Uvod u neparametarske testove

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Uvod u neparametarske testove"

Transcript

1 Str. 148 Uvod u neparametarske testove Predavač: Dr Mirko Savić

2 Hi-kvadrat testovi c Str. 149 Koristi se za upoređivanje dve serije frekvencija. Vrste c testa: test značajnosti proporcije, test prilagođenosti (aproksimacije) empirijskog rasporeda teorijskom rasporedu, test nezavisnosti obeležja (homogenosti skupa).

3 Izračunava se vrednost: c Tablična vrednost: c ;r c c ;r. Nulta hipoteza H se prihvata. Ne postoje statistički značajne razlike između teorijskih i empirijskih frekvencija. c > c ;r. Nulta hipoteza H se odbacuje. Postoje statistički značajne razlike između teorijskih i empirijskih frekvencija.

4 Grafički prikaz: f c c Prihvatanje H Odbacivanje H c ; r c c c c ;r ; r Oblasti prihvatanja i odbacivanja nulte hipoteze H

5 c Test značajnosti proporcije Str. 15 Ocena značajnosti razlike originalnih frekvencija i teorijskih frekvencija f t i f i Broj grupa u empirijskom rasporedu mora biti m>. f t i 5 Sve teorijske frekvencije moraju biti veće od 5! Ako nisu, spajaju se sa susednom! SOT-33 Hi kvadrat test Test značajnosti proporcije SOT- K:4-15 Hi kvadrat test značajnosti proporcije

6 c Test prilagođenosti (aproksimacije) empirijskog rasporeda teorijskom rasporedu Str. 15 Testiranje prilagođenosti nekom teorijskom rasporedu. Broj stepeni slobode: za normalni raspored r=m 3 za binomni i Puasonov raspored r=m.

7 c Str. 153 Test homogenosti skupa (nezavisnosti obeležja) Proverava se razlika između više različitih skupova. Formulišu se sledeće hipoteze: H : Svi uzorci pripadaju istom osnovnom skupu. H 1 : Bar jedan uzorak ne pripada osnovnom skupu. Broj stepeni slobode: r=(m 1) (k 1) m broj redova; k broj kolona u tabeli kontingencije

8 Koeficijent kontingencije: C m i1 k j 1 c f ij c Vrednost koeficijenta u interalu C 1

9 SOT-79 K:4-18 Hi kvadrat test nezavisnosti obeležja SOT-34 Hi kvadrat test Test homogenosti skupa SOT-8 K:4-17 Hi kvadrat test homogenosti skupa SOT-78; K(5)z 4-15 Hi-kvadrat test homogenosti SOT-75; K(5)z 4-16 Hi-kvadrat test proporcije

10 Test na osnovu predznaka (Sign-test) Str. 165 Analiza promena vrednosti obeležja na istim uzorcima u ponovljenim posmatranjima (zavisni uzorci). Uglavnom se koristi kod ordinalnih obeležja. Nulta hipoteza može da se formuliše na jedan od sledećih načina: H : S(+) = S( )=,5, 1. Dvosmerni test: H 1 : S(+) S( ),. Jednosmerni test: H 1 : S(+) S( ), 3. Jednosmerni test: H 1 : S(+) S( ),

11 Postoji više načina izračunavanja! Koristićemo sledeći: Za n<3 c S S N 1 Za n 3 c S S N SOT-38 Test na osnovu predznaka SOT-1 Test na osnovu predznaka SOT-9 Test na osnovu predznaka

12 Wilcoxon-ov test ranga sa znakom 1.Provera nulte hipoteze H o nepoznatoj vrednosti parametra osnovnog skupa na osnovu jednog uzorka. (Ne radimo).testiranje razlike između dva osnovna skupa, gde je ta razlika jednaka određenoj vrednosti medijane. Uglavnom se koristi kod intervalnih obeležja. Moguće je formulisanje hipoteza na sledeće načine: 1. Dvosmerni test: H : Me = M e, H 1 : Me M e.. Jednosmerni test: H : Me M e, H 1 : Me< M e. 3. Jednosmerni test: H : Me M e, H 1 : Me > M e. Str. 166

13 Dvosmerni test: H se prihvata pod uslovom:w D <W + <W G, Jednosmerni test: Ako je H : M e M e H se prihvata pod uslovom: W D <W +. Ako je H : M e M e H se prihvata pod uslovom: W + <W G.

14 Za n 3: Može se koristiti i standardizovana promenljiva u. PSPP uvek koristi normalni raspored. SOT-39 Wilcoxon-ov test ranga sa znakom SOT-1 Wilcoxon-ov test ranga sa znakom (gornja gr., dva uz.) SOT-11 Wilcoxon-ov test ranga sa znakom (dve gr., dva uz.)

15 Friedman-ov test Str. 168 Više zavisnih uzoraka u cilju ispitivanja da li svi uzorci pripadaju istom osnovnom skupu. Neparametarska varijanta analize varijanse jednog faktora varijabiliteta.

16 Postavljanje hipoteza: H : Ne postoje statistički značajne razlike između kolona (blokova, posmatranja); H 1 : Postoje statistički značajne razlike između kolona (blokova, posmatranja).

17 Rangiranje se vrši posebno za svaki red. H se prihvata pod uslovom: Q F <Q (k;n;α), ili Q F c ;r k broj kolona; n broj redova; r = k 1 Napomena: Vrednost Q(k;n;α) se očitava iz tablice Kritične vrednosti Q Friedman-ovog testa. Ako to nije moguće, koristi se Hi-kvadrat distribucija. SOT-4 Friedman-ov test SOT-175 Z(6)1-1 Friedman-ov test.

18 Str. 169 Kohranov test Za više od dva zavisna uzorka, gde svaka jedinica u uzorku ima ili nema određenu karakteristiku (dihotomna varijabla). H se prihvata pod uslovom: Rk c ; r SOT-134 Z(6)3-1 Kohranov test

19 Nema u knjizi Kolmogorov-Smirnov test Koristi se za dve vrste problema: za upoređivanje neprekidnog empirijskog sa neprekidnim teorijskim rasporedom, za testiranje da li dva uzorka čiji je raspored nepoznat pripadaju istom osnovnom skupu (ne radi se)

20 Nema u knjizi Neparametarski testovi (rezime) Broj uzoraka Odnos uzoraka Merna skala Neparametarski test 1 - Nominalna Intervalna Hi-kvadrat test značajnosti proporcije Wilcoxon-ov test ranga sa znakom Nezavisni Ordinalna Test na osnovu sume rangova Zavisni (usklađeni parovi) Ordinalna Intervalna Nominalna Test na osnovu predznaka Wilcoxon-ov test ranga sa znakom Hi-kvadrat test nezavisnosti obeležja i homogenosti skupa Nezavisni Ordinalna Kruskal-Valisov test > Zavisni (usklađeni parovi) Nominalna Ordinalna Kohranov test Friedman-ov test

Uvod u neparametarske testove

Uvod u neparametarske testove Str. 644;1;148 Uvod u neparametarske testove Predavač: Dr Mirko Savić savicmirko@eccf.su.ac.yu www.eccf.su.ac.yu Hi-kvadrat testovi χ Str. 646;1;149 Koristi se za upoređivanje dve serije frekvencija. Vrste

Διαβάστε περισσότερα

Str

Str Str. Testiranje statističkih hipoteza Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Definicija: Hipoteza predstavlja pretpostavku koja je zasnovana na određenim činjenicama (najčešće

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010

Neparametarski testovi za dva nezavisna uzorka. Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi za dva nezavisna uzorka Boris Glišić 208/2010 Bojana Ružičić 21/2010 Neparametarski testovi Hipoteze o raspodeli obeležja se nazivaju neparametarske hipoteze, a odgovarajući testovi

Διαβάστε περισσότερα

X. Testiranje hipoteza. Osnovni koncepti testiranja hipoteza TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI 19/11/15

X. Testiranje hipoteza. Osnovni koncepti testiranja hipoteza TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI 19/11/15 TESTIRANJE HIPOTEZA OSNOVNI KONCEPTI I TESTOVI POVEZANOSTI X. Testiranje hipoteza Osnovni koncepti testiranja hipoteza Unakrsno tabeliranje i hi-kvadrat Testiranje hipoteza o srednjoj vrednosti i proporcijama

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Chi-kvadrat test. Chi-kvadrat (χ2) test

Chi-kvadrat test. Chi-kvadrat (χ2) test 1 Chi-kvadrat test Chi-kvadrat (χ2) test Test za proporcije, porede se frekvence Neparametarski test Koriste se dihotomne varijable Proverava se veza između dva faktora Npr. tretmana i bolesti pola i smrtnosti

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Uvod u neparametrijske testove. Usporedba. Neparametrijske inačice t-testa za dva nezavisna uzorka. dr. sc. Goran Kardum

Uvod u neparametrijske testove. Usporedba. Neparametrijske inačice t-testa za dva nezavisna uzorka. dr. sc. Goran Kardum Uvod u neparametrijske testove dr. sc. Goran Kardum 1 Usporedba NACRT ISTRAŽIVANJA PARAMETRIJSKA PROCEDURA NEPARAMETRIJSKA PROCEDURA Dva nezavisna uzorka T-test Mann-Whitney U-test Dva zavisna uzorka T-test

Διαβάστε περισσότερα

POSTAVLJANJE I TESTIRANJE HIPOTEZA

POSTAVLJANJE I TESTIRANJE HIPOTEZA POSTAVLJANJE I TESTIRANJE HIPOTEZA Hipoteza je precizno formulisana verbalna tvrdnja, pretpostavka o karakteristici jednog skupa ili o odnosu vrednosti posmatrane karakteristike u više skupova. U statističkim

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Studentov t-test. razlike. t = SG X

Studentov t-test. razlike. t = SG X Studentov t-test Najčešće upotrebljavan parametrijski test značajnosti za testiranje nulte hipoteze je Studentov t-test. Koristi se za testiranje značajnosti razlika između dve aritmetičke sredine. Uslovi

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE

13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE 13. TESTIRANJE HIPOTEZE O NEPOZNATIM KARAKTERISTIKAMA POPULACIJE χ - TEST χ -test je neparametrijski test kojim se vrlo uspješno rješavaju problemi masovnih pojava kao što su: testiranje hipoteze da distribucija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

NEPARAMETRIJSKE TEHNIKE

NEPARAMETRIJSKE TEHNIKE NEPARAMETRIJSKE TEHNIKE Neparametrijske tehnike se koriste za obradu podataka dobijenih na nominalnim i ordinalnim skalama. za testiranje značajnosti distribucije frekvencija po kategorijama jedne nominalne

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Str. 454;139;91.

Str. 454;139;91. Str. 454;39;9 Metod uzorka Predavač: Dr Mirko Savić avicmirko@eccf.u.ac.yu www.eccf.u.ac.yu Statitička maa može da e pomatra a jeda od ledeća dva ačia: potpuo pomatraje, delimičo pomatraje (metod uzorka).

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1

(Hi-kvadrat test) r (f i f ti ) 2 H = f ti. i=1 χ 2 test (Hi-kvadrat test) Jedan od prvih statističkih testova je χ 2 -test. Predložio ga je K. Pearson 900. godine, pa je poznat i pod nazivom Pearsonov test. χ 2 test je neparametarski test. Pomoću χ

Διαβάστε περισσότερα

Prosta linearna regresija (primer)

Prosta linearna regresija (primer) STATISTIKA Prosta linearna regresija (primer) Doc. Dr Slađana Spasić E-mail: sladjana.spasic@singidunim.ac.rs Ass. Ana Simićević E-mail: asimicevic@singidunim.ac.rs 7. 6. 010. Beograd Predavanje 15 Regresiona

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena.

nepoznati parametar θ jednak broju θ 0, u oznaci H 0 (θ =θ 0 ), je primer proste hipoteze. Ako hipoteza nije prosta, onda je složena. Testiraje parametarskih hipoteza Pretpostavka (hipoteza) o parametru raspodele se zove parametarska hipoteza. Postupak jeog potvrđivaja ili odbacivaja a osovu podataka iz uzorka je parametarski test. t

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike

Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Testiranje statističkih hipoteza Materijali za nastavu iz Statistike Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 39 Uvod Osnovna zadaća Statistike je na temelju uzorka ocijeniti kakvu razdiobu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Populacija vs. uzorak - Opisivanje, ocenjivanje i testiranje. Jelena Marinković, maj 2012.

Populacija vs. uzorak - Opisivanje, ocenjivanje i testiranje. Jelena Marinković, maj 2012. Populacija vs. uzorak - Opisivanje, ocenjivanje i testiranje Jelena Marinković, maj 01. Statistika p Nauka o generisanju informacija i znanja kroz prikupljanje, analizu i interpretaciju podataka koji su

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu

Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu Biblioteka: ACADEMIA Autori: Dr Biljana Popović, redovni profesor Prirodno matematičkog fakulteta u Nišu Mr Borislava Blagojević, asistent Gradjevinskog fakulteta u Nišu MATEMATIČKA STATISTIKA SA PRIMENAMA

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

IX. Analiza podataka (2) IX.1. Diskriminaciona analiza MARKETINŠKO ISTRAŽIVANJE. Tehnike za analizu podataka. Multivarijacione tehnike

IX. Analiza podataka (2) IX.1. Diskriminaciona analiza MARKETINŠKO ISTRAŽIVANJE. Tehnike za analizu podataka. Multivarijacione tehnike 1 MARKETINŠKO ISTRAŽIVANJE IX. Analiza podataka (2) 1. Diskriminaciona analiza 2. Kanonička korelaciona analiza 3. Faktorska analiza 4. Analiza skupina 5. Multidimenzionalno skaliranje 6. Analiza združenih

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

ANALIZA TABLICA KONTINGENCIJE

ANALIZA TABLICA KONTINGENCIJE TABLICA KONTINGENCIJE tablica koja u retcima i stupcima sadrži frekvencije atributivnih obilježja ANALIZA TABLICA KONTINGENCIJE predstavlja empirijsku razdiobu frekvencija obilježja mjerenih nominalnom

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

4 Testiranje statističkih hipoteza

4 Testiranje statističkih hipoteza 4 Testiranje statističkih hipoteza 1 4.1. Statistička hipoteza Promatramo statističko obilježje X. Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X. Kažemo da je statistička

Διαβάστε περισσότερα

REGRESIONA I KORELACIONA ANALIZA

REGRESIONA I KORELACIONA ANALIZA REGRESIONA I KORELACIONA ANALIZA Reč regresija dospela je u statistiku kada je 1855.godine Fransis Galton objavio publikaciju u kojoj je analizirao visinu sinova u zavisnosti od visine očeva. Zaključak

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

7. glava STATISTIČKO OCENJIVANJE CILJEVI POGLAVLJA. Nakon čitanja ovoga poglavlja bićete u stanju da:

7. glava STATISTIČKO OCENJIVANJE CILJEVI POGLAVLJA. Nakon čitanja ovoga poglavlja bićete u stanju da: STATISTIČKO OCENJIVANJE CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete smisao statističkog ocenjivanja 2. shvatite razliku između tačkastih i intervalnih ocena 3. konstruišete

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Populacija Ciljna/uzoračka populacija

Populacija Ciljna/uzoračka populacija Populacija i uzorak Sadržaj predavanja Šta je populacija, šta je uzorak a šta uzorkovanje? Statističko zaključivanje Klasifikacija uzoraka: sa i bez verovatnoće, sa i bez zamenjivanja Uzoračke raspodele

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Osnove teorije uzoraka

Osnove teorije uzoraka Oove teorije uzoraka Oove teorije uzoraka UZORAK: lučaji, reprezetativi dio oovog kupa populacije Uzorci: 1.uzorak:,, 1 1.uzorak:,, i.uzorak:,, i i Razdioba aritmetičke redie uzorka f ( ) f ( ) razdioba

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013.

VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. VEROVATNO A I STATISTIKA A - TEST 1 9. NOVEMBAR 2013. 1. Novqi se baca tri puta. (a) Zapisati skup svih mogu ih ishoda. (b) Oznaqimo sa A k događaj da je u k-tom bacanju palo pismo, k {1, 2, 3}. Koriste

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Profesor Zorica Mladenovic 6/5/2012 VEKTORSKI AUTOREGRESIONI MODELI I KOINTEGRACIONA ANALIZA. Zorica Mladenović. Teme

Profesor Zorica Mladenovic 6/5/2012 VEKTORSKI AUTOREGRESIONI MODELI I KOINTEGRACIONA ANALIZA. Zorica Mladenović. Teme Profesor Zorica Mladenovic 6/5/ VEKTORSKI AUTOREGRESIONI MODELI I KOINTEGRACIONA ANALIZA Zorica Mladenović Teme. Prisustvo jediničnog korena u VAR modelu. Kointegracija u VAR modelu. MA reprezentacija

Διαβάστε περισσότερα

2. Logičko zaključivanje Logika znanstvenoga rada

2. Logičko zaključivanje Logika znanstvenoga rada Logičke zakonitosti znanstvenog rada 1. Pravopis/gramatika Mladen Petrovečki 2. Logičko zaključivanje Logika znanstvenoga rada 1. uporaba logičkih pravilai logike uopće kao područja izraženih oblika valjane

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

1. Pravopis/gramatika 2. Logičko zaključivanje

1. Pravopis/gramatika 2. Logičko zaključivanje Logičke zakonitosti znastvenog rada Logičke zakonitosti znanstvenog rada Prof. dr. sc. Mladen Petrovečki Prof. dr. sc. Mladen Petrovečki Struktura, metodika i funkcioniranje znanstvenog rada akad. g. 2012./13.

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

RELATIVNI BROJEVI. r b

RELATIVNI BROJEVI. r b RELATIVNI BROJEVI Relativni brojevi služe za poređenje pojava, istoimenih ili raznoimenih. Relativni broj se dobija kao količnik dva apsolutna broja: V R b = V r b gde je Vr računska vrednost vrednost

Διαβάστε περισσότερα

Osnove geostatistike

Osnove geostatistike Mladen Nikolić Zasnovano na kursu Tomislava Hengla Sadržaj Obrada prostornih podataka Geostatistika podskup statistike specijalizovan za analizu i intepretaciju geografski označenih (georeferenciranih)

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Analitička statistika Testiranje hipoteze.

Analitička statistika Testiranje hipoteze. Analitička statistika Testiranje hipoteze www.illustrationsof.com Dijelovi istraživanja Istraživačko pitanje Značenje Ustroj (design) - tip istraživanja Ispitanici Varijable Statistička obrada podataka

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα