονάδα. Ας δούμε μερικά παραδείγματα 1. Να στρογγυλοποιηθεί ο αριθμός στο ψηφίο των δεκάδων και στο ψηφίο των εκατοντάδων. Λύση Έχουμε τον αριθμό και θέλουμε να στρογγυλοποιήσουμε στο ψηφίο των δεκάδων δηλαδή το 4. εξιά του 4 υπάρχει το 3 που ανήκει στους παραπάνω αριθμούς (0, 1, 2, 3, 4) άρα στη θέση του βάζουμε το μηδέν. Έτσι ο αριθμός μας μετά τη στρογγυλοποίηση γίνεται
10 1 ο Κεφάλαιο 12 Έστω ότι θέλουμε να στρογγυλοποιήσουμε τον ίδιο αριθμό στο ψηφίο των εκατοντάδων δηλαδή στο 7. εξιά του 7 υπάρχει το 4 άρα το αντικαθιστούμε με το μηδέν καθώς και τα ψηφία που ακολουθούν. Έτσι ο αριθμός γίνεται Να στρογγυλοποιηθούν οι αριθμοί: α) στο ψηφίο των εκατοντάδων χιλιάδων β) στο ψηφίο των εκατοντάδων Λύση α) Έχουμε τον αριθμό και θέλουμε να στρογγυλοποιήσουμε στο ψηφίο των εκατοντάδων χιλιάδων (που είναι το 1). Βλέπουμε ότι το ψηφίο που ακολουθεί είναι το 7, άρα αντικαθιστούμε αυτό και όλα τα υπόλοιπα ψηφία με μηδενικά και το 1 το αυξάνουμε κατά μία μονάδα, δηλαδή στη θέση του γράφουμε τον αριθμό 1+1 =2. Ο αριθμός μας μετά τη στρογγυλοποίηση γίνεται: β) Έχουμε τον αριθμό και θέλουμε να το στρογγυλοποιήσουμε στο ψηφίο των ε- κατοντάδων. Το ψηφίο των εκατοντάδων είναι το 7 και βλέπουμε ότι μετά απ αυτό ακολουθεί ο αριθμός 5. Σύμφωνα με όσα έχουμε αναφέρει θα προσθέσουμε μία μονάδα στο 7 και τα υπόλοιπα ψηφία θα τα κάνουμε μηδενικά. Έτσι ο αριθμός στρογγυλοποιείται στον Ας δούμε μια ξεχωριστή περίπτωση στρογγυλοποίησης Θέλουμε να στρογγυλοποιήσουμε τον αριθμό στο ψηφίο των εκατοντάδων. Το ψηφίο των εκατοντάδων είναι το 9 και μετά από αυτό ακολουθεί ο αριθμός 5, οπότε θα αυξήσουμε το 9 κατά μία μονάδα και τα επόμενα ψηφία θα γίνουν μηδενικά. Όμως αν αυξήσουμε το 9 κατά μία μονάδα θα γίνει =10. Τότε στη θέση του 9 θα βάλουμε το 0 και το ψηφίο αριστερά του 9 θα αυξηθεί κατά μία μονάδα. Το ψηφίο αυτό είναι το 2 οπότε θα γίνει =3. Έτσι ο αριθμός στρογγυλοποιείται στον
11 Μαθηματικά 13 Η πράξη της πρόσθεσης Όταν προσθέτουμε δύο αριθμούς δε μας ενδιαφέρει με ποια σειρά θα τους γράψουμε, αν γράψουμε δηλαδή πρώτα το μεγαλύτερο ή πρώτα το μικρότερο. Διαλέγουμε να κάνουμε την πρόσθεση όπως θέλουμε εμείς. Το αποτέλεσμα θα είναι το ίδιο. Για παράδειγμα: ή Εκείνο που πρέπει να προσέξουμε είναι η τοποθέτηση των δύο προσθετέων. Αφού γράψουμε τον πρώτο προσθετέο αρχίζουμε να γράφουμε το δεύτερο προσθετέο από το τέλος προς την αρχή. Πρέπει δηλαδή κάθε ψηφίο του ενός αριθμού να είναι κάτω από το αντίστοιχο ψηφίο του άλλου αριθμού. Παράδειγμα: ή Γράφουμε λοιπόν τις μονάδες κάτω από τις μονάδες, τις δεκάδες κάτω από τις δεκάδες, τις εκατοντάδες κάτω από τις εκατοντάδες, κ.τλ. Μπορούμε να προσθέσουμε περισσότερους από δύο αριθμού μεταξύ τους, για παράδειγμα: ή ή Παρατηρούμε λοιπόν εδώ ότι μπορούμε να αλλάξουμε τη θέση προσθετέων χωρίς να αλλάξει το άθροισμά τους.
12 1 ο Κεφάλαιο 14 Όταν κάνουμε πρόσθεση τοποθετούμε τους αριθμούς κατακόρυφα έτσι ώστε κάθε ψηφίο του ενός αριθμού να είναι κάτω από το αντίστοιχο ψηφίο του άλλου αριθμού. Αρχίζουμε την πρόσθεση από τα τελευταία ψηφία. Παράδειγμα: Προσθέτουμε πρώτα τα ψηφία 7,7, και 2 και έχουμε 7+7+2=16 γράφουμε το 6 και κρατάμε μία μονάδα την οποία θα προσθέσουμε στα αμέσως επόμενα ψηφία κτλ. Όταν έχουμε να προσθέσουμε πολλούς αριθμούς μεταξύ τους τότε μπορούμε να προσθέσουμε πρώτα τους δύο αριθμούς και στο άθροισμα που θα βρούμε να προσθέσουμε έναν άλλον αριθμό. Στο νέο άθροισμα που θα βρούμε θα προσθέσουμε και άλλον αριθμό και θα κάνουμε τη διαδικασία αυτή μέχρι να τελειώσουν όλοι οι αριθμοί. Το τελικό άθροισμα θα είναι το άθροισμα όλων των αριθμών. Παράδειγμα: Έστω ότι θέλουμε να προσθέσουμε τους αριθμούς 125, και Προσθέτουμε αρχικά τους δύο πρώτους αριθμούς: Έπειτα προσθέτουμε στο παραπάνω άθροισμα τον αριθμό Όταν μας δίνεται μία άσκηση στην οποία υπάρχουν αριθμοί μέσα σε παρένθεση πρέπει πρώτα να κάνουμε τις πράξεις μέσα στην παρένθεση και έπειτα να κάνουμε τις υπόλοιπες προσθέσεις Παράδειγμα: ( )+3.506=
13 Μαθηματικά 15 Προσθέτουμε πρώτα τους αριθμούς που είναι μέσα στην παρένθεση: Τώρα προσθέτουμε τον αριθμό που βρήκαμε με τον αριθμό : Με νοερούς υπολογισμούς μπορώ να εκτιμήσω είτε να υπολογίσω με ακρίβεια το α- ποτέλεσμα μιας πράξης (π.χ είναι περίπου = ή με ακρίβεια είναι = ) Αφαίρεση κάνουμε όταν ξέρουμε το άθροισμα δύο αριθμών και τον έναν από τους δύο. Για να βρούμε τον άλλο, αφαιρούμε από το άθροισμα το γνωστό αριθμό. Παράδειγμα: Ξέρουμε ότι το άθροισμα του 753 με έναν αριθμό ισούται με Για να βρούμε τον άλλο αριθμό αφαιρούμε: 5678 (μειωτέος) (αφαιρετέος) 4925 (διαφορά) Όταν προσθέτουμε στον αφαιρετέο τη διαφορά, βρίσκουμε το μειωτέο. Αυτή η πρόταση αποτελεί τη δοκιμή της αφαίρεσης. Παράδειγμα: 4925 (υπόλοιπο) (αφαιρετέος) 5678 (μειωτέος)
14 1 ο Κεφάλαιο 16 Όταν από το μειωτέο αφαιρέσουμε τη διαφορά, θα βρούμε τον αφαιρετέο. Παράδειγμα: 5678 (μειωτέος) (διαφορά) 753 (αφαιρετέος) Αν από το άθροισμα δύο αριθμών αφαιρέσουμε τον έναν αριθμό βρίσκουμε τον άλλον: 4925 (α προσθετέος) 5678 (άθροισμα) 5678 (άθροισμα) (β προσθετέος) (β προσθετέος) (α προσθετέος 5678 (άθροισμα) 4925 (α προσθετέος) 753 (β προσθετέος) Δεν μπορούμε από έναν αριθμό να αφαιρέσουμε κάποιον άλλο που είναι μεγαλύτερός του. Από έναν αριθμό μπορούμε να αφαιρέσουμε τον εαυτό του (τον ίδιο) και αριθμούς που είναι μικρότεροι από αυτόν. Για παράδειγμα:
15 Μαθηματικά 17 Πολλαπλασιασμός Ένα γινόμενο δύο αριθμών παραμένει το ίδιο με όποια σειρά και να πολλαπλασιάσουμε τους αριθμούς. Για παράδειγμα: Το γινόμενο 4 9 είναι ίσο με το 9 4 αφού 4 9 =36 και 9 4 = 36. Ας θυμηθούμε σ αυτό το σημείο πως γίνεται ο πολλαπλασιασμός αριθμών που έχουν πάνω από δύο ψηφία. Θα κάνουμε τον πολλαπλασιασμό του με το x 6 Λέμε 1 6 = 6. Γράφουμε το 6 κάτω από τη γραμμή στη θέση των μονάδων x 6 Λέμε 6 8 =48. Γράφουμε το 8 κάτω από τη γραμμή στη θέση των δεκάδων και έχουμε 4 κρατούμενα x Λέμε 6 7 =42 και 4 τα κρατούμενα που είχαμε από πριν μας κάνουν 46. Γράφουμε το 6 στη θέση των εκατοντάδων και έχουμε 4 κρατούμενα και πάλι x Λέμε 6 4 =24 και 4 τα κρατούμενα που είχαμε από πριν μας κάνουν 28. Γράφουμε το 28 στις θέσεις των δεκάδων χιλιάδων και των μονάδων χιλιάδων.
16 1 ο Κεφάλαιο 18 Το σχήμα της διαίρεσης: ιαίρεση Διαιρετέος διαιρέτης πηλίκο - Τέλεια λέγεται η διαίρεση στην οποία ο διαιρετέος είναι πολλαπλάσιο του διαιρέτη. Σε μια τέλεια διαίρεση είναι Δ = δ π. - Μια διαίρεση που δεν είναι τέλεια λέγεται ατελής. Στην ατελή διαίρεση προκύπτει ένας αριθμός στον οποίο δεν χωράει ο διαιρέτης και λέγεται υπόλοιπο. Για παράδειγμα: 1 ος τρόπος 2 ος τρόπος (σύντομος) ' ' ' ' ' ' ' ' Ας θυμηθούμε τι είναι κλασματικές μονάδες και τι είναι τα κλάσματα. Κλάσματα - Η κλασματική μονάδα αποτελείται από δύο αριθμούς: τον παρονομαστή που μας δείχνει σε πόσα ίσα μέρη έχουμε χωρίσει την ακέραιη μονάδα και τον αριθμητή, που είναι ο αριθμός 1. Η κλασματική μονάδα εκφράζει ένα από τα ίσα μέρη στα οποία έχουμε χωρίσει την ακέραιη μονάδα. - Το κλάσμα είναι το άθροισμα πολλών ίδιων κλασματικών μονάδων. Ο αριθμητής ενός κλάσματος μας δείχνει πόσα ίσα μέρη παίρνουμε, από τα ίσα μέρη στα οποία χωρίσαμε την ακέραιη μονάδα. - Οι κλασματικές μονάδες που έχουν στον παρονομαστή τους έναν από τους α- ριθμούς 10, 100, 1000 λέγονται δεκαδικές κλασματικές μονάδες. - Τα δεκαδικά κλάσματα έχουν ως αριθμητή έναν αριθμό μεγαλύτερο του 1 και ως παρονομαστή έναν από τους αριθμούς 10, 100, 1000,... Για παράδειγμα: το κλάσμα 7 είναι ένα δεκαδικό κλάσμα. 10
17 Μαθηματικά 19 - Μπορούμε να μετατρέψουμε το δεκαδικό κλάσμα 7 σε δεκαδικό αριθμό. Κοιτάζουμε πόσα μηδενικά έχει ο παρονομαστής του κλάσματος. Ο αριθμός 10 έχει 10 1 μηδενικό. Γράφουμε λοιπόν ένα μηδενικό και δίπλα του γράφουμε τον αριθμητή του κλάσματος: 7 = 0,7 10 υποδιαστολή Τα δύο αυτά ψηφία τα χωρίζουμε με ένα κόμμα το οποίο λέγεται υποδιαστολή. Γεωμετρία Άξονας συμμετρίας ονομάζεται η ευθεία γραμμή που χωρίζει ένα σχήμα σε δύο μέρη με τέτοιο τρόπο ώστε αν διπλώσω το σχήμα στον άξονα συμμετρίας τα δύο μέρη να συμπέσουν. Ένα σχήμα έχει περισσότερους από έναν άξονες συμμετρίας. Παράδειγμα: Πολύγωνο είναι ένα επίπεδο σχήμα, το οποίο έχει πολλές γωνίες. Ένα πολύγωνο το ονομάζουμε ανάλογα με τον αριθμό των γωνιών του. Παράδειγμα:
18 1 ο Κεφάλαιο 20 Για να υπολογίσω το εμβαδό ενός ορθογωνίου παραλληλόγραμμου πολλαπλασιάζω τα μήκη δύο διαδοχικών πλευρών. Παράδειγμα: 3 5 Σε ένα ορθογώνιο με διαδοχικές πλευρές 5 και 3 εκατοστά το εμβαδό είναι 5 3 =15 τετραγωνικά εκατοστά. Για να σχεδιάσω ένα ορθογώνιο παραλληλόγραμμο με δοσμένο εμβαδό θα πρέπει το γινόμενο δύο διαδοχικών πλευρών του να είναι όσο το εμβαδό που θέλω. Παράδειγμα για εμβαδό 12 τ. εκ. το γινόμενο των πλευρών θα είναι: 12 1 = ή 6 2 = ή 3 4 =12 3 4
19 Μαθηματικά 21 ραστηριότητες του βιβλίου ραστηρι ότητα 1η Η Νεφέλη, ο Γιάννης, ο Οδυσσέας, η Θεοδώρα, ο Γιώργος και ο Μίλτος πήγαν στην ίδια κατασκήνωση το καλοκαίρι. Όλοι ασχολήθηκαν με αθλήματα. Αν ο αγώνας μπάσκετ άρχισε πριν από ένα τέταρτο και η συνολική του διάρκεια είναι μία ώρα, τι ώρα θα τελειώσει; Στον αγώνα παίζει το 1 των αγοριών 10 της κατασκήνωσης. Πόσα μπορεί να είναι όλα τα αγόρια; Βάζω Εξηγώ στην τάξη πως σκέφτηκα Η ώρα χωρίζεται σε τέσσερα τέταρτα. 1 ώρα = 4 4 της ώρας. ΣΚΕΦΤΟΜΑΙ
20 1 ο Κεφάλαιο 22 Λύση Αφού ο αγώνας άρχισε πριν από ένα τέταρτο (ή 1 4 της ώρας) και η συνολική του διάρκεια είναι μία ώρα (ή 1 ώρα = 4 4 της ώρας), ο αγώνας θα τελειώσει μετά από τρία τέταρτα της ώρας γιατί = Παρατηρώ την εικόνα και βλέπω ότι τα αγόρια που παίζουν στον αγώνα είναι 10. Άρα το 1 1 των αγοριών είναι 10. Τα αγόρια όλα είναι 100 γιατί το του 100 είναι Τα αγόρια όλα δε γίνεται να είναι γιατί το του 1000 είναι 100 επομένως: Κάθε παιδί ρίχνει 6 βέλη. Προσοχή Αν το βέλος βγει εκτός στόχου, αφαιρούνται 50 βαθμοί Πόσες μπορεί να ήταν οι βολές που έριξε ο Μίλτος; Αν η Νεφέλη συγκέντρωσε περισσότερους βαθμούς από το Γιώργο και το Μίλτο, ποιες μπορεί να ήταν οι βολές της;
21 Μαθηματικά 23 Λύση Ο Γιώργος πέτυχε 1200 βαθμούς με ένα βέλος εκτός στόχου: = 500 (1 φορά το 500) = 500 (2 φορές το 250) = 250 (2 φορές το 125) =1250 (Ο Γιώργος συγκέντρωσε 1250 βαθμούς σε 5 βολές) = 1200 (αφαιρούνται 50 βαθμοί γιατί έριξε 1 βέλος εκτός στόχου, άρα συγκέντρωσε βαθμούς) Και ο Μίλτος πέτυχε 1200 βαθμούς αλλά με 2 βέλη εκτός στόχου. Άρα οι βολές του Μίλτου θα είναι: = 1000 (2 φορές το 500) = 250 (1 φορά το 250) 1 50 = 50 (1 φορά το 50) =1300 (Ο Μίλτος συγκέντρωσε 1300 βαθμούς σε 4 φορές) 2 50 = 100 (όμως έχασε 100 βαθμούς γιατί 2 βέλη του βγήκαν εκτός στόχου) = 1200 (άρα συγκέντρωσε 1200 βαθμούς) Η Νεφέλη συγκέντρωσε περισσότερους βαθμούς από το Γιώργο και από το Μίλτο. Οι βολές της μπορεί να είναι: = 500 (1 φορά το 500) = 500 (2 φορές το 250) =250 (2 φορές το 125) 1 50 = 50 (1 φορά το 50) Άρα η Νεφέλη συγκέντρωσε = 1300 βαθμούς.
22 1 ο Κεφάλαιο 24 Με τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 μπορούμε να φτιάξουμε αριθμούς. Κάθε ψηφίο έχει διαφορετική αξία μέσα σε έναν αριθμό. Η αξία του εξαρτάται από τη θέση που έχει το ψηφίο μέσα στον αριθμό. Σύγκριση δύο ακέραιων αριθμών σημαίνει να βρούμε αν αυτοί είναι ίσοι ή στην περίπτωση που δεν είναι ίσοι, να βρούμε ποιος είναι ο μεγαλύτερος. Δύο ακέραιοι αριθμοί είναι ίσοι αν έχουν τα ίδια ψηφία. Διάταξη κάποιων ακέραιων αριθμών σημαίνει η τοποθέτησή τους σε σειρά από το μικρότερο προς το μεγαλύτερο ή από το μεγαλύτερο προς το μικρότερο. Τα σύμβολα που χρησιμοποιούμε για τη διάταξη είναι το < αν διατάξουμε από το μικρότερο προς το μεγαλύτερο ή το > αν διατάξουμε από το μεγαλύτερο προς το μικρότερο. Στρογγυλοποίηση ενός αριθμού σημαίνει να αντικαταστήσουμε τον αριθμό αυτό με έναν άλλο που είναι πολύ κοντά του, έτσι ώστε να μην αλλάξει πολύ η αξία του. Όταν κάνουμε στρογγυλοποίηση, πάντα πρέπει να αναφέρουμε το ψηφίο στο ο- ποίο γίνεται αυτή. Με νοερούς υπολογισμούς μπορώ να εκτιμήσω είτε να υπολογίσω με ακρίβεια το αποτέλεσμα μιας πράξης (π.χ είναι περίπου = ή με ακρίβεια είναι = )
23 Μαθηματικά 25 Όταν προσθέτω δύο αριθμούς, μπορώ να αλλάξω τη θέση των προσθετέων (π.χ = ). Το κλάσμα είναι το άθροισμα πολλών ίδιων κλασματικών μονάδων. Ο αριθμητής ενός κλάσματος δείχνει πόσα μέρη παίρνουμε από τα ίσα μέρη στα οποία χωρίσαμε την ακέραιη μονάδα. Άξονας συμμετρίας ονομάζεται η ευθεία γραμμή που χωρίζει ένα σχήμα σε δύο μέρη με τέτοιο τρόπο ώστε αν διπλώσω το σχήμα στον άξονα συμμετρίας τα δύο μέρη να συμπέσουν. Ένα σχήμα μπορεί να έχει περισσότερους από έναν άξονες συμμετρίας. Για να υπολογίσω το εμβαδό ενός ορθογωνίου παραλληλογράμμου πολλαπλασιάζω τα μήκη δύο διαδοχικών πλευρών του. Για να σχεδιάσω ένα ορθογώνιο παραλληλόγραμμο με δοσμένο εμβαδό θα πρέπει το γινόμενο δύο διαδοχικών πλευρών του να είναι όσο το εμβαδό που θέλω.
24 1 ο Κεφάλαιο Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μια παρόμοια πυραμίδα με 5 σειρές; Πόσα κουτιά θα χρειαστούμε για μια παρόμοια πυραμίδα με 9 σειρές; Εξηγώ πώς σκέφτηκα. λύση Παρατηρούμε ότι στην 1 η σειρά υπάρχει 1 κουτί, στη 2 η 2 κουτιά, στην 3 η 3 κουτιά. Άρα στην 4 η θα υπάρχουν 4 κουτιά, στην 5 η 5 κουτιά, στην 6 η 6 κουτιά, στην 7 η 7 κουτιά, στην 8 η 8 κουτιά, στην 9 η 9 κουτιά, κ.τλ. Μπορώ να ζωγραφίσω το πρόβλημα: Μπορώ να χρησιμοποιήσω πίνακα για να καταγράψω τις παρατηρήσεις μου. Αριθμός σειράς Πλήθος κουτιών Οπότε για την κατασκευή με 5 σειρές χρειαστήκαμε: = 15 κουτιά. Για την κατασκευή με 9 σειρές χρειαστήκαμε: = 45 κουτιά.
25 Μαθηματικά Φτιάχνουμε με το χάρακα ένα ορθογώνιο παραλληλόγραμμο με εμβαδόν: -12 τετραγωνάκια -10 τετραγωνάκια - 7 τετραγωνάκια λύση Για να σχεδιάσω ένα ορθογώνιο με δοσμένο εμβαδό θα πρέπει το γινόμενο δύο διαδοχικών πλευρών του να είναι όσο το εμβαδό που θέλω. Για να κατασκευάσω ένα ορθογώνιο με εμβαδό 12 τετραγωνάκια το γινόμενο των πλευρών μπορεί να είναι 3 4 =12. Για να κατασκευάσω ένα ορθογώνιο με εμβαδό 10 τετραγωνάκια το γινόμενο των πλευρών μπορεί να είναι 2 5 = 10. Για να κατασκευάσω ένα ορθογώνιο με εμβαδό 7 τετραγωνάκια το γινόμενο των πλευρών μπορεί να είναι 1 7 =7.
26 1 ο Κεφάλαιο Προτείνουμε μερικούς 6ψήφιους αριθμούς που μπορούμε να φτιάξουμε με τον πατώντας τα πλήκτρα 3, 5, 7, 9, 1. Γράφουμε 5 από αυτούς και τους διατάσσουμε από το μικρότερο στο μεγαλύτερο: < < < < < λύση Με τα ψηφία 3, 5, 7, 9, 1 μπορούμε να φτιάξουμε πολλούς διαφορετικούς αριθμούς: , , , , , , , , κ.τλ. Παίρνουμε 5 από αυτούς και τους διατάσσουμε από το μικρότερο στο μεγαλύτερο: < < < < Μπορούμε να διατάξουμε τους α- ριθμούς συγκρίνοντας τα ψηφία τους. Ξεκινάμε από το πρώτο ψηφίο των αριθμό το 1<3 < 5 < 7 < 9.
27 Μαθηματικά 29 Η πρόταση που ακολουθεί είναι σωστή ή λάθος; Δύο αριθμοί που έχουν τον ίδιο αριθμό ψηφίων είναι ίσοι; Σωστό Λάθος Απάντηση Λάθος. Γιατί για να είναι ίσοι θα πρέπει και τα ψηφία τους ένα προς ένα να είναι ίσα. Η πρόταση που ακολουθεί είναι σωστή ή λάθος; Μπορούμε να κάνουμε στρογγυλοποίηση ενός ακέραιου αριθμού σε όποιο ψηφίο θέλουμε; Σωστό Λάθος Απάντηση Σωστό, αρκεί να αναφέρουμε το ψηφίο στο οποίο γίνεται αυτή.
28 1 ο Κεφάλαιο 30 Μπορώ στην αφαίρεση να αλλάξω τη σειρά του μειωτέου και του αφαιρετέου όπως κάνω στην πρόσθεση; Απάντηση Όχι. Στην πράξη της πρόσθεσης αν αλλάξουμε τη σειρά των προσθετέων το άθροισμα δεν αλλάζει. Αυτό στην αφαίρεση δεν ισχύει, δε μπορούμε δηλαδή να αλλάξουμε τη θέση των δύο αριθμών, του μειωτέου και του αφαιρετέου γιατί δε μπορούμε από έναν α- ριθμό να αφαιρέσουμε κάποιον άλλο που είναι μεγαλύτερός του. Τι είναι ο άξονας συμμετρίας; Απάντηση Άξονας συμμετρίας ονομάζεται η ευθεία γραμμή που χωρίζει ένα σχήμα σε δύο μέρη με τέτοιο τρόπο ώστε αν διπλώσω το σχήμα στον άξονα συμμετρίας, τα δύο μέρη να συμπέσουν. Πώς υπολογίζεται το εμβαδό ενός ορθογωνίου παραλληλόγραμμου; Απάντηση Για να υπολογίσω το εμβαδό ενός ορθογωνίου παραλληλογράμμου πολλαπλασιάζω τα μήκη δύο διαδοχικών πλευρών του.
29 Μαθηματικά 31 Τετράδιο Εργασιών α. Ποιο από τα παρακάτω σχήματα έχουν ίσο εμβαδόν; Σχεδιάζουμε έναν ή περισσότερους άξονες συμμετρίας σε όποια από τα παραπάνω σχήματα είναι δυνατόν. λύση ΣΚΕΦΤΟΜΑΙ Άξονας συμμετρίας ονομάζεται η ευθεία γραμμή που χωρίζει ένα σχήμα σε δύο μέρη με τέτοιο τρόπο ώστε αν διπλώσω το σχήμα στον άξονα συμμετρίας τα δύο μέρη να συμπέσουν. Ένα σχήμα μπορεί να έχει περισσότερους από έναν άξονες συμμετρίας.
30 1 ο Κεφάλαιο 32 Τα σχήματα α, β και δ έχουν ίσα εμβαδά, γιατί καλύπτουν όλα την ίδια επιφάνεια: ένα τετραγωνάκι στο πλέγμα που είναι σχεδιασμένα. Άξονες συμμετρίες: το σχήμα α έχει 2 άξονες συμμετρίας, το σχήμα β δεν έχει άξονα συμμετρίας, το σχήμα γ έχει 1 άξονα συμμετρίας και το σχήμα δ έχει 4 άξονες συμμετρίας. β. Βρίσκω το λάθος και εξηγώ προφορικά γιατί δεν είναι λογικό να ισχύει το αποτέλεσμα στις παρακάτω πράξεις. Εκτιμώ αρχικά και στη συνέχεια υπολογίζω με ακρίβεια το σωστό αποτέλεσμα: λύση Για να βρω το λάθος πρέπει να παρατηρήσω και να εκτελέσω τις πράξεις. ΣΚΕΦΤΟΜΑΙ
31 Μαθηματικά 33-3,5 χιλιάδες + 3,5 χιλιάδες δεν μπορεί να κάνει Το σωστό είναι Δε γίνεται να αφαιρέσω μόνο 30 από το και να μείνουν ! Το σωστό είναι: ,00-30, ,69 - Δε μπορεί 3 φορές το 800 να κάνει ! Το σωστό είναι: 820 x γ. ιατάσσω τους αριθμούς από το μικρότερο στο μεγαλύτερο < < Ποιο ζευγάρι από αυτούς τους αριθμούς έχει άθροισμα που βρίσκεται πιο κοντά στο ; Εκτιμώ... Βρίσκω με ακρίβεια με το κομπιουτεράκι είχνω στην αριθμομηχανή το άθροισμα που βρίσκεται πιο κοντά στο 300 χιλιάδες. λύση
32 1 ο Κεφάλαιο 34 Πρέπει να συγκρίνω τους αριθμούς και να τους στρογγυλοποιήσω. ΣΚΕΦΤΟΜΑΙ Η σωστή σειρά είναι: < < γιατί : ίσοι 4 < 5 άρα < ίσοι 4 < 5 άρα < ίσοι ίσοι ίσοι 1 < 2 άρα < Πιο κοντά στο βρίσκεται το άθροισμα γιατί θα του λείπει μόνο 1, ενώ με το ζευγάρι , θα περισσεύουν 3.
33 Μαθηματικά 35 Ελέγχω = = δ. Έδωσα 50 ευρώ. Πήρα ρέστα 2 ευρώ και 50 λεπτά. Τι μπορεί να αγόρασα; Ελέγχω με εποπτικό υλικό. λύση Ότι πρέπει να κάνω διάφορους συνδυασμούς για να καταλήξω στο αποτέλεσμα που θέλω. ΣΚΕΦΤΟΜΑΙ Έχω ξοδέψει 50-2,5 = 47,5. Μπορεί να έχω πάρει διάφορα αγγεία, που να κοστίζουν όλα μαζί 47,5 ; - α περίπτωση: 12,5 + 12,5 + 12, = 47,5 - β περίπτωση: ,5 + 5 = 47,5 Ελέγχω τα ψηφία από αριστερά προς τα δεξιά.
34 1 ο Κεφάλαιο 36 ε. Βοηθώ τη Θεοδώρα να συμπληρώσει το μαγικό τετράγωνο: Στα άδεια κουτάκια θα τοποθετήσουμε αριθμούς με τέτοιο τρόπο, ώστε το άθροισμα των τεσσάρων αριθμών οριζόντια, κάθετα και διαγώνια να είναι το ίδιο. ιαγώνια το άθροισμα των αριθμών είναι: Μπορούμε να κατασκευάσουμε κι εμείς ένα μαγικό τετράγωνο; οκιμάζουμε πρώτα με ένα τετράγωνο που έχει διαστάσεις λύση Βρίσκω το διαγώνιο άθροισμα: =2100 Ξεκινώ από την πρώτη κάθετη και την πρώτη οριζόντια στήλη που λείπει μόνο ένας αριθμός και μετά συνεχίζω με τις άλλες Για να φτιάξω ένα δικό μου παρόμοιο μαγικό τετράγωνο διαλέγω πρώτα ένα άθροισμα (π.χ. 15) και βρίσκω τριάδες αριθμών που να δίνουν αυτό το άθροισμα. Στη συνέχεια ξεκινώντας διαγώνια τοποθετώ τους αριθμούς προσέχοντας κάθε φορά το άθροισμα να είναι 15. Ένα μαγικό τετράγωνο με 3 στήλες είναι το παρακάτω
35 Μαθηματικά 37 Λυμένες ασκήσεις εκτός βιβλίου Γράψτε τους παρακάτω αριθμούς στη σειρά από το μικρότερο στο μεγαλύτερο, χρησιμοποιώντας το σύμβολο της ανισότητας λύση Παρατηρούμε ότι όλοι οι αριθμοί έχουν το ίδιο πλήθος ψηφίων, οπότε η σύγκριση πρέπει να γίνει ψηφίο προς ψηφίο. Θα ξαναγράψουμε τους αριθμούς και ακριβώς από κάτω το πρώτο από τ αριστερά ψηφίο τους Επειδή 2 < 4 και 4 < 5 ο μεγαλύτερος είναι ο αριθμός Υπάρχουν δύο αριθμοί με πρώτο ψηφίο το 2, γι αυτό θα συγκρίνουμε το δεύτερο ψηφίο τους: Επειδή το 0 < 1 θα είναι < Τώρα μπορούμε να γράψουμε τους αριθμούς με τη σειρά από το μικρότερο προς το μεγαλύτερο < < <
36 1 ο Κεφάλαιο 38 Να στρογγυλοποιήσετε τους παρακάτω αριθμούς στην πλησιέστερη δεκάδα: i) ii) λύση i) Θα συγκρίνουμε το ψηφίο των μονάδων με τον αριθμό Το ψηφίο των μονάδων είναι το 7 που είναι μεγαλύτερο του 5, άρα το ψηφίο των δεκάδων θα αυξηθεί κατά μία μονάδα, ενώ το ψηφίο των μονάδων θα γίνει 0. ii) Το ψηφίο των μονάδων είναι το 1 που είναι μικρότερο του 5, άρα το ψηφίο των δεκάδων θα παραμείνει όπως είναι, ενώ το ψηφίο των μονάδων θα γίνει 0. Οι καταθέσεις μιας εταιρείας στην Τράπεζα στην αρχή της χρονιάς είναι ευρώ. Η εταιρεία μέσα στον χρόνο κατέθεσε στην Τράπεζα και άλλα Πόσες ήταν οι καταθέσεις της εταιρείας στο τέλος του χρόνου αν η τράπεζα έδωσε τόκο στο τέλος του χρόνου στην εταιρεία ; λύση Αφού στα χρήματα που υπήρχαν στην τράπεζα κατατέθηκαν και άλλα, τελικά το συνολικό ποσό θα είναι αυτό που θα βγει από την πρόσθεση των δύο ποσών. ΣΚΕΦΤΟΜΑΙ
37 Μαθηματικά 39 Κάνουμε λοιπόν την πρόσθεση: Αφού για τις καταθέσεις της αυτές η τράπεζα έδωσε στην εταιρεία στο τέλος του χρόνου τόκο τότε η εταιρεία θα έχει συνολικά στο τέλος του χρόνου: Άρα η εταιρεία θα έχει στο τέλος του χρόνου Μπορούμε να λύσουμε το πρόβλημα και με άλλους τρόπους: α = β ( ) = = Ο κύριος Γιάννης μάζεψε από το περιβόλι του 24 κιλά ντομάτες και θέλει να τις μοιράσει εξίσου σε 4 τελάρα. Πόσα κιλά θα βάζει σε κάθε τελάρο; λύση ΣΚΕΦΤΟΜΑΙ Ο κύριος Γιάννης θέλει να χωρίσει 24 κιλά ντομάτες σε 4 ίσα μέρη. Θα διαιρέσουμε λοιπόν τα κιλά ντομάτες με το 4 και θα βρούμε πόσα κιλά θα περιέχει καθένα από αυτά τα μέρη. Κάνουμε τη διαίρεση Άρα καθένα από τα 4 τελάρα θα περιέχει 6 κιλά ντομάτες.
38 1 ο Κεφάλαιο Να βάλετε στη σωστή διάταξη τους αριθμούς: α) < < β) < < Να στρογγυλοποιήσετε τους παρακάτω αριθμούς στο ψηφίο των εκατοντάδων: α) β) γ) Να κάνετε τις πράξεις: α) ( ) β) γ) δ) : 71 Ο Γιάννης αγόρασε 5 τετράδια και πλήρωσε 450 λεπτά του ευρώ. Πόσο κοστίζει το 1 τετράδιο; 5. Μια παρέα έξι παιδιών είπε τα κάλαντα και μοίρασε δίκαια τα χρήματα που συγκέντρωσε. Κάθε παιδί πήρε 42. Πόσα χρήματα είχαν συγκεντρώσει τα παιδιά συνολικά;
39 Μαθηματικά 41 Απαντήσεις των άλυτων ασκήσεων 1. α) < < β) < < α) β) γ) α) β) 1601 γ) δ) λεπτά
40 Μαθηματικά 42 Κεφάλαιο 2 ο Στην Ιχθυόσκαλα Οι αριθμοί μέχρι το Ένας αριθμός μπορεί να γραφεί με τρεις διαφορετικούς τρόπους: με ψηφία, με λέξεις και με μεικτό τρόπο. Για παράδειγμα: με ψηφία: με λέξεις: εκατόν τριάντα έξι χιλιάδες πεντακόσια με μεικτό τρόπο: 136 χιλιάδες 500. Θυμηθήκαμε στο προηγούμενο μάθημα πως λογαριάζουμε χιλιάδες. Ξέρουμε ότι = 10 (το 10 είναι μία μονάδα δεκάδων ή μία δεκάδα). Προσθέτουμε διαδοχικά στο 9 και το 1 μηδενικό και προσπαθούμε να λογαριάσουμε: = 100. Σκεφτόμαστε πόσα μηδενικά γράψαμε δεξιά και του 9 και του 1: γράψαμε 1 μηδενικό. Άρα στο άθροισμα που πήραμε από την πρόσθεση 9 +1 γράφουμε δεξιά 1 μηδενικό: = =100 Προχωράμε παρακάτω με τον ίδιο τρόπο: =1000 (αυτός είναι ο αριθμός χίλια ή αλλιώς μια μονάδα χιλιάδων). Με τον ίδιο τρόπο: = (δέκα χιλιάδες ή αλλιώς μία δεκάδα χιλιάδων) = (εκατό χιλιάδες ή αλλιώς μία εκατοντάδα χιλιάδων) = (1 εκατομμύριο ή 1 δεκάδα εκατομμυρίων).
41 Μαθηματικά 43 Ας δούμε τώρα το πινακάκι: Τοποθετούμε τον αριθμό ΕΚΑΤΟΜΜΥΡΙΑ ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Ε Δ Μ Ε Δ Μ Ε Δ Μ Διαβάζουμε: 1 μονάδα εκατομμυρίων. ΠΑΡΑΤΗΡΗΣΗ Το πρώτο τριψήφιο τμήμα από τα δεξιά ενός αριθμού αντιστοιχεί στην κλάση των μονάδων, το δεύτερο τριψήφιο τμήμα από τα δεξιά στην κλάση των χιλιάδων και το τρίτο τριψήφιο τμήμα στην τάξη των εκατομμυρίων. Η θέση κάθε ψηφίου μέσα σ έναν αριθμό χαρακτηρίζει και την αξία του σε σχέση με τα άλλα. Έτσι στον αριθμό: το 7 φανερώνει το 4 φανερώνει το 4 φανερώνει το 1 φανερώνει το 7 φανερώνει επτά τέσσερις τέσσερις μια δεκάδα εφτά μονάδες εκατοντάδες χιλιάδες δεκάδες χιλιάδες εκατοντάδες
42 2 ο Κεφάλαιο 44 Ας δούμε μερικά παραδείγματα Να τοποθετήσετε τους αριθμούς και ύστερα να γράψετε τι δηλώνει κάθε ψηφίο τους: 1) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ Το 7 εκατοντάδες χιλιάδων Το 5 δεκάδες χιλιάδων Το 8 μονάδες χιλιάδων Το 2 εκατοντάδες μονάδων Το 9 δεκάδες μονάδων Το 0 μονάδες 2) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ Το 6 εκατοντάδες χιλιάδων Το 3 δεκάδες χιλιάδων Το 1 μονάδες χιλιάδων Το 4 εκατοντάδες μονάδων Το 5 δεκάδες μονάδων Το 9 μονάδες
43 Μαθηματικά 45 3) ΧΙΛΙΑ ΕΣ ΜΟΝΑ ΕΣ Ε Μ Ε Μ Το 7 εκατοντάδες χιλιάδων Το 5 δεκάδες χιλιάδων Το 2 μονάδες χιλιάδων Το 1 εκατοντάδα μονάδων Το 4 δεκάδες μονάδων Το 5 μονάδες Ας πάμε τώρα να συγκρίνουμε αριθμούς μέχρι το και να προσπαθήσουμε να τους διατάξουμε. Σύγκριση δύο ακέραιων αριθμών σημαίνει να βρούμε αν αυτοί είναι ίσοι ή στην περίπτωση που δεν είναι ίσοι, να βρούμε ποιος είναι μεγαλύτερος. Δύο ακέραιοι αριθμοί είναι ίσοι αν έχουν τα ίδια ψηφία. Διάταξη ακέραιων αριθμών σημαίνει η τοποθέτησή τους από το μικρότερο προς το μεγαλύτερο ή από το μεγαλύτερο προς το μικρότερο. Τα σύμβολα που χρησιμοποιούμε για τη διάταξη είναι το < αν διατάξουμε από το μικρότερο προς το μεγαλύτερο ή το > αν διατάξουμε από το μεγαλύτερο προς το μικρότερο. Ας δούμε μερικά παραδείγματα Να συγκρίνετε και να διατάξετε από το μικρότερο προς το μεγαλύτερο τους αριθμούς: , , , ,
44 2 ο Κεφάλαιο 46 Λύση Για να κάνουμε τη διάταξη πρέπει να συγκρίνουμε τους αριθμούς. Θα ξαναβρούμε τους αριθμούς και ακριβώς από κάτω το πρώτο από τ αριστερά ψηφίο τους Επειδή το 1 < 2 το 2 < 3 και το 3 < 5. Ο μεγαλύτερος από τους αριθμούς είναι ο και ο μικρότερος ο Υπάρχουν δύο αριθμοί με πρώτο ψηφίο το 3 γι αυτό θα συγκρίνουμε τα άλλα ψηφία τους. άρα ο αριθμός < Οπότε τώρα μπορούμε να γράψουμε τους αριθμούς με τη σειρά από το μικρότερο προς το μεγαλύτερο: ίσοι ίσοι ίσοι ίσοι 5 > < < < < Έναν αριθμό μπορούμε να τον αναλύσουμε σε δεκαδικό ανάπτυγμα. Για παράδειγμα: = Ένας αριθμός μπορεί να εκφραστεί ως άθροισμα, διαφορά, γινόμενο ή πηλίκο δύο άλλων αριθμών. Για παράδειγμα: = = = : 10 =
45 Μαθηματικά 47 Το βάρος είναι μέγεθος που χαρακτηρίζει όλα τα υλικά σώματα, μέχρι και ο αέρας που δε φαίνεται έχει και αυτός βάρος. Η βασική μονάδα μέτρησης του βάρους είναι το κιλό ή χιλιόγραμμο. Το κιλό ή χιλιόγραμμο αποτελείται από 1000 γραμμάρια. Το γραμμάριο (γραμ.) είναι υποδιαίρεση του κιλού. 1 κιλό = 1000 γραμμάρια ή 1 γραμμάριο = 1 χγρ. = 0,001 χγρ Ένα πολλαπλάσιο του κιλού, που χρησιμοποιούμε για τη μέτρηση, του βάρους μεγάλων αντικειμένων όπως είναι τα αυτοκίνητα, τα αεροπλάνα, κ.τλ. είναι ο τόνος. Ο τόνος αποτελείται από 1000 κιλά. 1 τόνος = κιλά ή 1 χγρ. = Για παράδειγμα: 1 τον. = 0,001 τον Οι 13,2 τόνοι είναι 13, = κιλά. Τα κιλά είναι : 1000 = 13,7 τόνοι.
46 2 ο Κεφάλαιο 48 Το ευρώ είναι το νόμισμα που χρησιμοποιούμε για τις συναλλαγές μας. 1 ευρώ έχει 100 λεπτά. Το 1 λεπτό είναι υποδιαίρεση του ευρώ. Υπάρχουν νομίσματα του 1 λεπτού, των 2 λεπτών, των 5 λεπτών, των 10 λεπτών, των 20 λεπτών και των 50 λεπτών, τα οποία είναι υποδιαιρέσεις του ευρώ και νομίσματα των 2 ευρώ, των 5 ευρώ, των 10 ευρώ, των 20 ευρώ, των 50 ευρώ, των 100 ευρώ, των 200 ευρώ και των 500 ευρώ που είναι πολλαπλάσια του ευρώ. Για παράδειγμα: 1) Πόσα κέρματα των 10 λεπτών κάνουν ; : 10 = 1000 κέρματα των 10 λεπτών. 2) Πόσα κέρματα των 20 λεπτών κάνουν ; :20 = 500 κέρματα των 20 λεπτών. 3) Μπορείς να συνθέσεις 1000 με διαφορετικούς τρόπους; = 1000 (5 φορές διακόσια ) = 400 (2 φορές διακόσια ευρώ) = 600 (6 φορές εκατό ευρώ) =1000 ευρώ.
47 Μαθηματικά 49 ραστηριότητες του βιβλίου ραστηρι ότητα 1η Στην ιχθυόσκαλα Με ποιους τρόπους μπορούμε να εκφράσουμε το 1 εκατομμύριο; Σε όλες τις αλιευτικές περιοχές και στα νησιά υπάρχουν ιχθυόσκαλες... Ποσότητες ψαριών που αλιεύτηκαν στα ελληνικά νησιά το 1992 Κοκκινόψαρα Ξιφίες Ροφοί Τσιπούρες Χάννοι τετρακόσιοι ενενήντα εφτά τόνοι ή 497 χιλιάδες κιλά χίλιοι τόνοι ή... κιλά εκατόν σαράντα τόνοι ή... κιλά εκατόν εβδομήντα ένας τόνοι ή... κιλά εκατόν ογδόντα εννιά τόνοι ή... κιλά ίπλα σε κάθε είδος ψαριού συμπληρώνω τον αριθμό που αντιστοιχεί στην ποσότητα σε κιλά που αλιεύτηκε το 1992 (1Μ = 1 κιλό):
48 2 ο Κεφάλαιο 50 Εκατομμύρια Χιλιάδες Μονάδες Μ Ε Μ Ε Μ Είδος ψαριού Κοκ/ρα Ξιφίες Ροφοί Τσιπούρες Χάννοι Πόσα είδη ψαριού αλιεύτηκε στα ελληνικά νερά το 1992; σε μεγαλύτερη ποσότητα;... σε μικρότερη ποσότητα;... Παρατηρώ προσεκτικά τον πίνακα και το γράφημα και συμπληρώνω με Σ (σωστό) ή Λ (λάθος) τις προτάσεις: - Τα κοκκινόψαρα είναι περίπου τα μισά από ότι οι ξιφίες - Οι χάνοι είναι λίγο περισσότεροι από τις τσιπούρες - Οι ροφοί είναι περίπου δέκα φορές λιγότεροι από τους ξιφίες - Οι τσιπούρες είναι λιγότερες από τους ροφούς - Οι ξιφίες είναι περίπου όσα όλα τα υπόλοιπα είδη ψαριών μαζί. Συζητάμε στην τάξη για τη μόλυνση των θαλασσών στις μέρες μας και τις συνέπειές της.
49 Μαθηματικά 51 ΛΥΣΗ 1 τόνος = κιλά. Άρα Ποσότητες ψαριών που αλιεύτηκαν στα ελληνικά νησιά το 1992 Κοκκινόψαρα Ξιφίες Ροφοί Τσιπούρες Χάννοι τετρακόσιοι ενενήντα εφτά τόνοι ή 497 χιλιάδες κιλά χίλιοι τόνοι ή = κιλά εκατόν σαράντα τόνοι ή κιλά εκατόν εβδομήντα ένας τόνοι ή = κιλά εκατόν ογδόντα εννιά τόνοι ή = κιλά τόνοι είναι = κιλά. Εκατομμύρια Χιλιάδες Μονάδες Μ Ε Μ Ε Μ Είδος ψαριού Κοκ/ρα Ξιφίες Ροφοί Τσιπούρες Χάννοι Για να βρούμε ποιο είδος ψαριού αλιεύτηκε στα ελληνικά νερά το 1992 σε μεγαλύτερη ποσότητα πρέπει να συγκρίνουμε τους αριθμούς:
50 2 ο Κεφάλαιο 52 Παρατηρούμε ότι ο αριθμός έχει 7 ψηφία άρα είναι ο μεγαλύτερος. Ξαναγράφουμε τους υπόλοιπους αριθμούς και από κάτω γράφουμε το πρώτο ψηφίο τους Το 4 > 1 άρα από τους υπόλοιπους αριθμούς ο μεγαλύτερος είναι ο αριθμός Υπάρχουν 3 αριθμοί με πρώτο ψηφίο το 1 γι αυτό θα συγκρίνουμε το δεύτερο ψηφίο τους Επειδή το 4 < 7 και το 7 < 8 μεγαλύτερος είναι ο αριθμός και μικρότερος ο αριθμός Οπότε τώρα μπορούμε να γράψουμε τους αριθμούς με τη σειρά από το μεγαλύτερο προς το μικρότερο > > > > Οπότε σε μεγαλύτερη ποσότητα αλιεύτηκαν οι ξιφίες και σε μικρότερη οι ροφοί. - Τα κοκκινόψαρα είναι περίπου τα μισά από ότι οι ξιφίες Σ Τα κοκκινόψαρα είναι κιλά, οι ξιφίες είναι κιλά άρα τα κοκκινόψαρα είναι περίπου τα μισά από ότι οι ξιφίες. - Οι χάνοι είναι λίγο περισσότεροι από τις τσιπούρες Λ Οι χάνοι είναι , οι τσιπούρες είναι κιλά οπότε οι χάνοι είναι περισσότεροι από τις τσιπούρες. - Οι ροφοί είναι περίπου δέκα φορές λιγότεροι από τους ξιφίες. Λ Οι ροφοί είναι κιλά ενώ οι ξιφίες είναι κιλά :10 = κιλά οπότε οι ροφοί δεν είναι περίπου δέκα φορές λιγότερο από τους ξιφίες, είναι 7 φορές περίπου λιγότεροι από τους ξιφίες.
51 Μαθηματικά 53 - Οι τσιπούρες είναι λιγότερες από τους ροφούς. Λ Οι τσιπούρες είναι κιλά και οι ροφοί είναι κιλά άρα οι τσιπούρες είναι περισσότερες από τους ροφου ς. - Οι ξιφίες είναι περίπου όσα όλα τα υπόλοιπα είδη ψαριών μαζί. Σ Οι ξιφίες είναι κιλά για να βρούμε πόσα κιλά είναι όλα τα υπόλοιπα ψάρια θα τα προσθέσουμε: ηλαδή όλα τα υπόλοιπα ψάρια είναι κιλά άρα είναι περίπου τόσα κιλά όσα και οι ξιφίες. Τα απόβλητα των βιομηχανιών που ρίχνονται στη θάλασσα καθώς και τα σκουπίδια και τα λύμματα τη μολύνουν με αποτέλεσμα η θάλασσα να κινδυνεύει να νεκρωθεί και οι επιπτώσεις θα είναι σοβαρές όχι μόνο για κάθε μορφή ζωής που υπάρχει στη θάλασσα όπως τα ψάρια, τα θαλάσσια φυτά αλλά και για τον άνθρωπο. Γι αυτό θα πρέπει να γίνεται επεξεργασία των λυμάτων και οι άνθρωποι να φροντίζουν να διατηρούν καθαρές τις ακτές και τις θάλασσες.
52 2 ο Κεφάλαιο 54 Ένας αριθμός μπορεί να γραφεί με τρεις διαφορετικούς τρόπους: με ψηφία (π.χ ), με λέξεις (π.χ. τριάντα τέσσερις χιλιάδες εξακόσια εβδομήντα δύο) και με μεικτό τρόπο (π.χ. 34 χιλιάδες 672). Θα πρέπει να μπορούμε με έναν εύκολο τρόπο να διαβάζουμε έναν πολυψήφιο α- ριθμό. Ακολουθούμε τον εξής κανόνα: - Χωρίζουμε τον αριθμό (αρχίζοντας από δεξιά) σε τμήματα των τριών ψηφίων το καθένα. Κάθε ένα από αυτά τα τμήματα (αρχίζοντας από δεξιά) τα ονομάζουμε κατά σειρά: το 1 ο μονάδες το 2 ο χιλιάδες το 3 ο εκατομμύρια Τα τριψήφια τμήματα που αναφέρονται παραπάνω αποτελούν τις κλάσεις του αριθμού. - Προσέξτε όμως: το πρώτο τμήμα από αριστερά μπορεί να μην είναι συμπληρωμένο με τρία ψηφία. Καθένα όμως από τα υπόλοιπα τμήματα πρέπει να έχει τρία ψηφία. - Καθένα από τα ψηφία μιας κλάσης έχει διαφορετική αξία. Έτσι το πρώτο από τα δεξιά ψηφία αντιστοιχεί στις μονάδες, το μεσαίο ψηφίο αντιστοιχεί στις δεκάδες και το πρώτο από τα αριστερά ψηφίο αντιστοιχεί στις εκατοντάδες. Αυτά τα ψηφία αποτελούν τις τάξεις της κλάσης.
53 Μαθηματικά 55 Όταν απαγγέλλουμε έναν αριθμό ακολουθούμε τον εξής κανόνα: - Αρχίζουμε την απαγγελία από το πρώτο από τα αριστερά τμήμα. Διαβάζουμε τον αριθμό που έχει το κάθε τμήμα και τον αντίστοιχο χαρακτηρισμό. Αν ένα τμήμα έχει όλα τα ψηφία του μηδενικά τότε το παραλείπουμε κατά την απαγγελία του αριθμού. Κάθε ψηφίο έχει διαφορετική αξία μέσα σ έναν αριθμό. Η αξία του εξαρτάται από τη θέση που έχει το ψηφίο μέσα στον αριθμό. 1 τόνος = 1000 κιλά 1 κιλό = 1000 γραμμάρια 1 = 100 λεπτά.
54 2 ο Κεφάλαιο 56 Συμπληρώνω τους αριθμούς που λείπουν: λύση Στην κάθε περίπτωση θα φτάσουμε στο με το στοιχείο που έχουμε δηλαδή τον αριθμό και την πράξη που πρέπει να κάνουμε. ΣΚΕΦΤΟΜΑΙ - Πρώτη περίπτωση: ποιος αριθμός συν 1 κάνει ; Βρίσκω: = γιατί = 1. Άρα ο αριθμός που λείπει είναι ο Δεύτερη περίπτωση: Ποιος αριθμός αν τον πολλαπλασιάσω με το θα μου κάνει ; Βρίσκω: = γιατί : = Άρα ο αριθμός που λείπει είναι ο Τρίτη περίπτωση: Ποιος αριθμός συν το 990 κάνει ; Βρίσκω: = γιατί = Άρα ο αριθμός που λείπει είναι ο
55 Μαθηματικά 57 - Τέταρτη περίπτωση: Ποιος αριθμός αν τον πολλαπλασιάσουμε με το 4 θα μου κάνει ; Βρίσκω: = γιατί : 4 = Άρα ο αριθμός που λείπει είναι ο Πέμπτη περίπτωση: Ποιος αριθμός συν το κάνει ; Βρίσκω: = γιατί = Άρα ο αριθμός που λείπει είναι ο Έκτη περίπτωση: Ποιος αριθμός αν τον πολλαπλασιάσω με το 2 θα μου κάνει ; Βρίσκω: = γιατί : 2 = Άρα ο αριθμός που λείπει είναι ο Οπότε:
56 2 ο Κεφάλαιο 58 Με ποιους διαφορετικούς τρόπους μπορούμε να γράψουμε έναν αριθμό; Απάντηση Ένας αριθμός μπορεί να γραφεί με τρεις διαφορετικούς τρόπους: με ψηφία, με λέξεις και με μεικτό τρόπο. Τι δηλώνει κάθε ψηφίο του αριθμού ; Απάντηση 9 Εκατοντάδες χιλιάδων 7 δεκάδες χιλιάδων 6 μονάδες χιλιάδων 4 εκατοντάδες 8 δεκάδες 2 μονάδες
57 Μαθηματικά 59 ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Ε Δ Μ Ε Δ Μ Ένας τόνος με πόσα κιλά ισοδυναμεί; Με κιλά Απάντηση Ένα ευρώ πόσα λεπτά είναι; Απάντηση 100 λεπτά.
58 Μαθηματικά 60 Τετράδιο Εργασιών Ασκήσεις α. Ο τέταρτος πλανήτης ήταν ο πλανήτης του επιχειρηματία. Αυτός ο άνθρωπος ήταν τόσο απασχολημένος που, όταν έφτασε ο μικρός πρίγκιπας, δε σήκωσε καν το κεφάλι. Γράφω τους αριθμούς που υπάρχουν στους διαλόγους. ΕΚΑΤΟΜΜΥΡΙΑ ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Μ Ε Δ Μ Ε Δ Μ 1
59 Μαθηματικά 61 ΕΚΑΤΟΜΜΥΡΙΑ ΧΙΛΙΑΔΕΣ ΜΟΝΑΔΕΣ Μ Ε Δ Μ Ε 100 Δ 10 Μ Πώς μπορούμε να γράψουμε στον άβακα τον αριθμό «σχεδόν 1 εκατομμύριο»; λύση Στον άβακα μπορούμε να γράφουμε μόνο ακριβείς μετρήσεις. Το «σχεδόν ένα εκατομμύριο» μπορούμε να το «γράψουμε» ως β. Υπολογίζω τα αθροίσματα, αφού κάνω πρώτα μια εκτίμηση του αποτελέσματος. Πόσο διαφέρει η εκτίμηση που έκανα από το ακριβές αποτέλεσμα; Αλλάζει το αποτέλεσμα αν προσθέσουμε τους αριθμούς κατεβαίνοντας ή ανεβαίνοντας κάθε φορά;
60 2 ο Κεφάλαιο 62 λύση Στην πρώτη περίπτωση για να εκτιμήσω θα κάνω μια γρήγορη νοητή πρόσθεση των πιο μεγάλων αριθμών: = Για να βρω το ακριβές αποτέλεσμα θα κάνω πρόσθεση: = ή Η διαφορά ανάμεσα στην εκτίμησή μου και στο ακριβές αποτέλεσμα ήταν πολύ μικρή. Στη δεύτερη περίπτωση για να εκτιμήσω μπορώ να κάνω μια γρήγορη στρογγυλοποίηση των πιο μεγάλων αριθμών και μετά να κάνω μια γρήγορη νοητή πρόσθεσή τους: = (Το το στρογγυλοποίησα σε , το σε και το 990 σε 1.000). Για να βρω το ακριβές αποτέλεσμα θα κάνω πρόσθεση: = ή
61 Μαθηματικά Η διαφορά ανάμεσα στην εκτίμησή μου και στο ακριβές αποτέλεσμα ήταν μικρή σε σχέση με τον αριθμό. Το αποτέλεσμα δεν αλλάζει αν κάνουμε την πρόσθεση από πάνω προς τα κάτω ή αντίθετα, γιατί στην πρόσθεση μπορούμε να βάλουμε τους προσθετέους με όποια σειρά θέλουμε. Στα συγκεκριμένα παραδείγματα, στην πρώτη περίπτωση μας εξυπηρετεί να κάνουμε τις νοητές πράξεις από κάτω προς τα πάνω, ενώ στη δεύτερη από πάνω προς τα κάτω. γ. Με πόσα χαρτονομίσματα μπορώ να έχω ένα ποσό αξίας 1 εκατομμυρίου: Αν χρησιμοποιήσω χαρτονομίσματα μόνο των 500 ; Αν χρησιμοποιήσω χαρτονομίσματα των 100 ; Αν έχω στη διάθεσή μου χαρτονομίσματα των 200 και των 50 ταυτόχρονα; ίνω 2 διαφορετικά παραδείγματα. λύση Για να κάνουμε με χαρτονομίσματα των 500 σκέφτομαι: με ποιον αριθμό πρέπει να πολλαπλασιάσω το 500 για να μου κάνει ; Βρίσκω: = γιατί : 500 = Άρα χρειαζόμαστε χαρτονομίσματα των 500. Για να βρω πως θα κάνω με χαρτονομίσματα των 100 σκέφτομαι: Με ποιον αριθμό πρέπει να πολλαπλασιάσω το 100 για να μου κάνει ; Βρίσκω: = γιατί : 100 = Άρα χρειαζόμαστε χαρτονομίσματα των 100. Με τα χαρτονομίσματα των 200 και των 50 μπορούμε να κάνουμε πολλούς συνδυασμούς, για παράδειγμα: Για να βρω πως θα κάνω με χαρτονομίσματα των 200 και των 50 σκέφτομαι: Αν πολλαπλασιάσω το με το 200 θα μου κάνει = Άρα θα χρειαστώ 4000 χαρτονομίσματα των 200.
62 2 ο Κεφάλαιο 64 Από το μέχρι το είναι γιατί = Με ποιον αριθμό πρέπει να πολλαπλασιάσω το 50 για να μου κάνει ; Βρίσκω: = γιατί :50 = Άρα θα χρειαστώ και χαρτονομίσματα των 50 για να κάνω , α- φού = , ή Αν πολλαπλασιάσω το 200 με το 3000 θα μου κάνει: = Άρα θα χρειαστώ 3000 χαρτονομίσματα των 200. Από το μέχρι το είναι γιατί = Με ποιον αριθμό πρέπει να πολλαπλασιάσω το 50 για να μου κάνει ; Βρίσκω = γιατί : 50 = Άρα θα χρειαστώ και χαρτονομίσματα των 50 για να κάνω , α- φού = δ. Το κρυπτόλεξο των εκατομμυρίων Κερδίζει όποια ομάδα βρει οριζόντια ή κάθετα: τρεις 7ψήφιους αριθμούς που το ψηφίο των εκατομμυρίων να είναι μεγαλύτερο από 4. τρεις 7ψήφιους αριθμούς που το ψηφίο των εκατοντάδων χιλιάδων να είναι μικρότερο από 5.
Τι είναι: μονάδα, δεκάδα και εκατοντάδα
Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν
Διαβάστε περισσότεραΌλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.
1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ο. Στην ιχθυόσκαλα. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 2 ο Υπενθύµιση - Οι αριθµοί µέχρι το 1..000..000 Στην ιχθυόσκαλα Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να εκτιµάς το αποτέλεσµα πριν κάνεις την αριθµητική πράξη.
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Ε Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις αθηματικά ημοτικού ΚΟΣΙΣ ΠΑΠΑΟΠΟΥΛΟΣ Περιεχόμενα νότητα Κεφάλαιο Υπενθύμιση Τάξης... 5 Κεφάλαιο 2 Υπενθύμιση Οι αριθμοί μέχρι το.000.000... 8 Κεφάλαιο 3 Οι αριθμοί
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 1 ο Υπενθύµιση Τάξης ΠΑΙΧΝΙ ΙΑ ΣΤΗΝ ΚΑΤΑΣΚΗΝΩΣΗ Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να θυµηθείς πώς αντιµετωπίζουµε προβλήµατα της καθηµερινής µας ζωής µε τη βοήθεια
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότεραΛέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΚάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.
A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της
Διαβάστε περισσότεραΟι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
Διαβάστε περισσότεραΠρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από
Διαβάστε περισσότεραΔιαχειρίζομαι αριθμούς έως το 10.000
Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,
Διαβάστε περισσότερα1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότεραΦίλη μαθήτρια, φίλε μαθητή
Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,
Διαβάστε περισσότεραΥπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση
ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΕΙΣ ΓΝΩΣΕΩΝ ΔΕΞΙΟΤΗΤΩΝ
1. Φτιάχνουμε στόχους με άδεια κουτιά. Αν χρειαστήκαμε 6 κουτιά για να στήσουμε 3 σειρές, πόσα κουτιά θα χρειαστούμε για να στήσουμε μία παρόμοια πυραμίδα με 5 σειρές; Α. Β. Γ. Δ. 2. Πόσα κουτιά θα χρειαστούμε
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 33 38 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ - Κεφ. 33 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕ ΤΟ,,.000. Κάνω τους
Διαβάστε περισσότεραΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότεραΗ κλασματική γραμμή είναι η πράξη της διαίρεσης.
όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 5 ΚΕΦΑΛΑΙΟ 25. Δεκαδικά Κλάσματα - Δεκαδικοί Αριθμοί ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΕΝΟΤΗΤΑ 5 ΚΕΦΑΛΑΙΟ 25 Δεκαδικά Κλάσματα - Δεκαδικοί Αριθμοί ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Πως μπορούμε να χωρίσουμε Η ακέραια μονάδα μπορεί να χωριστεί σε 10, 100, 1.000 κλπ. ίσα μέρη. 1 = 10
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ. Γράφω καλά. στο τεστ των. Μαθηματικών
ΓΙΑΝΝΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ ΔΗΜΗΤΡΗΣ ΠΑΠΑΘΑΝΑΣΙΟΥ Γράφω καλά στο τεστ των Μαθηματικών E, ΔΗΜΟΤΙΚΟΥ Ανακεφαλαίωση της θεωρίας με πίνακες και παραδείγματα Διαγωνίσματα Αναλυτικές απαντήσεις με έμφαση στα δύσκολα
Διαβάστε περισσότεραΜαθηµατικά Τεύχος Α. Φύλλα εργασίας. Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ. Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα
Παίζω, Σκέφτοµαι, Μαθαίνω Φύλλα εργασίας Μαθηµατικά Τεύχος Α Για παιδιά ΣΤ ΗΜΟΤΙΚΟΥ Συµπληρωµατικές ασκήσεις & Προβλήµατα Ανάλυση θεωρίας µε ασκήσεις και παραδείγµατα 116 σελίδες Περιεχόµενα 1η ενότητα:
Διαβάστε περισσότερα1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ...
Eλέγχω τις γνώσεις μου Aσκήσεις 1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό:......
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 7 ο εκαδικά κλάσµατα δεκαδικοί αριθµοί Στο εργαστήρι πληροφορικής Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να διαβάζουµε, να γράφουµε και να συγκρίνουµε δεκαδικούς
Διαβάστε περισσότερα(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία.
(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. Περίμετρος ενός σχήματος είναι το άθροισμα των πλευρών του το οποίο εκφράζεται με τη μονάδα
Διαβάστε περισσότεραΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης
Διαβάστε περισσότεραΟι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
Διαβάστε περισσότεραΑσκήσεις
Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614 185 212 709 221 127 667 + 127 + 111 + 100 + 202 + 103 548 921 916 943 955 345 538 816 248 347 723 707 340 248 394 307 + 249 + 237 + 185
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα
ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 21 26) Πηγή πληροφόρησης: e-selides 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ - κεφ. 21 26 Συμπληρώνουμε σωστά τον παρακάτω
Διαβάστε περισσότεραΑ.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Διαβάστε περισσότεραΦυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση
Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί
Διαβάστε περισσότεραΚανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ
ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε
Διαβάστε περισσότεραΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά
ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε
Διαβάστε περισσότεραΌλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού
Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΡητοί Αριθμοί - Η ευθεία των αριθμών
ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ρητοί Αριθμοί - Η ευθεία των αριθμών Ρητοί αριθμοί (ℚ ονομάζονται οι αριθμοί οι οποίοι μπορούν να εκφραστούν με ένα κλάσμα με ακέραιους όρους. Με
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Μαθηματικά Ε Τεύχος 1οο ΑΡΒΑΝΙΤΙΔΗΣ ΘΕΟΔΩΡΟΣ ΣΠΥΡΙΔΩΝΙΔΗΣ ΑΝΤΩΝΙΟΣ ΑΚΡΙΒΟΠΟΥΛΟΥΥ ΓΕΩΡΓΙΑ Μαθηματικά Ε Μαθηματικά Ε Υπενθύμιση Δ τάξης Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότερα3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 5 + 1 4 + 1. Κάνω τις ασκήσεις
3. Παρατηρώ παρακάτω πώς σχηματίζονται οι αριθμοί από το 1 έως το 10: 9 + 1 7 + 1 8 + 1 + 1 3 + 1 4 + 1 5 + 1 6 + 1 1 + 1 0 + 1 0 1 3 4 5 6 7 8 9 10 Κάνω τις ασκήσεις 1. Γράφω με τη σειρά μέσα στα κυκλάκια
Διαβάστε περισσότεραΗμερομηνία: Ονοματεπώνυμο:
Ημερομηνία: Ονοματεπώνυμο: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Λύνω τα προβλήματα: α. Η Ανδρομάχη αγόρασε ένα τετράδιο με 2 και 35 λ., ένα μαρκαδόρο με 3 και 2 λ. και ένα σετ υλικών για
Διαβάστε περισσότεραΕπιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ
Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε
Διαβάστε περισσότεραΑγαπητοί γονείς, Αντιγόνη Λυκοτραφίτη
Αγαπητοί γονείς, Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Γ Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια και λειτουργεί παράλληλα αλλά και συμπληρωματικά με
Διαβάστε περισσότεραΎλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...
ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Διαβάστε περισσότερα3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ
1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία
Διαβάστε περισσότεραΜαθηματικα A Γυμνασιου
Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότεραΚάθε φυσικός αριθμός έχει έναν επόμενο αριθμό. Κάθε φυσικός αριθμός (εκτός από το 0) έχει έναν προηγούμενο φυσικό αριθμό.
A.1.1 Φυσικοί αριθμοί Διάταξη φυσικών Στρογγυλοποίηση Φυσικοί αριθμοί OÚÈÛÌfi 1. Φυσικοί αριθμοί λέγονται οι αριθμοί 0, 1, 2, 3,... και συμβολίζονται με το γράμμα Ν (το οποίο είναι το αρχικό γράμμα της
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΜαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος Κεφάλαιο 1o : Οι Φυσικοί Αριθµοί ΜΑΘΗΜΑ 1 Υποενότητα 1.1: Φυσικοί Αριθµοί ιάταξη Φυσικών - Στρογγυλοποίηση Θεµατικές Ενότητες: 1. Φυσικοί Αριθµοί - ιάταξη Φυσικών
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ
ΚΕΦΑΛΑΙΟ 2 Ο : ΚΛΑΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Όταν ένα μέγεθος ή ένα σύνολο χωριστεί σε ν ίσα μέρη, το κάθε ένα από αυτά ονομάζεται.. και συμβολίζεται : 2. Κάθε τμήμα του μεγέθους ή του συνόλου αντικειμένων,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΓιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο
Γιάννης Παπαθανασίου Δημήτρης Παπαθανασίου MΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΝΕΑ ΕΚΔΟΣΗ Σύμφωνα με το νέο σχολικό βιβλίο Περιεχόμενα Προλογικό σημείωμα... 9 Ενότητα 1 Κεφάλαιο 1 Υπενθύμιση Α μέρος... 13 Κεφάλαιο
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΌλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού
Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές
Διαβάστε περισσότερατον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή
ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει
Διαβάστε περισσότεραΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =
Διαβάστε περισσότεραΑριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
Διαβάστε περισσότεραΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα
Διαβάστε περισσότεραΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ
ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα
Διαβάστε περισσότεραΑπό τι αποτελούνται; 4 όροι. Θεωρία. Κλάσμα ονομάζω τον αριθμό που φανερώνει. Κλάσματα ομώνυμα και ετερώνυμα. Μαθηματικά. Όνομα:
Μαθηματικά Κεφάλαιο Όνομα: Ημερομηνία: / / Θεωρία Κλάσμα ονομάζω τον αριθμό που φανερώνει ένα μέρος ενός συνόλου. Παράδειγμα Τα κλάσματα τα χρησιμοποιούμε για να δηλώσουμε το μέρος ενός πράγματος, δηλαδή
Διαβάστε περισσότερα2. Να γράψετε έναν αριθμό που είναι μεγαλύτερος από το 3,456 και μικρότερος από το 3,457.
1. Ένα κεφάλαιο ενός βιβλίου ξεκινάει από τη σελίδα 32 και τελειώνει στη σελίδα 75. Από πόσες σελίδες αποτελείται το κεφάλαιο; Αν το κεφάλαιο ξεκινάει από τη σελίδα κ και τελειώνει στη σελίδα λ, από πόσες
Διαβάστε περισσότεραΛύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:
Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια
Διαβάστε περισσότεραΣτόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης
Στόχοι ΑΠΣ για τα μαθηματικά της Ε τάξης ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΚΕΦΑΛΑΙΑ ΣΤΟΧΟΙ ΧΡΟΝΟΣ Αριθμοί και πράξειςακέραιοι 2, 3, 4, 5 2. να μπορούν να εκφράζουν αριθμούς μέχρι και το 1.000.000 με διάφορους τρόπους
Διαβάστε περισσότεραΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΥΡΩ ΤΕΤΡΑΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ. ΠΕΡΙΕΧΕΙ: Πρωτότυπες ασκήσεις και προβλήματα που θα βοηθήσουν τα παιδιά στις συναλλαγές.
ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΥΡΩ ΤΕΤΡΑΔΙΟ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΠΕΡΙΕΧΕΙ: Πρωτότυπες ασκήσεις και προβλήματα που θα βοηθήσουν τα παιδιά στις συναλλαγές. Αγοράζω Πληρώνω Παίρνω ρέστα Συνεργάστηκαν οι: Σπίνος Γεράσιμος, Υποδ/ντής
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν
Διαβάστε περισσότεραΚεφάλαιο 53 : Αριθμοί μέχρι το Κλάσματα και δεκαδικοί
10-0059MATHIMATIKAGDIMOTIKOU4_10 MAΘHTHΣ MAΘHM Γ 13/2/2013 10:31 πμ Page 1 9 η ενότητα Αριθμοί μέχρι το 10.000 Κλάσματα και δεκαδικοί Πράξεις γεωμετρία 53 54 55 56 57 58 59 Κεφάλαιο 53 : Αριθμοί μέχρι
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότερα3 + 5 = 23 :13 + 18 = 23
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Κωνσταντίνος Βρυώνης Σπυρίδων Δουκάκης Βασιλική Καρακώστα Γεώργιος Μπαραλής Ιωάννα Σταύρου Μαθηματικά ISBN Set 978-960-06-5659-6
Διαβάστε περισσότερα5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ
5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε στο χώρο που σας
Διαβάστε περισσότεραΕνδεικτική Οργάνωση Ενοτήτων. E Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων E Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1 000 000 000 8 Επανάληψη
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότερα