Conformal algebra: R-matrix and star-triangle relations.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Conformal algebra: R-matrix and star-triangle relations."

Transcript

1 Conformal algebra: R-matrix and star-triangle relations. D. Chicherin, A. P. Isaev and S. Derkachov 3 Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia Chebyshev Laboratory, St.-Petersburg State University, 4th Line, 9b, Saint-Petersburg, 9978 Russia 3 St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 7, 903 St. Petersburg, Russia Supersymmetry in Integrable Models December 8-30, 03, Hannover, Germany /

2 Plan Introduction. Star-triangle relations (STR) and multiloop calculations R-operators and L-operators R- and L-operators for conformal algebra Conformal algebra conf(r p,q ) Spinor and differential representations of conf(r p,q ) 3 R-matrix and general R-operator /

3 Star-triangle relation (STR) Firstly considered in CFT (see e.g. E.S.Fradkin, M.Ya.Palchik, 978) d D z G(α, β) = (x z) α z (α+β) (z y) β (x) β (x y) ( D α β) (y), α where x, y, z R D, parameters α := D α, α +α+β +β = D, x β = (x µ x µ ) β, G(α,β) = a(α+β) a(α)a(β), a(β) = Γ(β ) π D/ β Γ(β). Graphic representation of STR (reconstruction of Feynman graphs): α x y = (x y) α 0 α+β β α z Operator version of STR: (API, 003) x y = G(α,β) x 0 β α (α+β) ˆp α ˆq (α+β) ˆp β = ˆq β ˆp (α+β) ˆq α!!! where we have used Heisenberg algebra: [ˆq µ, ˆp ν ] = δ µν. y 3 /

4 R-operators and L-operators Any STR is related to a solution R of the Yang-Baxter equation R (u)r 3 (u + v)r (v) = R 3 (v)r (u + v)r 3 (u) ( integrable models, e.g. Zamolodchikov s Fishnet diagram IM). Our aim is to find R which corresponds to the operator STR: ˆp u q (u+v) ˆp v = q v ˆp (u+v) q u. () Eq. () can be written in two equivalent forms ˆp u q (u+v) ˆp v = q v ˆp (u+v) q v ( ), where [q µ k, ˆp j ν ] = iδ kj δ µν and q µ = qµ qµ. Then one can prove that R-operator R (u v) = q (u v +) ˆp (u+ v+) ˆp (u v ) q (u+ v ) End(V V ) where V is the space of conformal fields with conf. dimension and u + = u + D, u = u, v + = v + D, v = v, satisfies YB equation. 4 /

5 The R-operator acts in the tensor product of two representation spaces of conformal algebra conf(r D ) = so(d +, ) Φ (x ) Φ (x ) V V, The meaning of R: it intertwines two representations or R (u v) : V V V V. R (u v) A B = B A R (u v). where A End(V ). 5 /

6 To demonstrate this we construct L-operator L ( ) : V V V V where V is the space of a matrix (e.g., spinor) representation T s of conf(r D ) conf. The L-operator satisfies RLL relations R 3 (u v)(l ( ) ) α β (u)(l( ) 3 ) β γ (v) = (L( ) ) α β (v)(l( ) 3 ) β γ (u)r 3(u v), where (L ( ) ) α β = T s(u(conf)) α β ρ (U(conf)) (L ( ) 3 ) α β = T s(u(conf)) α β ρ (U(conf)) R 3 (u v) = ρ (U(conf)) ρ (U(conf)) and U(conf) enveloping algebra of conf. 6 /

7 R p,q pseudoeuclidean space with the metric g µν = diag(,...,,,..., ). }{{}}{{} p q conf(r p,q ) Lie algebra of the conformal group in R p,q generated by {L µν, P µ, K µ, D} (µ,ν = 0,,...,p + q ): [L µν, L ρσ ] = i (g νρ L µσ + g µσ L νρ g µρ L νσ g νσ L µρ ) [K ρ, L µν ] = i (g ρµ K ν g ρν K µ ), [P ρ, L µν ] = i (g ρµ P ν g ρν P µ ), [D, P µ ] = i P µ, [D, K µ ] = i K µ, [K µ, P ν ] = i (g µν D L µν ), [P µ, P ν ] = 0, [K µ, K ν ] = 0, [L µν, D] = 0. L µν generators for the rotation group SO(p, q) in R p,q, P ν shift generators in R p,q, D dilatation operator, K ν conformal boost generators. 7 /

8 We have the well known isomorphism: and on generators it looks like conf(r p,q ) = so(p +, q + ) L µν = M µν, K µ = M n,µ M n+,µ, P µ = M n,µ + M n+,µ, D = M n,n+, (n = p+q). where M ab (a, b = 0,,...,n+) are generators of so(p+, q + ) [M ab, M dc ] = i(g bd M ac + g ac M bd g ad M bc g bc M ad ), g ab = diag(,...,,,...,,, ). }{{}}{{} p q Then the quadratic Casimir operator for conf(r p,q ) is C = M ab M ab = (L µνl µν + P µ K µ + K µ P µ ) D. 8 /

9 The first main result is that the explicit form of conf(r p,q ) = so(p+, q + )-type L-operator is: L(u +, u ) = u I+ T s(m ab ) ρ(m ab ). where M ab are generators of so(p +, q + ) and ρ(m ab ) = y a y b y b y a. Now we specify the spinor matrix representation T s of the algebra conf(r p,q ) = so(p+, q + ). 9 /

10 Spinor reps T s of conf(r p,q ) = so(p+, q + ) Let n = p+q(= D) be even integer and γ µ (µ = 0,..., n ) be n -dimensional gamma-matrices in R p,q : γ µ γ ν +γ ν γ µ = g µν I, γ n+ α γ 0 γ γ n, α = ( ) q+n(n )/, where α is such that γ n+ = I. Using gamma-matrices γ µ in R p,q one can construct representation T s of conf(r p,q ) = so(p+, q + ) T s (L µν ) = i 4 [γ µ, γ ν ] l µν, T s (K µ ) = γ µ ( γ n+ ) k µ, T s (P µ ) = γ µ (+γ n+ ) p µ, T s (D) = i γ n+ d. 0 /

11 We choose the representation for γ µ in R p,q as: γ µ = ( 0 σµ σ µ 0 ), γ n+ = ( 0 0 ), where σ µ σ ν +σ ν σ µ = g µν, σ µ σ ν +σ ν σ µ = g µν. Thus, the representation T s of conf(r p,q ) is ( i l µν = 4 (σ ) µσ ν σ ν σ µ ) 0 i 0 4 (σ = µσ ν σ ν σ µ ) ( ) ( ) p µ 0 0 = σ µ, k µ 0 σ µ =, d = i Recall that σ µν = (σ µν ) β α, σ µν = (σ µν ) α β, ( σµν 0 0 σ µν ( 0 0 are inequivalent spinor representations of so(p, q) = spin(p, q). ) )., /

12 Any element of conf(r p,q ) in the representation T s is A = i(ω µν l µν + a µ p µ + b µ k µ +βd) = ( β = +iωµν σ µν ib µ ) ( ) σ µ ε ε ia µ σ µ β. +iωµν σ µν ε ε It can be considered as the matrix of parameters ω µν, a µ, b µ, β R. /

13 Diff. representation of conf(r p,q ) = so(p +, q + ) The standard differential representation ρ of conf(r p,q ) can be obtained by the method of induced representations (G. Mack and A. Salam (969)) ρ (P µ ) = i xµ ˆp µ, ρ (D) = x µˆp µ i, ρ (L µν ) = ˆl µν + S µν, ρ (K µ ) = x ν (ˆl νµ + S νµ )+(x ν x ν )ˆp µ i x µ, ˆl µν (x νˆp µ x µˆp ν ), where x µ ˆq µ are coordinates in R p,q, R conformal parameter, S µν = S νµ are spin generators with commutation relations as for ˆl µν and [S µν, x ρ ] = 0 = [S µν,ˆp ρ ]. For the quadratic Casimir operator we have: ρ (C ) = ( S µν S µν ˆl µν ˆl µν) + ( n). The representations ρ and ρ n are contragradient to each other and in particular we have ρ (C ) = ρ n (C ). 3 /

14 In the representation ρ elements of conf(r p,q ) act on the fields Φ(x): ρ(ω µν L µν + a µ P µ + b µ K µ +βd)φ(x) = [( ) ε ε = Tr (Ts (M ε ε ab ) ρ(m )] ab) Φ(x). ( ) ε ε where is the matrix of parameters, and the matrix of ε ε generators is ( ) T s(m ab ) ρ (M ab ) = (T s ρ) Mab M ab = = ( n +S p x, p x S S x x p x+( n ) x, +S+x p Here we introduced p = σµˆp µ = i σµ xµ, x = i σ µ x µ, S = σµν S µν, S = σµν S µν. ), 4 /

15 The action of spin generators S µν on tensor fields of the type (l, l) is [S µν Φ] α α l α α l = (σ µν ) α α Φ α α l αα α l + +(σ µν ) α α l Φ α α l α α l α + +( σ µν ) α α Φ α α α l α α l + +( σ µν ) α l α Φ α α l α α α l. For symmetric representations it is convenient to work with the generating functions Φ(x,λ, λ) = Φ α α l α α l (x)λ α λ α l λ α λ α l, where λ and λ are auxiliary spinors and the action of S µν is given by differential operators over spinors S µν = λσ µν λ + λσ µν λ : [S µν Φ](x,λ, λ) = [ λσ µν λ + λ ] σ µν λ Φ(x,λ, λ), where λσ µν λ = λ α (σ µν ) α β λ β, λ σ µν λ = λ α ( σ µν ) β α λ β. 5 /

16 For 4-dimensional case R p,q = R,3 we have -component Weyl spinors λ, λ and tensor fields Φ α α l α α l (x) are automatically symmetric under permutations of dotted and undotted indices separately. Then for n = 4 we have σ µ = (σ 0,σ,σ,σ 3 ), σ µ = (σ 0, σ, σ, σ 3 ), where σ 0 = I and σ,σ,σ 3 are standard Pauli matrices. Consequently we obtain for the self-dual components of S µν S = ( σµν S µν = λ λ λ λ λ λ λ λ λ λ + λ λ ) and for anti-self-dual components of S µν ( S = σµν S µν = λ λ λ λ λ λ λ λ λ λ + λ λ ) 6 /

17 Consider conf(r p,q ) = so(p+, q + )-type operator: L ( ) (u) L ( ) (u +, u ) = u I+ T s(m ab ) ρ (M ab ) = = ( u + +S p x, x S S x x p x+(u + u ) x, u +S+x p p ), where T s is the spinor representation and ρ is the differential representation of the conformal algebra so(p +, q + ); u + = u + n, u = u, n = p+q, We have used the expression for the polarized Casimir operator T s(m ab ) ρ (M ab ) which was discussed in context of the differential representation of the conformal algebra. 7 /

18 Proposition. The operator L ( ) (u +, u ) satisfies the RLL relation R (u v)(l ( ) ) α β (u)(l( ) ) β γ(v) = = (L ( ) ) α β (v)(l( ) ) β γ(u)r (u v) End(V V V ), with R-operator End(V V ) R (u v) = q (u v +) ˆp (u+ v+) ˆp (u v ) q (u+ v ), if S = 0 = S (for any dimension n = p+q), i.e. in the case of the scalar propagators. 8 /

19 R-matrix and general R-operator Proposition. For two special cases the operator L ( ) (u) satisfies the RLL relation R (u v) L ( ) (u) L ( ) (v) = L ( ) (v) L ( ) (u) R (u v) End(V V V ) with the R-matrix R (u) End(V V), where V is the n -dimensional space of spinor representation T s of conf(r p,q ) and indices, are numbers of spaces V. The two cases are: Dimension n = p+q of the space R p,q is arbitrary and representation ρ of conf(r p,q ) is special and corresponds to the scalars: S = 0 and S = 0. Dimension n = p+q of the space R p,q is fixed by n = 4 and representation ρ of conf(r p,q ) is arbitrary: S 0 and S 0. Remark. The RLL relations look like defining relations for the Yangian Y(spin(p+, q + )) and L ( ) (u) the image of the evaluation repr. of this Yangian. 9 /

20 Let Γ a be n + -dim. gamma-matrices in R p+,q+ (n = p + q) which generate the Clifford algebra with the basis Γ a...a k = ( ) p(s) Γ k! s(a ) Γ s(ak ) (k n+), s S k where p(s) denote the parity of s. The SO(p+, q + )-invariant R-matrix is (it is necessary to take Weyl projection) R(u) = n+ k=0 R k (u) k! Γ a...a k Γ a...a k End(V V), where V is the n + -dimensional space of spinor representation T of SO(p +, q + ). To satisfy the Yang-Baxter equation the functions R k (u) have to obey the recurrent relations (R.Shankar and E.Witten (978), Al.B.Zamolodchikov (98), M.Karowsky and H.Thun (98)) R k+ (u) = u + k u + n k R k(u). 0 /

21 Proposition 3. For any spin S, S and n = p+q = 4 the operator L (,l, l) (u) satisfies the RLL relation R (u v) (L (,l, l ) ) α β (u) (L(,l, l ) ) β γ(v) = = (L (,l, l ) ) α β (v) (L(,l, l ) ) β γ(u) R (u v) End(V V,l, l V,l, l ), with special Yang-Baxter R-operator = [R Φ](x, λ, λ ; x, λ, λ ) = d 4 q d 4 k d 4 y d 4 z e i (q+k) x e i k (y z) q (u v ++) z (u+ v++) y (u v +) k (u+ v +) () Φ(x y, λ z k, λ q y; x z, λ q z, λ y k), where we have used compact notation x = σ µ x µ / x, x = σ µ x µ / x. Remark. The integrable model of the type of Zamolodchikov s Fishnet diagram Integrable System is not known for R given in (). /

22 Green function for two fields of the types (l, l) and ( l,l) in conformal field theory and the solution is well known (Φ(X),Φ(Y)) = (l)!( l)! ( λ(x y)η) l ( ) l λ(x y) η (x y) (4 ). In this Section for simplicity we shall use compact notation x µ x = σ µ x ; x = σ x µ µ x (3) /

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors Dirac Matrices and Lorentz Spinors Background: In 3D, the spinor j = 1 representation of the Spin3) rotation group is constructed from the Pauli matrices σ x, σ y, and σ k, which obey both commutation

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γ µ matrices as where ( ) 0 σ γ µ µ = σ µ 0 σ µ = (1, σ), σ µ = (1 2, σ) The

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Distances in Sierpiński Triangle Graphs

Distances in Sierpiński Triangle Graphs Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

In this way we will obtain all possible (finite dimensional) representations of the Lorentz group. In order to obtain the transformation law for spinors we will consider the set of 2 2 complex matrices

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2 PiTP Study Guide to Spinors in D and 0D S.J.Gates Jr. John S. Toll Professor of Physics Director Center for String and Particle Theory University of Maryland Tel: 30-405-6025 Physics Department Fax: 30-34-9525

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

(dx i ) 2. i=1. i=1. ds 2 = ds 2 (1.2.1)

(dx i ) 2. i=1. i=1. ds 2 = ds 2 (1.2.1) 1.2 REVIEW OF SPECIAL RELATIVITY Einstein s theory of special relativity requires every physical law to be the same in all inertial systems (the form of the law is covariant) and that the speed of light

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc 4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

arxiv: v1 [math-ph] 4 Jun 2016

arxiv: v1 [math-ph] 4 Jun 2016 On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two Valentina N. Davletshina, Andrey E. Mironov arxiv:1606.0136v1 [math-ph] Jun 2016

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα