ANEMIJA U NEONATALNOM PERIODU

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ANEMIJA U NEONATALNOM PERIODU"

Transcript

1 ANEMIJA U NEONATALNOM PERIODU Slobodanka Ilić DEFINICIJA Patofiziološki, anemija je definisana kao nesposobnost cirkulišućih eritrocita da zadovolje potrebu tkiva za kiseonikom. Klinički, anemija je kompleksno stanje za čiju je dijagnozu i terapiju neophodan tim koji čine: o Neonatolog; o Hematolog; o Transfuziolog; o Pedijatar (kasnije). Laboratorijski anemija je definisana vrednostima Hb ili Hct nižim od srednjih vrednosti u odnosu na uzrast za više od 2 SD. ETIOLOGIJA Multifaktorijalna, a u osnovi su: Povećani gubitak krvi Krvarenje: o Fetalno; o Placentalno; o Traumatski porođaj; o Koagulacioni poremećaji. Kasno podvezivanje pupčane vrpce; Feto-fetalna-trfansfuzija; Feto-materalna transfuzija. Jatrogeni gubitak krvi 245

2 Povećana destrukcija eritrocita Hemolizna anemija: o Imuna Aloimuna (Rh, ABO, minor grupne); Autoimuna. o Neimuna Hemoglobinopatija; Talasemije. Nestabilni hemoglobin; Enzimski defekti eritrocita; Strukturalni defekti eritrocitne membrane; Mehanička destrukcija; Mikroangiopatska hemolizna anemija; Infekcija; Vitamin E deficijencija. Smanjena produkcija eritrocita Urođena: o Diamond-Blackfan anemija; o Fanconi anemija; o Urođena diseritropoetska anemija; o Anemija usled prematuriteta. Stečena: o Parvovirus B19 infekcija; o Tranzitorna eritroblastopenija; o HIV infekcija; o Sifilis; o Deficijencija gvožđa; o Trovanje. PODELA ANEMIJE NA OSNOVU MORFOLOGIJE ERITROCITA Makrocitna anemija Retikulocitoza; Deficijencija folne kiseline; Deficijencija vitamina B12; Diamond-Blackfan anemija; 246

3 Fanconi anemija; Stečena aplastična anemija; Lekovi. Mikrocitna anemija Deficijencija gvožđa; Trovanje; Talasemija; Hronična infekcija. Normocitna anemija Retikulociti Snižen broj: o Infekcija; o Parvovirus B19; o Prolazna eritroblastopenija; o Hronične bolesti; o Imuna hemolizna anemija; o Mehanička hemolizna anemija; o Lekovi; o Leukemija; o Hemoglobinopatija; o Nestabilni hemoglobin. Normalan ili visok broj rekutilocita o Gubitak krvi; o Sekvestracija; o Enzimski defekti eritrocita; MORFOLOŠKI NALAZ PERIFERNE KRVI U ANEMIJI Hipohromija; Target ćelije; Sickle ćelije; Heinz telašca; Howell-Jolly telašca; Sferocitoza; Eliptocitoza; Šizocitoza; Eritrociti sa jedrom; Polihromazija. 247

4 DIJAGNOSTIČKI PRISTUP NEONATALNOJ ANEMIJI SNIŽEN HEMOGLOBIN BROJ RETIKULOCITA SNIŽEN Kongenitalna hipolastična anemija NORMALAN ili VISOK COOMBS TEST NEGATIVAN MCV NIZAK - Hronični intrauterusni gubitak krvi - Talasemija POZITIVAN Imuno hemolizna anemija - ABO - Rh - Minor krvne grupe NORMALAN ILI VISOK PERIFERNI KRVNI RAZMAZ NORMALAN PATOLOŠKI Retki uzroci Gubitak krvi Infekcija Urođena: (kao defici- a) jatrogeni (uzorci krvi) Sferocitoza jencija Eliptocitoza heksokinaze) b) feto-maternalni Deficijencija feto-placentarni Piruvatkinaze i feto-fetalni G - 6 PD unutrašnje krvarenje DIC 248

5 ANEMIJA USLED PREMATURITETA KARAKTERISTIKE Hiporegenerativna Normocitna Normohromna Prisutni su: Snižen nivo eritropoetina; Redukovana eritropoetska aktivnost kostne srži; Retikulocitopenija; Pad broja eritrocita; Pad koncentracije hemoglobina. Dodatni faktori: Kratak poluživot eritrocita (povećana sklonost hemolizi); Naglo povećanje volumena plazme (hemodilucija); Jatrogeni gubitak krvi (intenzivni monitoring). Specifičnosti: Češće se javlja kod dece < 32 GN; Nije fiziološka kao kod terminske dece: o pad hemoglobina je veći; o počinje ranije (4-10. nedelje); o kod terminske dece ( nedelje); Prolaznog je karaktera; Spontan oporavak dolazi posle porasta endogenog EPO; Nestaje posle 3-6 meseci. 249

6 Klinički simptomi: * Vezani uglavnom za hipoksiju Tahikardija / bradikardija; Tahipnea sa epizodama apneja; Slabo napredovanje u težini; Povećana potreba za kiseonikom; Povišena koncentracija laktata u serumu. Refrakterna je na terapiju: Gvožđa; Folata; Tokoferola; * Povećana je potreba za eritrocitnim transfuzijama; o najčešće transfundovana grupa novorođenčadi (deca sa TM < 1000 g 100%); * Dobro reaguje na terapiju eritropoetinom. JATROGENA ANEMIJA (USLED UZIMANJA KRVI ZA LABORATORIJSKE ANALIZE) Veoma važan uzrok anemije u jedinicama za intenzivnu negu novorođenčadi (1 ml uzete krvi deci < 1500 g predstavlja 1% ukupnog volumena krvi). Postupci za smanjenje jatrogenog gubitka krvi: Koristiti mikrometode pri uzimanju krvi iz perifernih arterijskih katetera; Koristiti zatvorene sisteme koji omogućavaju vraćanje inicijalnog uzorka pacijentu; Uzeti najmanju količinu krvi potrebnu za datu analizu (25% uzoraka pokazuje da je uzeto više krvi nego što je potrebno); 250

7 Smanjiti uzimanje krvi transkutanim monitoring tehnikama (40% uzete krvi je za gasove i elektrolite); Striktno meriti ukupni volumen krvi uzete od deteta za laboratorijske analize. FAKTORI KOJI BITNO UTIČU NA NORMALAN BROJ KRVNIH ELEMENATA Mesto i vreme uzimanja uzorka; Vreme podvezivanja pupčane vrpce; Gestacijska i postnatalna starost deteta; Transfuzija: o majka - fetus; o fetus - majka; o fetus - fetus. VREDNOSTI PARAMTETARA IZ KRVI PUPČANIKA Srednja vrednost Hb varira između 167 i 179 g/l (od g/l); Granična vrednost hemoglobina je 130 g/l; Normalan hemotokrit varira između 51,3 i 56,0%. VREDNOSTI PARAMETARA IZ KAPILARNE KRVI Kapilarni hemoglobin i hematokrit najmanje su za 20-30% veći od venskog. * Napomena: U slučaju placentne ili fetofetalne transfuzije razlika može biti i veća od 60%. * Napomena: Videti Referentne vrednosti laboratorijskih analiza u neonatologiji. 251

8 TERAPIJA Terapijski pristup anemiji Veoma je specifičan Bazira se na: o poznavanju egzaktnih etioloških faktora (kad god je to moguće); o na definisanim normalnim vrednostima hematoloških parametara. Individualan je za svako dete. Terapija uključuje: Transfuzijsko lečenje; Medikamentozno lečenje. TRANSFUZIONA TERAPIJA Odluku o transfuziji krvi bazirati na osnovu kliničkog stanja i laboratorijskog nalaza; Transfuziona terapija je komponentna - substicuciona (daje se ono što nedostaje); Koncentrovani eritrociti zadovoljavaju transfuziju simptomske anemije uz normovolemiju i normotenziju; Cela krv samo kod masivnog gubitka krvi (> 25% cirkulišućeg volumena); Različit je pristup kod akutnog i hroničnog gubitka krvi i kod dece male telesne mase. 252

9 Neophodna uputstva: Uputstvo za Rh kompatibilne komponente krvi Rh tip (dete) Pozitivan Negativan Rh tip Er i granulociti Pozitivni ili negativni Negativni Rh tip plazma (SSP) Pozitivna ili negativna Pozitivna ili negativna Rh tip trombociti Pozitivni ili negativni Negativni Uputstvo za ABO kopatibilne komponente krvi Krvne grupe ABO(dete) ABO grupa Er i granulociti ABO grupe plazma (SSP) ili trombociti O O O,A,B ili AB A A ili O A ili AB B B ili O B ili AB AB AB, A,B ili O AB Koncentrovani eritrociti (karakteristike) Sadrže Er, Tr, Le i malo plazme; Hct je 70-80%; 10 ml/kg podiže Hct za 10% ili Hb za 30 g/l; Maksimalna doza 15 ml/kg; Vreme davanja transfuzije 2-4 h; Pre davanja koncentrovanih Er obavezno uraditi interreakciju. Ozračeni eritrociti γ (iradijacija GY); Prevencija Graft-versus-host bolesti (GVHD). Indikacije Apsolutne Novorođenčad koja su sumnjiva na sindrom kongenitalne imunodeficijencije; Intrauterusne transfuzije u bilo kom periodu gestacije; 253

10 Za EST kod sve dece koja su tretirana intrauterusnim transfuzijama. Relativne Ekstremno nezrela i deca veoma male TM; Deca sa sindromom stečene imunodeficijencije; Komponente krvi koje sadrže veliki broj leukocita (koncentrati trombocita i granulocita za novorođenčad nezvisno od telesne mase i gestacijske starosti); Izolovana apsolutna limfopenija (broj limfocita < 500 mm 3 ). IZRAČUNAVANJE VOLUMENA POTREBNE KRVI ZA TRANSFUZIJU Volumen krvi ( konc. ER)/ml = TM x 6 (3) x (potreban Hb/g - nađeni Hb/g) *Napomena: Koristiti poznatu činjenicu da je za porast hemoglobina za 1 g potrebno 6 ml cele krvi ili 3 ml koncentrovanih eritrocita na kg/tm pomnoženo razlikom između potrebnog i nađenog hemoglobina, u gramima. AKUTNI GUBITAK KRVI Dati ml/kg O Rh negativne krvi bez prethodne interreakcije unutar 5-10 min. (odmah, čak i u porođajnoj sali); Ponoviti nakon min. (ako je dete i dalje bledo, u hipotenziji i acidozi); Dati 50 ml/kg krvi ako se normalizovao krvni pritisak, ph krvi, a hemoglobin je manji od 120 g/l. HRONIČNI GUBITAK KRVI Uraditi jednovolumensku EST (80 ml/kg) koncentrovanim eritrocitima (ako je Hb 80 g/l, ako je prisutna srčana insuficijencija ili se razvija hidrops); Dati transfuziju Er. od ml/kg uz diuretik (ako je Hb g/l). 254

11 * Karakteristike akutnog i hroničnog gubitka krvi kod novorođenčadi Karatkeristike Kliničke Akutni gubitak krvi Akutni distres, bledilo, površno, ubrzano, iregularno disanje Tahikardija, slab ili odsutan periferni puls, nizak ili nemerljiv krvni pritisak, nema hepatosplenomegalije Hronični gubitak krvi Izrazito bledilo nije u korelaciji sa prisutnim distresom. Mogu biti prisutni znaci kongestivne srčane insuficijencije, uključujući i hepatomegaliju Venski pritisak Nizak Normalan ili povišen Hemoglobin Morfologija eritrocita Serumsko gvožđe Hitan terapijski pristup Terapija Inicijalno normalan, zatim brzo pada tokom prvih 24 h života Normohromija i makrocitoza Normalno na rođenju Brzo lečenje anemije i šoka što često prevenira smrt. Intravenski unos tečnosti i pune krvi, terapija gvožđem kasnije Nizak na rođenju Hipohromija i mikrocitoza Nisko na rođenju Obično nije potreban Terapija gvožđem. Koncentrovani eritrociti ponekad dolaze u obzir 255

12 TRANSFUZIJA KRVI KOD DECE MALE TELESNE MASE NA ROĐENJU INDIKACIJE Bazirati više na objektivnim kliničkim kriterijumima; Stanje Hb nije odlučujuće. KLINIČKI KRITERIJUMI (za TS kod dece male telesne mase) Perzistentna tahikardija (F 160/min); Perzistentna tahipneja (F 50/min u odsustvu plućnog oboljenja); Letargija (odsustvo oboljenja CNS ili metaboličkih poremećaja); Teškoće pri ishrani; Slabo napredovanje u težini (< od 25 g dnevno); Niska saturacija kiseonika. LABORATORIJSKI MONITORING (za TS kod dece male telesne mase) Odrediti nivo Hb i Hct na rođenju ili prijemu (ponavljati više puta tokom prve nedelje života, a zatim najmanje jedanput nedeljno); Striktno meriti ukupni volumen krvi uzet od deteta za laboratorijske analize (ako iznosi više od 5-10% volumena unutar 48 h dati transfuziju koncentrovanih eritrocita); Deci sa težinom manjom od 1500 g treba održati nivo Hb iznad 130 g/l i hematokrit iznad 0,45, tokom prve nedelje života. 256

13 OPŠTE UPUTSTVO ZA PRIMENU ERITROCITNIH TRANSFUZIJA Hb < 130 g/l (Hct < 40%) uz teško kardiorespiratorno oboljenje; Hb < 100 g/l (Hct < 30%) uz umereno kardiorespiratorno oboljenje; Hb < 100 g/l (Hct < 30%) priprema za velike hirurške intervencije; Hb < 80g/l (Hct < 24%) sa simptomskom anemijom; Krvarenje sa > 25% gubitka cirkulišućeg volumena krvi. UPUTSTVO ZA PRIMENU ERITROCITNIH TRANSFUZIJA NA OIN * Bazirano na visini Hct, potrebi za O 2, respiratornoj potpori i kliničkom stanju i primeni eritropoetina. Dati TS deci sa Hct 20%: o ako nemaju simtome i broj retikulocita < µl Dati TS deci sa Hct 30%: o ako zahtevaju < 35% dodatni kiseonik; o ako su na CPAP ili mehaničkoj ventilaciji sa srednjim pritiskom < 6 cmh 2 O; o ako je signifikantna apneja i bradikardija (>9 epizoda za 12h ili 2 epizode za 24 h na ventilaciji balonom i maskom i pod terapijskim dozama metilksantina); o ako je puls > 180 u minuti ili respiracije > 80 u minuti perzistiraju 24h; o ako je napredovanje u težini < 10g/dan u roku od 4 dana na kalorijskom unosu 100 kcal/kg/d; o ako se podvrgava hirurškoj intervenciji. Dati TS sa Hct 35%: o ako zahteva > 35% dodatnog kiseonika uz HOOD; o ako je intubirano, na CPAP ili mehaničkoj ventilaciji sa pritiskom 6-8 cm H 2 O; 257

14 Ne dati transfuziju: o samo zbog nadoknade uzete krvi za laboratorijske analize; o samo zbog niskog Hct. * Napomena: Transfuziona praksa u neonatologiji je kontroverzna, promenljiva i često bazirana na logičnim pretpostavkama pre nego na naučnim podacima iz kontrolisanih kliničkih studija (3). POTENCIJALNE KOMPLIKACIJE TRANSFUZIONE TERAPIJE Infekcije: Virusne; Bakterijske; Protozoalne. Metaboličke: Hipoglikemija; Hiperglikemija; Hipernatrijemija; Hiperkalijemija; Hipokalcijemija; Acidoza (alkaloza); Kardiovaskularne: Hipervolemija; Aritmija; Kardialni arest; Perforacija krvnih sudova; Hiperviskozitet; Tromboembolija; Portalna hipertenzija. 258

15 Hemoragijske: Trombocitopenija; Poremećaji koagulacije; Hiperheparinizacija. Oštećenje eritrocita: Mehaničko; Termičko; Imunološko. Aloimunizacija: Antieritrocitni i Antileukocitni antigen. Ostale komplikacije: Hipotermija; NEC; Anemija; Vazdušna embolija; ROP; Promene intrakranijalnog pritiska; GVHD. * Napomena: sve reakcije uključuju i EST. MEDIKAMENTOZNA TERAPIJA ERITROPOETIN (rhu EPO) Snažno stimuliše eirtropoezu; Smanjuje broj transfuzija; * Redukcija potrebe za TS: o veća kod dece >1000 g; o ne tako efikasna kod dece < 1000 g i dece koja zahtevaju mehaničku ventilaciju. 259

16 Indikacije Relativno stabilno kliničko stanje; Doza Gestacijska starost 34 nedelje; Postnatalna starost 2 nedelje; Odsustvo hemolizne bolesti; Anemija srednjeg intenziteta: Hb 100g/l dva uzastupna određivanja Hct0,30 (u roku dva-tri dana) IJ /kg/tm 3 x nedeljno, SC 6 nedelja; Dodati (od prvog dana terapije):gvožđe 6 mg/kg/dan; E vitamin (2 x nedeljno IM 30 mg) ; Kontrola Folna kiselina 5 mg (dnevno). Kliničke slike (kožne promene); Krvnog pritiska; Krvne slike (neutropenija); Retikulocita; Feritina, transfeina. * Napomena: Eritropoetin, uz rigorozne standardizovane kriterijume za transfuziju i smanjenje jatrogenog gubitka krvi, ima najveći doprinos smanjenju anemije prematuriteta. VITAMIN E (dnevno) 5/IJ kod terminske novorođenčadi i 20/IJ kod prevremeno rođene dece ili 100 mg IM tokom prve nedelje života. 260

17 VITAMIN B12 0,3 g dnevno (terminska novorođenčad). VITAMIN C mg (dnevno). VITAMIN B6 0,3 mg (dnevno). VITAMIN A 0,4 mg (dnevno). *Napomena: doze vitamina su preporučene. FOLNA KISELINA 1-5 mg dnevno počev od druge nedelje života. BAKAR 2-3 mg dnevno 1% bakar sulfat. GVOŽĐE 2 mg/kg/tm dnevno kod dece težine od 2000 g; 4 mg/kg/tm dnevno kod dece ispod 1500 g; 6 mg/kg/tm dnevno kao terapijska doza. * Napomena: Terapiju gvožđem ne treba početi pre četvrte nedelje postnatalnog života, a najkasnije kada dete udvostruči porođajnu težinu. 261

18 LITERATURA 1. Bifano EM, Ehrenkranz RA. Perinatal hematology, Clinics in perinatology 1995; 22(3). 2. Christensen RD. Neonatal Hematology, Clinics in perinatology 2000; 27(3). 3. Christensen RD. Hematologic Problems of the Neonate.1st ed. Philadelphia: W.B. Saunders Company; Fanaroff AA, Martin RJ. Neonatal-Perinatal Medicine. 6 st ed. Louis: Mosby; Nathan DG, Orkin SH. Hematology of Infancy and Childhood. Philadelphia: W.B. Saunders company; Red cell transfusions in neonatal care Blackwell Science, Vox Sanguinis 2001; 80: Rennie JM, Roberton NRC. A manual of neoantal intensive care. London: Arnold;

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom

Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM

Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Implementacija HE4 i ROMA indeksa u Klinici za tumore Centru za maligne bolesti KBCSM Dr.sc. Ljiljana Mayer, spec.med.biokemije Zagreb, 18. ožujka 2017. Klinika za tumore Centar za maligne bolesti, KBCSM

Διαβάστε περισσότερα

Rapaport-Lueberingov ciklus

Rapaport-Lueberingov ciklus HEMOGLOBIN Sinteza eritrocita Rapaport-Lueberingov ciklus 2,3 difosfoglicerat - uloga 2,3 DFG predstavlja najvažniji organski fosfat u eritrocitima. Stvara kompleks sa Hgb, i njegova koncentracija u

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

Izbor statističkih testova Ana-Maria Šimundić

Izbor statističkih testova Ana-Maria Šimundić Izbor statističkih testova Ana-Maria Šimundić Klinički zavod za kemiju Klinička jedinica za medicinsku biokemiju s analitičkom toksikologijom KBC Sestre milosrdnice Izbor statističkog testa Tajna dobrog

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

3. OSNOVNI POKAZATELJI TLA

3. OSNOVNI POKAZATELJI TLA MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Za određivanje gustine krvi u hematologiji kod žena. Za određivanje gustine krvi u hematologiji kod muškaraca

Za određivanje gustine krvi u hematologiji kod žena. Za određivanje gustine krvi u hematologiji kod muškaraca Red. br. Zaštićeno ime Generički naziv Namjena Model 1. BAKAR SULFAT Specifična težina 1,052(Ž) 2. BAKAR SULFAT Specifična težina 1,055(M) BAKAR SULFAT Specifična težina 1,052(Ž) BAKAR SULFAT Specifična

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Testiranje statistiqkih hipoteza

Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza Testiranje statistiqkih hipoteza je vid statistiqkog zakljuqivanja koji se primenjuje u situacijama: kada se unapred pretpostavlja postojanje određene

Διαβάστε περισσότερα

MERNA NESIGURNOST BEO-LAB

MERNA NESIGURNOST BEO-LAB MERNA NESIGURNOST BEO-LAB Ispitivani parametar Jedinica mere 1. Urea 2. Kreatinin µmol/l Merna nesigurnost L1: ± 0.20 7,05 L2: ±0,69 21,78 L1: ± 4,0 L2: ± 26,5 Za Koncentraciju analita do- 108 387 L1:

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml)

RESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) RESOURCE JUNIOR ČOKOLADA NestleHealthScience RESOURCE JUNIOR Okus čokolade: ACBL 198-1 Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) */200 ml Hrana za posebne medicinske potrebe Prehrambeno cjelovita

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa:

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

15. ΑΙΜΑΤΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΟΥ ΝΕΟΓΝΟΥ

15. ΑΙΜΑΤΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΟΥ ΝΕΟΓΝΟΥ 15. ΑΙΜΑΤΟΛΟΓΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΤΟΥ ΝΕΟΓΝΟΥ 15.1. ΑΝΑΙΜΙΑ ΝΕΟΓΝΟΥ Φυσιολογικές τιµές αιµοσφαιρίνης Τα επίπεδα της αιµοσφαιρίνης (Hb) στα υγιή τελειόµηνα και πρόωρα νεογνά ακολουθούν τυπικές φυσιολογικές αλλαγές

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα