- הסקה סטטיסטית - מושגים

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "- הסקה סטטיסטית - מושגים"

Transcript

1 - הסקה סטטיסטית - מושגים פרק נעסוק באכלוסיה שהתפלגותה המדויקת אינה ידועה. פרמטרים לא ידועים של ההתפלגות. מתקבלים מ"מ ב"ת ושווי התפלגות לשם כך,,..., סימון: התפלגות האכלוסיה תסומן בפרק זה המטרה לענות על שאלות שונות לגבי נעזרים במדגם מקרי שנלקח מתוך האכלוסיה. שהתפלגותם כהתפלגות האכלוסיה. כאשר θ הוא פרמטר הלא ידוע של ההתפלגות. הפרמטרים הנפוצים ביותר המעורבים בבעיות של הסקה סטטיסטית הם: µ - ממוצע האכלוסיה, - שונות האוכלוסייה, - p פרופורציית בעלי תכונה כלשהי A באכלוסיה. σ. אמידה נקודתית נרצה להעריך (לאמוד) בעזרת ערכי המדגם את ערכו של הפרמטר המבוקש שיסומן θ. אומד ל- θ הוא פונקציה כלשהי של. המטרה למצוא אומד שיהיה "קרוב" ככל,..., האפשר ל- θ האמיתי (שאינו ידוע). התורה מציעה הגדרות שונות ל"טיב" של אומד: חוסר הטיה, שגיאה ריבועית מינימלית, טכניקות שונות למציאת (ראה סוגיות,9 עמ' -.) אומד טוב: עקיבות וכו' (ראה תרגילים שיטת הנראות המקסימלית, עמ' -7,(3-4 וכן שיטת המומנטים וכו' להלן רשימת אומדים מקובלים למספר פרמטרים נפוצים במיוחד, שעומדים בקריטריונים כאלו (מאליו ברור גם שככל שנגדיל את המדגם, ישתפר טיבו של האומד): θ הפרמטר µ µידוע) ) σ ידוע) µלא )σ p=p(a) = i ( i µ ) S = ( i ) ( - מספר הפרטים מסוג A במדגם) אומד מקובל. רווחי סמך המטרה - למצוא, בעזרת המדגם, רווח (קטן ככל האפשר) שיכיל בהסתברות גבוהה ככל האפשר את הפרמטר הלא ידוע. הסתברות זו נקראת רמת הסמך ותסומן α. הרווח המתקבל נקרא רווח בר סמך ברמת סמך α, (או ברמת סמך %( α )). להלן רווחי סמך מקובלים במספר בעיות נפוצות. חישובי ההסתברות מבוססים על שימוש פשוט במשפט הגבול המרכזי (דרוש מספיק גדול). ראה סוגיה עמ'. 98

2 z σ, + z α α σ σ ) רווח סמך α ל- µ ידוע):. α של התפלגות נורמלית סטנדרטית. - z α ערך החלוקה ה- כאשר. z. = z. = רווח סמך 95% מתקבל כאשר מציבים רווח סמך 9% מתקבל כאשר מציבים אינו ידוע והאוכלוסייה בעלת התפלגות נורמלית, ניתן להחליף את α של z α יוחלף בערך החלוקה * הערה: כאשר σ σ ב- S (ראה טבלה סעיף.). ערך החלוקה התפלגות t (התפלגות סטודנט) עם דרגות חופש, וניתן למצוא אותו בלוחות t (ראה [4] וכן [6]. ראה גם סוגיה עמ' 5.) pˆ( pˆ) pˆ( pˆ) z + α, z α רווח סמך α ל- p : כאשר מציבים בד"כ ɵp = - מספר ההצלחות ב- ניסויים בעלי הסתברות לא ידועה p להצלחה... p= ɵ / הערות: עבור: = ɵp, רמת הסמך היא מקורבת. ניתן לחלופין להציב כזה יתקבל רווח סמך פשוט יותר: + z α אבל ארוך יתר על המידה בדרך כלל. א. במקרה z α, ב. שים לב שבשני המודלים מרכז הרווח הוא האומד הנקודתי המתאים והוא מ"מ. אורך / ɵ ( =p תלוי רק ב- ו- α (ולא במדגם עצמו). ג. הרווח במודל ובמודל (כשמציבים ניתן, אם כך, לקבוע מראש את אורך הרווח הרצוי לנו, זאת ע"י שליטה בגודל המדגם כאשר מציבים / ɵ p= במודל, חצי אורך רווח סמך 95% הוא גודל זה נקרא לפעמים שגיאה מקסימלית. (זהו מינוח שגוי ומטעה.) בסקרים בישראל מקובל לקחת 5= במקרה זה הגודל המתקבל הוא בקירוב 5%. 99

3 ד. ניתן למצוא בספרות המקצועית רווחי סמך ל- σ רווחי סמך לפרמטרים נוספים. (תוך שימוש בהתפלגות חי בריבוע) וכן

4 .3 בדיקת השערות H המטרה - למצוא שיטת החלטה (מבחן סטטיסטי) המבוססת על המדגם, שתכריע בין שתי השערות חלופיות לגבי ערכי הפרמטר( םי ( הלא ידוע, כאשר: - השערת האפס, H - השערה אלטרנטיבית. מבחן סטטיסטי הוא חלוקה של כל ערכי המדגם האפשריים לאיזור דחיה - R ואיזור קבלה כך שכאשר ערכי המדגם שיילקח יפלו ב- R, ההחלטה תהיה לדחות את H וכאשר, R - המדגם ייפול ב-, R יוחלט לקבל את. H.3. הגישה הקלאסית, מבחני עוצמה מקסימלית טעות מסוג I של מבחן נגרמת כאשר על פי ערכי המדגם שהתקבל מחליטים לדחות את, H בעת שלמעשה H נכונה..( P H, P(R H ההסתברות לכך תסומן: ) (או טעות מסוג - II נגרמת כאשר על פי המדגם מחליטים לקבל את, H בעת שלמעשה H נכונה..( P H ההסתברות לכך תסומן: H). P(R (או מטרה (בלתי אפשרית להשגה) - למצוא מבחן סטטיסטי (כלומר חלוקת כל ערכי המדגם האפשריים ל- R ו- ( R שיהפוך את הסתברויות שני סוגי הטעויות למינימליות. הערה: כיוון שבדרך כלל מטפלים בבדיקת השערות מורכבות (דהיינו אחת H ו- H כוללות כל אוסף של ערכים אפשריים עבור הפרמטר θ), הרי שמדובר באוסף של הסתברויות לטעות מסוג I: ( R) לכל ;θ H ( R) לכל ובמקביל, אוסף של הסתברויות לטעות מסוג :II θ. H שאת כולם נרצה כמובן להפוך למינימליות. מטרה אלטרנטיבית - מבחן בעל עצמה מקסימלית (ע"מ) ברמת מובהקות α: א. קובעים מראש חסם α לכל ההסתברויות לטעות מסוג, I החסם יקרא רמת המובהקות. ב. מבין כל המבחנים שרמת מובהקותם אינה עולה על ההסתברויות לטעות מסוג,α הן II למקסימום את ההסתברויות המשלימות מינימליות. ( R) או בניסוח אחר, לכל.θ H מחפשים מבחן שעבורו מבחן כזה שיגדיל α, מבחן הפונקציה (θ )π נקראת פונקצית העצמה של המבחן. = Pθ לסיכום: המטרה היא למצוא מבין כל המבחנים שרמת מובהקותם אינה עולה על שעבורו העצמה π( θ) = Pθ היא מקסימלית עבור כל.θ H

5 דוגמה: בדיקת השערות חד צדדיות על ממוצע האכלוסיה - µ,..., מדגם בגודל ( מספיק גדול) מהתפלגות בעלת ממוצע לא ידוע µ ושונות H H : µ=µ : µ>µ ידועה.σ מבחן עצמה מקסימלית ברמת מובהקות α לבדיקת σ µ > µ + z α = > z α σ / קובע לדחות את H כאשר. R = {T > z α, T ולרשום } = σ / µ נהוג להגדיר את סטטיסטי המבחן שים לב שאם H נכונה, הרי ש- T הוא משתנה נורמלי סטנדרטי. במלים אחרות: אזור הדחייה של מבחן בעל עצמה מקסימלית ברמה α ניתן על ידי הזנב הימני בעל הסתברות α של התפלגות הסטטיסטי T תחת H (שהיא כאמור נורמלית סטנדרטית).. H :µ µ הערות: א. המבחן לעיל הוא בעל עצמה מקסימלית ברמה α גם כאשר H ב. אינה נכונה. לכן קל במקרה זה לחשב את, π( µ ) = P ( >µ + Z µ α. N( µ, σ (ראה תרגיל 5 עמ'.(6 מתפלג בקירוב נורמלית גם כאשר σ ) העצמה לכל :µ>µ ) P µ ג. כאשר תחת, מתפלג בקירוב אם σ אינו ידוע והתפלגות האוכלוסייה היא נורמלית, נהוג להחליף את ערכו של σ במכנה של הסטטיסטי T, באומד שלו S (ראה גם סעיף.). במקרה זה, תחת, H µ =T מתפלג t עם דרגות חופש (ראה סוגיה עמ' 9) ואיזור הדחייה S/ ניתן על ידי הזנב הימני בעל הסתברות α של התפלגות t בעלת דרגות חופש: µ. R= { T > t, α } = { > t, α } S / ד. באופן אנלוגי, ניתן לרשום בקלות מבחנים בעלי עצמה מקסימלית ברמת מובהקות α. H :µ< כנגד µ H :µ µ R = {T < z α } כאשר ההשערות הן איזור הדחייה המתקבל הוא כאשר σ ידוע,

6 R {T < t, = α ו- } כאשר σ אינו ידוע ומוחלף ב- S (ראה תרגיל 6 עמ' 6). ה. בבדיקת השערות על פרופורציה p של בעלי תכונה באכלוסיה, על סמך מדגם מספיק p. T= גדול מהאוכלוסייה, משתמשים באופן דומה בסטטיסטי p ( p ) / כמו במודל הקודם, כאשר, p=p T הוא בקירוב בעל התפלגות נורמלית סטנדרטית. אזורי הדחייה המתאימים לאלטרנטיבות החד צדדיות השונות מהווים, שוב זנב מתאים בעל הסתברות α של ההתפלגות הנורמלית סטנדרטית. (ראה סוגיה 7 עמ' ). ו. ניתן למצוא בספרות מבחנים מקובלים לרשימה ארוכה נוספת של בעיות (ראה למשל תרגילים 7,8, 9 עמ' 6-7 וסוגיות 7,6 עמ'.(.3. מובהקות תוצאת המדגם (P-value) מקובל להתבונן בתוצאה שהתקבלה בפועל במדגם ולחשב, תחת ההנחה שהשערת האפס ( H ) נכונה, את ההסתברות לקבל תוצאה "קיצונית" במדגם. הסתברות זו נקראת מובהקות התוצאה (P-value). (תוצאה "קיצונית" פרושה שהיא מתיישבת יותר עם H דוגמה: בדיקת השערות חד צדדיות על ממוצע האכלוסיה אם במדגם התקבל לפחות כמו התוצאה שהתקבלה ופחות עם. H :µ> µ. P = Pµ (.( H H : µ µ כנגד > x, = x מובהקות התוצאה היא: ).µ=µ, כלומר, הסתברות הזנב הימני המתחיל ב- של התפלגות תחת x ~ N µ,σ אזור דחייה P-value µ µ µ + z σ α x הסבר: ממוצע מדגם גבוה במיוחד יחשב כאן כתוצאה קיצונית, היות והוא צפוי יותר H תחת מאשר תחת. H כזכור, אזור הדחייה של H בדוגמה זו בנוי מערכים גבוהים של (ראה איור). אופן השימוש: 3

7 H ככל שמובהקות תוצאת המדגם קטנה יותר, כך פחות סביר ש- נכונה. מתחת לרמה קריטית מסוימת α של מובהקות (מקובל לחתוך ב- = 5% α), נסיק ש- H אינה נכונה. 4

טושפ הרעשה ןחבמ t ןחבמ

טושפ הרעשה ןחבמ t ןחבמ מבחן השערה פשוט מבחן t מבחן השערה על תוחלת חוקר מעוניין לבדוק את כמות הברגים הפגומים שמיוצרים ע"י מכונה לייצור ברגים. לשם האמידה מחליטים לקחת מדגם של n מכונות מאותו סוג ולאמוד את תוחלת מספר המוצרים הפגומים,

Διαβάστε περισσότερα

ןמנירג ןואל \ הקיטסיטטס הקיטסיטטסב הרזח ה יפד ךותמ 14 דו 1 מע

ןמנירג ןואל \ הקיטסיטטס הקיטסיטטסב הרזח ה יפד ךותמ 14 דו 1 מע עמוד מתוך 4 סטטיסטיקה תיאורית X- תצפית -f( שכיחות מספר פעמים שהתצפית חזרה על עצמה - גודל מדגם -F( שכיחות מצטברת ישנם שני סוגי מיון תצפיות משתנה בדיד סוג תצפית ספציפי.משתנה שכל ערכיו מספרים בודדים. משתנה

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N ROBABILITY A STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר ugee Kazieer All rights reserved 005/06 כל הזכויות שמורות 005/06 הרצאה 5 התפלגויות בדידות מיוחדות התפלגות אחידה ניסוי והתפלגות ברנולי התפלגות

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

מבוא לאקונומטריקה א' החוג לכלכלה

מבוא לאקונומטריקה א' החוג לכלכלה מבוא לאקונומטריקה א' החוג לכלכלה גוּל זה בּוּל. בשבילך! תוכן העניינים: הקדמה: תזכורת של סטטיסטיקהומתמטיקה... הגדרותוסימונים... אמידה...3 נוסחאותוחוקיםבסטטיסטיקה...4 חוקיהסיגמה...4 חוקיהתוחלת... 5 חוקי השונות...

Διαβάστε περισσότερα

Prerequisites for the MBA course: Statistics for managers".

Prerequisites for the MBA course: Statistics for managers. Prerequisites for the MBA course: Statistics for managers". The purpose of the course "Statistics for Managers" is to get familiar with the basic concepts required for statistical reasoning: Types of Analyses,

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

למידה חישובית אלי דיין 1.

למידה חישובית אלי דיין 1. למידה חישובית אלי דיין תקציר מסמך זה יביא את סיכומי השיעורים מהקורס למידה חישובית, שהועבר על ידי פרופ ישי מנצור בסמסטר א בשנה ל תשע ג. תוכן עניינים 5 מה זה למידה חישובית? 5 סוגי

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

אקונומטריקה ד"ר חמי גוטליבובסקי סמסטר א' תש "ע

אקונומטריקה דר חמי גוטליבובסקי סמסטר א' תש ע 009 אקונומטריקה ד"ר חמי גוטליבובסקי סמסטר א' תש "ע סיכום: דביר צנוע הקדמה הדפים שלפניכם מהווים סיכום של קורס מבוא לאקונומטריקה, אשר הועבר באוניברסיטת תל- אביב ע"י ד"ר חמי גוטליבובסקי בסמסטר א' תש"ע. הסיכום

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ).

פרק 8: עצים. .(Tree) במשפטים הגדרה: גרף ללא מעגלים נקרא יער. דוגמה 8.1: תרגילים: הקודקודים 2 ו- 6 בדוגמה הוא ). מבוא לפרק: : עצים.(ree) עצים הם גרפים חסרי מעגלים. כך, כיוון פרק זה הוא מעין הפוך לשני הפרקים הקודמים. עץ יסומן לרב על ידי במשפטים 8.1-8.3 נפתח חלק מתכונותיו, ובהמשך נדון בהיבטים שונים של "עץ פורש" של

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

מכניקה אנליטית תרגול 6

מכניקה אנליטית תרגול 6 מכניקה אנליטית תרגול 6 1 אלימינציה של קואורדינטות ציקליות כאשר יש בבעיה קואורדינטה ציקלית אחת או יותר, לעתים נרצה לכתוב פעולה חדשה (או, באופן שקול, לגראנז'יאן חדש) אשר לא כולל את הקואורדינטות הללו, וממנו

Διαβάστε περισσότερα

אלגוריתמים קומבינטוריים סיכומים של תרגילי כיתה מסמסטרים קודמים בנושא מיון ובעיית הבחירה

אלגוריתמים קומבינטוריים סיכומים של תרגילי כיתה מסמסטרים קודמים בנושא מיון ובעיית הבחירה אלגוריתמים קומבינטוריים סיכומים של תרגילי כיתה מסמסטרים קודמים בנושא מיון ובעיית הבחירה 1. סיכום אלגוריתמי המיון שנלמד: הנחות והערות זכרון נוסף זמן (טוב) זמן (ממוצע) זמן (גרוע) האלגוריתם מיון במקום O(1)

Διαβάστε περισσότερα

מבוא לאקונומטריקה 57322

מבוא לאקונומטריקה 57322 מבוא לאקונומטריקה 57322 חיים שחור סיכומי הרצאות של פרופ' שאול לאך 21 ביוני 2012 5 תכונות אסימפטוטיות של OLS ז' סיון תשע"ב (שעור 1) נרצה לעשות ניתוח כאשר n. יש שתי תכונות עיקריות של :OLS ] [,MLR1 בעיקר

Διαβάστε περισσότερα

חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית

חשמל ומגנטיות תשעה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית חשמל ומגנטיות תשע"ה תרגול 3 פוטנציאל חשמלי ואנרגיה אלקטרוסטטית הפונציאל החשמלי בעבור כל שדה וקטורי משמר ישנו פוטנציאל סקלרי המקיים A = φ הדבר נכון גם כן בעבור השדה החשמלי וניתן לרשום E = φ (1) סימן המינוס

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 11

אלגברה ליניארית 1 א' פתרון 11 אלגברה ליניארית 1 א' פתרון 11.1 K α : F איזומורפיזם של שדות. א. טענה 1 :.α(0 F ) = 0 K עלינו להוכיח כי לכל,b K מתקיים.b + α(0 F ) = α(0 F ) + b = b עבור b K (כיוון ש α חח"ע ועל), קיים ויחיד x F כך ש.α(x)

Διαβάστε περισσότερα

דף נוסחאות מבוא לבקרה לביוטכנולוגיה ( ) ( ) ( ) הגבר סטטי: ערך התחלתי וסופי של אות המוצא ע"פ פונקצית תמסורת (נכון עבור שורשים ממשיים בלבד!!!

דף נוסחאות מבוא לבקרה לביוטכנולוגיה ( ) ( ) ( ) הגבר סטטי: ערך התחלתי וסופי של אות המוצא עפ פונקצית תמסורת (נכון עבור שורשים ממשיים בלבד!!! דף נוסחאות מבוא לבקרה לביוטכנולוגיה פונקצית תמסורת : Y( s) G X ( s) הגדרות בסיסיות : סדר של פונקצית תמסורת סדר הפולינום במכנה (החזקה הכי גבוהה של פולינום המכנה). אפסים- שורשים של פולינום המונה. קטבים שורשים

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B

Διαβάστε περισσότερα

יחידה - 7 זוויות חיצוניות

יחידה - 7 זוויות חיצוניות יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1

חשבון אינפיניטסימלי 1 חשבון אינפיניטסימלי 1 יובל קפלן סיכום הרצאות פרופ צליל סלע בקורס "חשבון אינפיניטסימלי 1" (80131) באוניברסיטה העברית, 7 2006. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו.

Διαβάστε περισσότερα

Analyze scale reliability analysis

Analyze scale reliability analysis 1 Analyze scale reliability analysis 6. פקודתמהימנות 2 readstra 3 problem 4 helpread 5 6 7 GET FILE='C:\Users\isaac\Desktop\ ;14_;12_ 06_;13_;14_ ג;.' spssma2\data.sav \חוב DATASET NAME DataSet1 WINDOW=FRONT.

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

69163) C [M] nm 50, 268 M cm

69163) C [M] nm 50, 268 M cm א ב ג סמסטר אביב, תשע"א 11) פיתרון מס' 4: תרגיל 69163 69163) פיסיקלית א' כימיה בליעה והעברה של אור חוק בר-למבר) כללי.1 נתון כי הסטודנט מדד את ההעברה דרך דוגמת החלבון בתוך תא של 1 ס"מ. גרף של העברה T) כתלות

Διαβάστε περισσότερα

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311 יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

Διαβάστε περισσότερα

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל-  כתב ופתר גיא סלומון 0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן

Διαβάστε περισσότερα

שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך:

שטף בהקשר של שדה וקטורי הוא כמות השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: חוק גאוס שטף חשמלי שטף בהקשר של שדה וקטורי הוא "כמות" השדה הוקטורי העובר דרך משטח מסויים. שטף חשמלי מוגדר כך: Φ E = E d כאשר הסימון מסמל אינטגרל משטחי כלשהו (אינטגרל כפול) והביטוי בתוך האינטגרל הוא מכפלה

Διαβάστε περισσότερα

שעה 0 חשיבה כמותית, שיטות מחקר כמותיות, רקע, כלי מחקר, מגבלות. שעה - 2 שיטות דגימה, דגימה אקראית, דגימה שיטתית ויעילות הדגימה.

שעה 0 חשיבה כמותית, שיטות מחקר כמותיות, רקע, כלי מחקר, מגבלות. שעה - 2 שיטות דגימה, דגימה אקראית, דגימה שיטתית ויעילות הדגימה. מפגש ראשון: מתיאוריה להשערות, ממודל למסקנות חזרה על עקרונות המחקר האמפירי הכמותי והיכרות עם SPSS שעה 0 חשיבה כמותית, שיטות מחקר כמותיות, רקע, כלי מחקר, מגבלות. שעה - 2 שיטות דגימה, דגימה אקראית, דגימה

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 5

אלגברה ליניארית 1 א' פתרון 5 אלגברה ליניארית 1 א' פתרון 5 1 במאי 1 1. נוכיח כי מרחב הפולינומים R[t] אינו נפרש סופית: נניח שהוא כן נפרש סופית. אם כך, ניקח קבוצה סופית פורשת שלו:.R[t] קבוצה סופית של פולינומים, שפורשת את כל המרחב p}

Διαβάστε περισσότερα

שאלה (25 1 נקודות) תתקבל!) תקן 5 ס"מ. הוא ס"מ.

שאלה (25 1 נקודות) תתקבל!) תקן 5 סמ. הוא סמ. בחינה מס' 1 חלק א ענה על שאלה 1 (שאלת חובה! קובץ בחינות לדוגמה עם תשובות סופיות שאלה (25 1 נקודות) לפניך חמש טענות. ציין לגבי כל טענה נכון/לא נכון ונמק תשובתך. (תשובה ללא נימוק לא תתקבל!) ב- 8 מכל 10 ימי

Διαβάστε περισσότερα

לוגיקה למדעי המחשב תרגולים

לוגיקה למדעי המחשב תרגולים לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר

Διαβάστε περισσότερα

אלגברה לינארית 2 יובל קפלן סיכום הרצאות מר שמואל ברגר בקורס "אלגברה לינארית 2" (80135) באוניברסיטה העברית,

אלגברה לינארית 2 יובל קפלן סיכום הרצאות מר שמואל ברגר בקורס אלגברה לינארית 2 (80135) באוניברסיטה העברית, אלגברה לינארית 2 יובל קפלן סיכום הרצאות מר שמואל ברגר בקורס "אלגברה לינארית 2" (80135 באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר באמצעות

Διαβάστε περισσότερα

חשבון דיפרנציאלי ואינטגרלי

חשבון דיפרנציאלי ואינטגרלי 0 חשבון דיפרנציאלי ואינטגרלי I גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות

Διαβάστε περισσότερα

טיב פני שטח Surface) (Finish מתארת את אופן החספוס של פני השטח של חלק כלשהו.

טיב פני שטח Surface) (Finish מתארת את אופן החספוס של פני השטח של חלק כלשהו. // טיב פני שטח Surface) (Finish טיב פני שטח Surface) (Finish מתארת את אופן החספוס של פני השטח של חלק כלשהו. לכל חומר יש דרגת חספוס מסויימת. ישנם חומרים שהם חלקים יותר וישנם חומרים מחוספסים יותר. חספוס

Διαβάστε περισσότερα

מדוע אופ טימיזציה נחו צ ה? אופטימיזציה ש ל ש איל תו ת. Query Optimization ארכיטקטורה של אופטימייזר (המשך) סיבוכיות נתו נים Data Complexity

מדוע אופ טימיזציה נחו צ ה? אופטימיזציה ש ל ש איל תו ת. Query Optimization ארכיטקטורה של אופטימייזר (המשך) סיבוכיות נתו נים Data Complexity אופטימיזציה ש ל ש איל תו ת Query Optimization מדוע אופ טימיזציה נחו צ ה? נתונה שאילתה בגודל m, מהו גודל התוצאה? לדוגמה: יחס n R(A) ומסד נ ת ונים בגודל עם 2 שורות, שבא חת מהן יש את הע רך 0 ובשניה יש א ת

Διαβάστε περισσότερα

פתרון של בעיות פוטנציאל בשני מימדים פונקציה אנליטית: פונקציה שבה החלק הממשי וגם החלק המדומה מקיימים את משוואת לפלס:

פתרון של בעיות פוטנציאל בשני מימדים פונקציה אנליטית: פונקציה שבה החלק הממשי וגם החלק המדומה מקיימים את משוואת לפלס: פתרון של בעיות פוטנציאל בשני מימדים פונקציה אנליטית: פונקציה שבה החלק הממשי וגם החלק המדומה מקיימים את משוואת לפלס: w = f (z) = U (x, y) + iv (x, y), U = V = 0 הפונקציה f מעתיקה ממישור y) zלמישור = (x,

Διαβάστε περισσότερα

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות

רשימת משפטים וטענות נכתב על ידי יהונתן רגב רשימת משפטים וטענות λ = 0 A. F n n ערך עצמי של A אם ורק אם A לא הפיכה..det(λ I ערך עצמי של λ F.A F n n n A) = 0 אם ורק אם: A v וקטור עצמי של Tהמתאים יהי T: V V אופרטור לינארי. אם λ F ערך עצמי של,T לערך העצמי λ, אזי λ הוא

Διαβάστε περισσότερα

מבוא לאקונומטריקה ב' החוג לכלכלה [1]

מבוא לאקונומטריקה ב' החוג לכלכלה [1] מבוא לאקונומטריקה ב' החוג לכלכלה [] תוכן עניינים מבחני ספציפיקציה- מבחן LM (כופלי לגרנג')... 4 טעויות ספציפיקציה... ) הוספת משתנה לא רלוונטי.... ) השמטת משתנה רלוונטי... מולטיקוליניאריות... 4 ) מולטיקוליניאריות

Διαβάστε περισσότερα

א הקיטסי ' טטסל אובמ רלדנ הינור בג ' 1

א הקיטסי ' טטסל אובמ רלדנ הינור בג ' 1 מבוא לסטטיסטיקה א' נדלר רוניה גב' סכימת המחקר שאלת המחקר כלל האוכלוסיה מדגם - תת אוכלוסיה דרך מדידה איסוף נתונים קיבוץ נתונים סטטיסטיקה תיאורית סיכום נתונים האם הנתונים הינם לגבי כלל האוכלוסייה? מדגם -

Διαβάστε περισσότερα

תוכנת ה :SPSS חוברת הסברים מפורטת לסטודנט

תוכנת ה :SPSS חוברת הסברים מפורטת לסטודנט תוכנת ה :SPSS חוברת הסברים מפורטת לסטודנט א'( )חלק עריכה: אבינח ברלוי 1 תוכן עניינים בניית קובץ נתונים :...3 טרנספורמציות : 5... 5...RECODE 8... COMPUTE 11... : FREQUENCIES אופרציות בגיליון הנתונים :...17

Διαβάστε περισσότερα

Descriptive Statistics

Descriptive Statistics .5 סטטיסטיקה תיאורית Statistics) (Descriptive 5.1 התפלגות שכיחויות (Frequencies) 5.1.1 כללי התפלגות שכיחויות מתארת את הערכים הקיימים של המשתנים והשכיחות שלהם, ומאפשרת הפקה של סטטיסטיקה תיאורית נוספת כגון

Διαβάστε περισσότερα

מבוא ונוסחאות עיקריות לתרגיל כיתה מספר 5. בתרגול מספר 4 הוסבר שכאשר גוף נמצא בתוך מערכת המאיצה בתאוצה, a r system החוק F מייצג כוחות אמיתיים בלבד).

מבוא ונוסחאות עיקריות לתרגיל כיתה מספר 5. בתרגול מספר 4 הוסבר שכאשר גוף נמצא בתוך מערכת המאיצה בתאוצה, a r system החוק F מייצג כוחות אמיתיים בלבד). כח דלמבר במערכת מסתובבת : מבוא ונוסחאות עיקריות לתרגיל כיתה מספר 5 בתרגול מספר 4 הוסבר שכאשר גוף נמצא בתוך מערכת המאיצה בתאוצה, a system החוק F F מייצג כוחות אמיתיים בלבד). השני של ניוטון = ma body לא

Διαβάστε περισσότερα

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple  Ó

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple Â Ó ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ ÂȈ appleâù Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â ÈÂÒÈapple Â Ó תוכן העניינים 7 9 6 0 8 6 9 55 59 6 מושגים בסיסיים... אינטרוולים וסביבות... מאפיינים של פונקציות... סוגי הפונקציות ותכנותיהם...

Διαβάστε περισσότερα

בשחמה יעדמב תומסרופמ תויעב ןד גוא רתויב רצקה לולסמה תאיצמ קלופ הרש הבתכ היעבה רואית

בשחמה יעדמב תומסרופמ תויעב ןד גוא רתויב רצקה לולסמה תאיצמ קלופ הרש הבתכ היעבה רואית אוגדן בעיות מפורסמות במדעי המחשב מציאת המסלול הקצר ביותר כתבה שרה פולק תיאור הבעיה הבעיה המתוארת בפרק זה עוסקת במציאת המסלול הקצר ביותר בין שני צמתים בגרף משוקלל. את הבעיה הגדיר דייקסטרה בשנת 1956, כשעבד

Διαβάστε περισσότερα

דוגמאות. W = mg. = N mg f sinθ = 0 N = sin20 = 59.26N. F y. m * = N 9.8 = = 6.04kg. m * = ma x. F x. = 30cos20 = 5.

דוגמאות. W = mg. = N mg f sinθ = 0 N = sin20 = 59.26N. F y. m * = N 9.8 = = 6.04kg. m * = ma x. F x. = 30cos20 = 5. דוגמאות 1. ארגז שמסתו 5kg נמצא על משטח אופקי. על הארגז פועל כוח שגודלו 30 וכיוונו! 20 מתחת לציר האופקי. y x א. שרטטו דיאגרמת כוחות על הארגז. f W = mg ב. מהו גודלו וכיוונו של הכוח הנורמלי הפועל על הארגז?

Διαβάστε περισσότερα

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3 סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני

Διαβάστε περισσότερα

מתרגלת: שירה גילת סמסטר א 2017 תשע"ז

מתרגלת: שירה גילת סמסטר א 2017 תשעז חוברת תרגולים בקורס "תורת גלואה" 88 311 21 בפברואר 2017 מתרגלת: שירה גילת סמסטר א 2017 תשע"ז ערך: איתי רוזנבאום 1 תורת גלואה תרגול ראשון חזרה מחוגים F שדה F. חוג הפולינומים עם מקדמים ב F [λ] זהו חוג אוקלידי,

Διαβάστε περισσότερα

מבוא מיפוי (Mapping) תכונה : 3 אוטוקורלציה הסתברות שגיאה במיפויM-QAM ביבליוגרפיה... 32

מבוא מיפוי (Mapping) תכונה : 3 אוטוקורלציה הסתברות שגיאה במיפויM-QAM ביבליוגרפיה... 32 פרק : אפנון על ידי צורת גל אחת מרצה: אריה רייכמן כתבו וערכו: ענבי תמיר זלמה טל תוכן עניינים מבוא.... הגדרת אפנון עם צורת גל אחת.... מיפוי (Mapping)... 3.. סוגי מיפויים עבור אפנון בצורת גל אחת... 4.. 7...

Διαβάστε περισσότερα

* p <.05. ** p <.01. *** p <.001 o

* p <.05. ** p <.01. *** p <.001 o עקרונות כלליים להצגת לוחות ממצאים הוכן ע"י ד"ר יואב לביא, על-פי עקרונות APA m.doc1.4.8.4 פורמט טבלה אין קווים אנכיים o קו אופקי רציף בראש הטבלה ובתחתיתה o קווים אופקיים מתחת לכותרות משנה o קו אופקי מתחת

Διαβάστε περισσότερα

מבוא לאלגברה ליניארית

מבוא לאלגברה ליניארית BEN GURION UNIVERSITY BE ER SHEVA, ISRAEL אוניברסיטת בן גוריון בנגב באר שבע מבוא לאלגברה ליניארית אמנון יקותיאלי המחלקה למתמטיקה אוניברסיטת בן גוריון amyekut@mathbguacil חוברת זו מיועדת לקורסים באלגברה

Διαβάστε περισσότερα

מבוא לתורת החבורות עוזי וישנה

מבוא לתורת החבורות עוזי וישנה מבוא לתורת החבורות עוזי וישנה 12 בפברואר 2017 מבוא לתורת החבורות מהדורה 3.931 הקדמה. חוברת זו ערוכה ומסודרת לפי תוכנית הלימודים בקורס "אלגברה מופשטת 1" לתלמידי מתמטיקה, 88-211, באוניברסיטת בר אילן. הקורס

Διαβάστε περισσότερα

פיזיקה 2 שדה מגנטי- 1

פיזיקה 2 שדה מגנטי- 1 Ariel University אוניברסיטת אריאל פיזיקה שדה מגנטי- 1. 1 MeV 1.חשב את זמן המחזור של פרוטון בתוך השדה המגנטי של כדור הארץ שהוא בערך B. 5Gauss ואת רדיוס הסיבוב של המסלול, בהנחה שהאנרגיה של הפרוטון הוא M

Διαβάστε περισσότερα

דף סיכום אלגברה לינארית

דף סיכום אלגברה לינארית דף סיכום אלגברה לינארית מרחבי עמודות, שורות, אפס: = = c + c + + c k k כל פתרון של המערכת : A=b נתונה מטריצה :m = מרחב השורות של המטריצה spa = spa מרחב העמודות של המטריצה { r, r, rm { c, c, c מרחב הפתרונות

Διαβάστε περισσότερα

תשס"ז שאלות מהחוברת: שאלה 1: 3 ס"מ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10

תשסז שאלות מהחוברת: שאלה 1: 3 סמ פתרון: = = F r 03.0 שאלה 2: R פתרון: F 2 = 1 10 Q 0 חוק קולון: שאלות מהחוברת: שאלה : פיזיקה למדעי החיים פתרון תרגיל 5 חוק קולון,שדה חשמלי ופוטנציאל חשמלי ו- Q 5 0 Q Q 3 ס"מ חשב את הכוח החשמלי הפועל בין שני מטענים נקודתיים הנמצאים במרחק 3 ס"מ זה מזה.

Διαβάστε περισσότερα

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010.

В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 2010. ודים בוגיינקו תורגם ע"י מריה סבצ'וק משוואות פ ל זהו תרגום מרוסית של הספר: В.О. Бугаенко. Уравнения Пелля. Второе издание. МЦНМО, 00. http://biblio.mccme.ru/ode/34/shop קובץ PDF של ההוצאה הראשונה ברוסית:

Διαβάστε περισσότερα

אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן

אוניברסיטת תל אביב הפקולטה להנדסה עש איבי ואלדר פליישמן אוניברסיטת תל אביב הפקולטה להנדסה ע"ש איבי ואלדר פליישמן מספר סידורי: מספר סטודנט: בחינה בקורס: פיזיקה משך הבחינה: שלוש שעות 1 יש לענות על כל השאלות 1 לכל השאלות משקל שווה בציון הסופי, ולכל סעיף אותו משקל

Διαβάστε περισσότερα

אילנה, אייל, רועי, רותם, רותם, רותם, נאור, יוני, תמיר

אילנה, אייל, רועי, רותם, רותם, רותם, נאור, יוני, תמיר 9 המושגים הבסיסיים ב (חזרה) משתנה אקראי הגדרות גודל שמאפיין איבר מסוים בקבוצת איברים מאותו סוג, מאיבר לאיבר באקראי. ושעשוי להשתנות משתנה אקראי מאופיין על ידי שם, מספר האיבר שאותו הוא מאפיין, וגודל (ערך).

Διαβάστε περισσότερα

מבוא למשוואות דיפרנציאליות חלקיות בינואר 2013

מבוא למשוואות דיפרנציאליות חלקיות בינואר 2013 מבוא למשוואות דיפרנציאליות חלקיות 80711 אור דגמי, or@digmi.org 23 בינואר 2013 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ מתניה בן ארצי בשנת לימודים 2013. ספר לימוד של פינצ ובר רובינשטיין מבוא למד

Διαβάστε περισσότερα

דודיחל הבישח ירגתא - תיטמתמ היצקודניא

דודיחל הבישח ירגתא - תיטמתמ היצקודניא המרכז להוראת המדעים ע"ש עמוס דה שליט אוניברסיטת ירושלים הנושא: אינדוקציה מתמטית - אתגרי חשיבה לחידוד ההבנה הוכן ע"י: נצה מובשוביץ-הדר, המחלקה להוראת הטכנולוגיה והמדעים, הטכניון, חיפה. תקציר: במאמר מוצגות

Διαβάστε περισσότερα

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2

תורישק :תורישקה תייעבב בוש ןייענ?t- t ל s- s מ לולסמ שי םאה 2 סריקה לעומק רכיבים אי-פריקים רכיבים קשירים היטב מיון טופולוגי פרק 3 ב- Kleinberg/Tardos פרק 3.3-5 ב- al Cormen et קשירות נעיין שוב בבעיית הקשירות: ל- t? האם יש מסלול מ- s קשירות נעיין שוב בבעיית הקשירות:

Διαβάστε περισσότερα

5.1 כללי. A s והלחוץ A s

5.1 כללי. A s והלחוץ A s 5. חישוב חתך בפעולת כוח אקסצנטרי 5.1 כללי כפיפה טהורה הינה מקרה פרטי של פעולת כוח אקסצנטרי על חתך. הסכימה הסטטית המורכבת במבנים בהנדסה אזרחית מביאה לכך שבמיעוט המקרים קיימת כפיפה טהורה ובמרביתם הכפיפה

Διαβάστε περισσότερα

תשובות לשאלות בפרק ד

תשובות לשאלות בפרק ד תשובות לשאלות בפרק ד עמוד 91: ( היבט מיקרוסקופי ) בהתחלה היו בכלי מולקולות של מגיבים בלבד, אשר התנגשו וכך נוצרו מולקולות מסוג חדש, מולקולות תוצר. קיום של מולקולות תוצר מאפשר התרחשות של תגובה הפוכה, בה

Διαβάστε περισσότερα

שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי

שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי שדות מגנטיים של זרמים שדה מגנטי של מטען נע שדה חשמלי של מטען נקודתי חוק ביו-סבר שדה מגנטי של מטען נקודתי נע (, v) ~ q 1 ~ מאונך למישור E ~ q 1 E ~ E מכוון ממטען לנקודה [ k'] qv k' 3 Tm A k'? שדה חשמלי

Διαβάστε περισσότερα

עץץץץ AVL. עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1, 0, או 1-. הגדרה: במילים אחרות: לכל צומת x בעץ,

עץץץץ AVL. עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1, 0, או 1-. הגדרה: במילים אחרות: לכל צומת x בעץ, עץץץץ AVL הגדרה: עץ AVL הוא עץ חיפוש בינארי שמקיים את התנאי הבא: לכל צומת x בעץ גורם האיזון של x הוא 1,, או 1-. h(t left(x) ) - h(t right(x) ) 1 במילים אחרות: לכל צומת x בעץ, בעץ AVL שומרים עבור כל צומת

Διαβάστε περισσότερα

תורת התורים תור לקוחות

תורת התורים תור לקוחות תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני

Διαβάστε περισσότερα

לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015

לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015 לוגיקה למדעי המחשב ניצן פומרנץ 25 ביוני 2015 רשימות בקורס לוגיקה למדעי המחשב, סמסטר אביב תשע"ה, אוניברסיטת תל אביב. טעויות קורות אשמח שתעדכנו אותי עליהן ושאתקנן. אמיר שפילקה shpilka@post.tau.ac.il שרייבר

Διαβάστε περισσότερα

תרגיל אמצע הסמסטר - פתרונות

תרגיל אמצע הסמסטר - פתרונות 1856 1 פיסיקה כללית לתלמידי ביולוגיה 774 פיסיקה כללית : חשמל ואופטיקה לתלמידי ביולוגיה חשמל ואופטיקה 774, תשס"ו - פתרונות 1 מטענים, שדות ופטנציאלים (5) ו- am µc נגדיר d האלכסון בין הקודקודים B המרחק בין

Διαβάστε περισσότερα

Electric Potential and Energy

Electric Potential and Energy Electric Potential and Energy Submitted by: I.D. 039033345 The problem: How much energy is needed to create the following configuration? The solution: Let φ i be the potential at the position of the charge

Διαβάστε περισσότερα

םימתירוגלאל אוב מו םינותנ ינבמ ןייטשניבור רימא

םימתירוגלאל אוב מו םינותנ ינבמ ןייטשניבור רימא מבני נתונים ומבוא לאלגוריתמים אמיר רובינשטיין תוכן העניינים הקדמה מבוא, סיבוכיות של אלגוריתמים מבני נתוני בסיסיים... רקורסיה. וטכניקת הפרדמשולצרף מיוןמהיר. ונכונות של אלגוריתמים ערימהותורקדימויות חסםתחתוןלבעייתהמיון,

Διαβάστε περισσότερα

חוק קולון והשדה האלקטרוסטטי

חוק קולון והשדה האלקטרוסטטי חוק קולון והשדה האלקטרוסטטי בשנת 1784 מדד הפיזיקאי הצרפתי שארל קולון את הכוח השורר בין שני גופים הטעונים במטענים חשמליים ונמצאים במנוחה. q הנמצאים במרחק r זה q 1 ו- תוצאות המדידה היו: בין שני מטענים חשמליים

Διαβάστε περισσότερα

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, א"ב (.

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, אב (. תוכן עניינים תקציר מודלים חישוביים ערך יגאל הינדי 2 2 2 3 4 6 6 6 7 7 8 8 9 11 13 14 14 15 16 17 17 18 19 20 20 20 20 - האוטומט הסופי - אוטומט סופי דטרמניסטי 2 פרק - מושגים ומילות מפתח 2.1 - הגדרת אוטומט

Διαβάστε περισσότερα

בפיסיקה 1 למדתם שישנם כוחות משמרים וכוחות אשר אינם משמרים. כח משמר הינו כח. F dl = 0. U = u B u A =

בפיסיקה 1 למדתם שישנם כוחות משמרים וכוחות אשר אינם משמרים. כח משמר הינו כח. F dl = 0. U = u B u A = פוטנציאל חשמלי אנרגיה פוטנציאלית חשמלית בפיסיקה למדתם שישנם כוחות משמרים וכוחות אשר אינם משמרים. כח משמר הינו כח שהעבודה שהוא מבצע על גוף לאורך דרך אינה תלויה במסלול שנבחר בין נקודת ההתחלה לבין נקודת הסיום,

Διαβάστε περισσότερα

אוניברסיטת בר אילן מבני נתונים תרגולים מרצה: פרופ' שמואל טומי קליין סמסטר ב', תש"ע

אוניברסיטת בר אילן מבני נתונים תרגולים מרצה: פרופ' שמואל טומי קליין סמסטר ב', תשע אוניברסיטת בר אילן מבני נתונים 89-120 תרגולים (חלקי) מרצה: פרופ' שמואל טומי קליין נכתב ונערך ע"י: גלעד אשרוב סמסטר ב', תש"ע הערות כלליות. המסמך מכיל סיכומי תרגולים שניתנו במהלך הסמסטר (סמסטר ב', תש"ע).

Διαβάστε περισσότερα

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב יובל אדם Young man, in mathematics you don t understand things. You just get used to them. - John von Neumann תוכן עניינים 2 פרולוג....................................

Διαβάστε περισσότερα