סטודנטים יקרים הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית לכל נושא ונושא.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "סטודנטים יקרים הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית לכל נושא ונושא."

Transcript

1 סטודנטים יקרים לפניכם ספר תרגילים בקורס מבוא לסטטיסטיקה ואקונומטריקה. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-lne הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית לכל נושא ונושא. הקורס כולו מוגש בסרטוני וידאו המלווים בהסבר קולי, כך שאתם רואים את התהליכים בצורה מובנית, שיטתית ופשוטה, ממש כפי שנעשה בשיעור פרטי, לדוגמה לחצו כאן. את הקורס בנה מר ברק קנדל, מרצה מבוקש במוסדות אקדמיים שונים ובעל ניסיון עתיר בהוראת המקצוע. אז אם אתם עסוקים מידי בעבודה, סובלים מלקויות למידה, רוצים להצטיין או פשוט אוהבים ללמוד בשקט בבית, אנחנו מזמינים אתכם לחוויית לימודים יוצאת דופן וחדשה לחלוטין, היכנסו עכשיו לאתר. אנו מאחלים לכם הצלחה מלאה בבחינות צוות האתר GooL זה ב ול. ג ול בשבילך! לפתרון מלא בסרטון וידאו היכנסו ל-

2 תוכן פרק - התפלגויות רציפות מיוחדות - התפלגות נורמלית... 3 פרק - קומבינציות לינאריות להתפלגות נורמאלית... פרק - 3 הסקה סטטיסטית - הקדמה... פרק - 4 התפלגות הדגימה... פרק - מושגים בסיסיים באמידה... 3 פרק - 6 אמידה נקודתית פרק - 7 רווח סמך לתוחלת )ממוצע האוכלוסייה( פרק - רווח סמך לפרופורציה... 6 פרק - 3 רווח סמך להפרש פרופורציות... 6 פרק - רווח סמך להפרש תוחלות ממדגמים בלתי תלויים... 7 פרק - רווח סמך לתוחלת ההפרש במדגם מזווג פרק - רווח סמך לשונות וסטיית תקן... פרק - 3 רווח סמך ליחס שוניות... פרק - 4 תרגול מסכם ברווחי סמך... 3 פרק - בדיקת השערות כללית... 3 פרק - 6 בדיקת השערות על פרק - 7 בדיקת השערות על תוחלת פרק - בדיקת השערות על פרמטרים... 3 )ממוצע(... פרופורציה... 4 פרק - 3 בדיקת השערות על הפרש פרופורציות... 6 פרק - בדיקת השערות על הפרש תוחלות במדגמים בלתי תלויים... 6 פרק - בדיקת השערות על תוחלת ההפרשים במדגמים מזווגים )תלויים(... 6 פרק - הקשר בין רווח סמך לבדיקת השערות על הפרש תוחלות פרק - 3 פרק - 4 מבחני חי בדיקת השערות... 7 בריבוע... פרק - ניתוח שונות חד כיוונית... 3 פרק 6 מבוא לקורס... 3 פרק 7- אומדי הריבועים הפחותים פרק - מודלים לא ליניאריים... 3 פרק - 3 שינוי יחידות מדידה... 4 פרק 3 - מבחן... T 6 פרק - 3 רגרסיה מרובה ומולטיקוליניאריות... 4 פרק F לטיב הרגרסיה ומבחן -מדד R פרק - 33 משתני דמי לפתרון מלא בסרטון וידאו היכנסו ל-

3 3 פרק - התפלגויות רציפות מיוחדות - התפלגות נורמלית רקע: התפלגות נורמלית הינה התפלגות של משתנה רציף. ישנם משתנים רציפים מסוימים שנהוג להתייחס אליהם כנורמליים כמו: זמן ייצור, משקל תינוק ביום היוולדו ועוד. פונקציית הצפיפות של ההתפלגות הנורמלית נראית כמו פעמון: לעקומה זו קוראים גם עקומת גאוס ועקומה אחת נבדלת מהשנייה באמצעות הממוצע וסטיית התקן שלה. אלה הם הפרמטרים שמאפיינים את ההתפלגות. N (, ) נוסחת פונקציית הצפיפות : f ( x ) ( x) e כדי לחשב הסתברויות בהתפלגות נורמלית יש לחשב את השטחים הרלבנטים שמתחת לעקומה. כדי לחשב שטחים אלה נמיר כל התפלגות נורמלית להתפלגות נורמלית סטנדרטית על ידי תהליך הנקרא תקנון. התפלגות נורמלית סטנדרטית היא התפלגות נורמלית שהממוצע שלה הוא אפס וסטיית התקן היא אחת והיא תסומן באות Z. תהליך התקנון מבוצע על ידי הנוסחה הבאה : אחרי תקנון מקבלים ערך הנקרא ציון תקן. ציון התקן משמעו בכמה סטיות תקן הערך סוטה מהממוצע. Z N(0, ) Z לאחר חישוב ציון התקן של ערך מסוים נעזרים בטבלה של ההתפלגות הנורמלית הסטנדרטית לחישוב השטח הרצוי. לפתרון מלא בסרטון וידאו היכנסו ל-

4 4 ובאופן כללי נתאר את הסכמה הבאה : N (, ) Z N(0, ) Z שימוש בטבלה P Ф(a) -Ф(a) a Ф(-a)=- Ф(a) Ф(a) -a לפתרון מלא בסרטון וידאו היכנסו ל-

5 5 טבלת ההתפלגות המצטברת הנורמלית סטנדרטית ערכי (z) (z) z z z (z) לפתרון מלא בסרטון וידאו היכנסו ל-

6 6 דוגמה: )הפתרון בהקלטה( משקל חפיסות שוקולד המיוצרות בחברה מתפלג נורמלית עם ממוצע 0 גרם בסטיית תקן של 8 גרם. מה אחוז חפיסות השוקולד ששוקלות מתחת ל- 00 גרם? א. מה אחוז חפיסות השוקולד השוקלות מעל 00 גרם? ב. מה אחוז חפיסות השוקולד השוקלות מתחת ל 9 גרם? ג. מהו המשקל ש % מהחפיסות בקו הייצור שוקלים פחות מהם? ד. לפתרון מלא בסרטון וידאו היכנסו ל-

7 7 תרגילים: 0. הגובה של אנשים באוכלוסייה מסוימת מתפלג נורמלית עם ממוצע של 07 ס"מ וסטית תקן של 0 ס"מ. א. מה אחוז האנשים שגובהם מתחת ל ס"מ.? ב. מה אחוז האנשים שגובהם מעל 0 ס"מ? ג. מה אחוז האנשים שגובהם בדיוק 073. ס"מ? ד. מה אחוז האנשים שגובהם מתחת ל- 07 ס"מ? ה. מה אחוז האנשים שגובהם לכל היותר 07 ס"מ? 9. נתון שהזמן שלוקח לתרופה מסוימת להשפיע מתפלג נורמלית עם ממוצע של 3 דקות ושונות של דקות רבועות. א. מהי פרופורציית המקרים בהן התרופה תעזור אחרי יותר משעה? ב. מה אחוז מהמקרים שבהן התרופה תעזור בין 33 ל- 37 דקות? ג. מה הסיכוי שהתרופה תעזור בדיוק תוך 3 דקות? ד. מה שיעור המקרים שבהן ההשפעה של התרופה תסטה מ- 3 דקות בפחות מ- 3 דקות? 3. המשקל של אנשים באוכלוסייה מסוימת מתפלג נורמלית עם ממוצע של ק"ג וסטיית תקן של 8 ק"ג. א. מה אחוז האנשים שמשקלם נמוך מ- 33 ק"ג? ב. מהי פרופורציית האנשים באוכלוסייה שמשקלם לפחות 3 ק"ג? ג. מהי השכיחות היחסית של האנשים באוכלוסייה שמשקלם בין ל- 7 ק"ג? ד. לאיזה חלק מהאוכלוסייה משקל הסוטה מהמשקל הממוצע בלא יותר מ- ק"ג? ה. מה הסיכוי שאדם אקראי ישקול מתחת ל 0 ק"ג?. משקל תינוקות ביום היוולדם מתפלג נורמלית עם ממוצע של 33 גרם וסטיית תקן גרם. א. מצאו את העשירון העליון. ב. מצאו את האחוזון ה 3. ג. מצאו את העשירון התחתון. לפתרון מלא בסרטון וידאו היכנסו ל-

8 8 3. ציוני מבחן אינטיליגנציה מתפלג נורמלית עם ממוצע 0 ושונות. 993 א. מה העשירון העליון של הציונים במבחן האינטיליגנציה? ב. מה העשירון התחתון של ההתפלגות? ג. מהו הציון ש- 9% מהנבחנים מקבלים מעליו? ד. מהו האחוזון ה- 9? ה. מהו הציון ש- 3% מהנבחנים מקבלים מתחתיו?. נפח משקה בבקבוק מתפלג נורמלית עם סטיית תקן של 9 מ"ל, נתון ש 33% מהבקבוקים הם עם נפח שעולה על 38.8 מ"ל. א. מה ממוצע נפח משקה בבקבוק? ב. 3% מהבקבוקים המיוצרים עם הנפח הגבוה ביותר נשלחים לבדיקה, החל מאיזה נפח שולחים בקבוק לבדיקה? ג. 0% מהבקבוקים עם הנפח הקטן ביותר נתרמים לצדקה, מהו הנפח המקסימלי לצדקה? 7. אורך חיים של מכשיר מתפלג נורמלית. ידוע שמחצית מהמכשירים חיים פחות מ- 3 שעות, כמו כן ידוע ש- 7% מהמכשירים חיים פחות מ- 3 שעות. א. מהו ממוצע אורך חיי מכשיר? ב. מהי סטית בתקן של אורך חיי מכשיר? ג. מה הסיכוי שמכשיר אקראי יחיה פחות מ- שעות? ד. מהו המאון העליון של אורח חיי מכשיר? ה. 0% מהמכשירים בעלי אורך החיים הקצר ביותר נשלח למעבדה לבדיקה מעמיקה. מהו אורך החיים המקסימלי לשליחת מכשיר למעבדה? לפתרון מלא בסרטון וידאו היכנסו ל-

9 9 8. להלן שלוש התפלגויות נורמליות של שלוש קבוצות שונות ששורטטו באותה מערכת צירים. ההתפלגויות מוספרו כדי להבדיל בינהן. א.לאיזו התפלגות הממוצע הגבוה ביותר? ב. במה מבין המדדים הבאים התפלגות 0 ו 9 זהות? א. בעשירון העליון. ב. בממוצע. ג. בשונות. ג. לאיזו התפלגות סטיית התקן הקטנה ביותר? א. 0 ב. 9 ג. 3 ד. אין לדעת.. הזמן שלוקח לאדם להגיע לעבודתו מתפלג נורמלית עם ממוצע של דקות וסטית תקן של 3 דקות. א. מה ההסתברות שמשך הנסיעה של האדם לעבודתו יהיה לפחות שלושת רבעי השעה? ב. אדם יצא לעבודתו בשעה 8:0 מביתו. הוא צריך להגיע לעבודתו בשעה. : מה הסיכוי שיאחר לעבודתו? ג. אם ידוע שזמן נסיעתו לעבודה היה יותר משלושת רבעי השעה. מה ההסתברות שזמן הנסיעה הכולל יהיה פחות מ- 3 דקות? ד. מה הסיכוי שבשבוע )חמישה ימי עבודה ) בדיוק פעם אחת יהיה זמן הנסיעה לפחות שלושת רבעי השעה? לפתרון מלא בסרטון וידאו היכנסו ל-

10 0. ההוצאה החודשית לבית אב בעיר "טרירה" מתפלגת נורמלית עם ממוצע של 9 דולר וסטית תקן של 3 דולר. בחרו באקראי 3 בתי אב. ההסתברות שלפחות אחד מהם מוציא בחודש מעל ל- T דולר היא..87 א. מה ערכו של T? ב. מה הסיכוי שההוצאה החודשית של בית אב בעיר תהיה לפחות סטיית תקן אחת מעל T? ג. מסתבר שנפלה טעות בנתונים, ויש להוסיף 0 דולר להוצאות החודשית של כל בתי האב בעיר. לאור זאת, מה ההסתברות שההוצאה החודשית של בית אב נמוכה מ- 08 דולר? 00. אורך שיר אקראי המשודר ברדיו מתפלג נורמלית עם תוחלת של 3.3 דקות וסטיית תקן של שלושים שניות. א. מה ההסתברות שאורך של שיר אקראי המנוגן ברדיו יהיה בין 3 ל 9.3 דקות? ב. מהו הטווח הבין רבעוני של אורך שיר המשודר ברדיו? ג. ביום מסוים מנוגנים 9 שירים ברדיו. כמה שירים מתוכם תצפה שיהיו באורך הנמוך מ 3.3 דקות? ד. בשעה מסוימת שודרו 8 שירים. מה ההסתברות שרבע מהם בדיוק היו ארוכים מ- דקות והיתר לא? לפתרון מלא בסרטון וידאו היכנסו ל-

11 פתרונות : שאלה א. 8.93% ב. 9.98% ג. ד. 3% שאלה 3 9.3% א. 8.% ב. 3.% ג..383 ד. 0% ה. שאלה א. 8.8 ב ג. 87. ד. שאלה 7 3 א. 0 ב..3 ג. 733 ד. 97 ה. שאלה 8 א. 3 ב. בממוצע. ג. 0 שאלה א..998 ב..833 ג..373 ד. שאלה 093 א..99 ב ג. שאלה.033 א..73 ב. 0 ג..93 ד. לפתרון מלא בסרטון וידאו היכנסו ל-

12 פרק - קומבינציות לינאריות להתפלגות נורמאלית רקע: כל קומבינציה לינארית של משתנים המתפלגים נורמאלית מתפלגת נורמאלית בעצמה. דוגמה: )פתרון בהקלטה( הגובה של גברים במדינת ישראל מתפלג נורמלית עם תוחלת של 073 ס"מ וסטיית תקן של 0 ס"מ, כמו כן הגובה של נשים במדינה מתפלג נורמלית עם תוחלת של 03 ס"מ וסטיית תקן של 8 ס"מ. מה הסיכוי שגבר אקראי מהמדינה יהיה גבוה מאישה אקראית? (.7893 ) לפתרון מלא בסרטון וידאו היכנסו ל-

13 3 תרגילים: המשקל של גברים במדינת ישראל מתפלג נורמלית עם תוחלת של 73 ק"ג וסטיית תקן של 0 ק"ג. כמו כן המשקל של נשים במדינה מתפלג נורמלית עם תוחלת של 3 ק"ג וסטיית תקן של 8 ק"ג. מה הסיכוי שאישה אקראית תהיה בעלת משקל גבוה יותר מגבר אקראי?.0 ההוצאה השנתית על ביגוד לאדם מתפלג נורמלית עם תוחלת של 3 וסטיית תקן של. 0 ההוצאה השנתית על בילויים מתפלגת נורמלית עם תוחלת של וסטיית תקן של. 03 מקדם המתאם בין ההוצאה השנתית על ביגוד וההוצאה השנתית על בילויים הינו.. א. מה התוחלת ומהי סטיית התקן של התפלגות ההוצאה השנתית הכוללת על ביגוד ובילוי? ב. מה הסיכוי שההוצאה השנתית הכוללת על ביגוד ובילוי תעלה על? 8 ג. מהו העשירון העליון של ההוצאה השנתית הכוללת על ביגוד ובילוי?.9 צריכת הירקות היומית במסעדה מתפלג נורמלית עם תוחלת של 3 ק"ג וסטיית תקן של ק"ג. נתון שמחיר ק"ג ירק הוא לקילו. א. מה התוחלת ומהי השונות של העלות היומית של ירקות למסעדה? ב. מה ההסתברות שהעלות היומית על ירקות תהיה נמוכה מ- 9? ג. מהו האחוזון ה- של התפלגות העלות היומית של המסעדה על ירקות?.3 נפח יין בבקבוק מתפלג נורמאלית עם תוחלת של 73 מ"ל וסטיית תקן של 9 מ"ל. אדם קנה מארז של בקבוקי יין. א. מהי התוחלת ומהי סטיית התקן של נפח היין במארז. ב. את היין שבמארז האדם מזג לכלי שקיבולתו 3.0 ליטר. מה ההסתברות שהיין יגלוש מהכלי?. לדוד משה הייתה חווה. בחווה פרה ועזה. תנובת החלב של הפרה מתפלג נורמאלית עם ממוצע של 9 ליטר ביום וסטיית תקן של 3 ליטר ותנובת החלב של העזה מתפלג גם כן נורמאלית עם ממוצע של 0 ליטר וסטיית תקן של 9 ליטר. כל ליטר חלב פרה נימכר ב- 9 וליטר חלב עזה נימכר ב- 3. א. מה הסיכוי שהפדיון היומי של דוד משה מחלב יהיה לפחות? 9 ב. מה הסיכוי שמתוך 3 ימים יהיו לפחות ימים בהם תנובת החלב מהפרה והעזה ביחד תהיה מתחת ל- 3 ליטר? ג. מה הסיכוי שביום מסוים תנובת הפרה תהיה נמוכה מתנובת העזה?.3 לפתרון מלא בסרטון וידאו היכנסו ל-

14 4 שאלה.9077 שאלה א. תוחלת 7, סטיית תקן 997. ב..39 ג. 880 שאלה 3 א. תוחלת 3, שונות 37. ב ג. 9 שאלה 4 א. תוחלת 3 מ"ל וסטיית תקן מ"ל. ב..9 פתרונות: לפתרון מלא בסרטון וידאו היכנסו ל-

15 5 רקע: פרק - 3 הסקה סטטיסטית - הקדמה אוכלוסייה קבוצה שאליה מפנים שאלה מחקרית. למשל, חברת תרופות שמעוניינת לפתח תרופה למחלת הסוכרת מתעניינת באוכלוסיית חולי הסוכרת בעולם. מדגם חלק מתוך האוכלוסייה. למשל, אם נדגום באקראי 0 אנשים מתוך חולי הסוכרת אז זהו מדגם מתוך אוכלוסיית חולי הסוכרת. במקרים רבים אין אפשרות לחקור את כל האוכלוסייה כיוון שאין גישה לכולה, היא גדולה מידי, אנו מוגבלים בזמן ובאמצעים טכניים ולכן מבצעים מדגם במטרה לבצע הסקה סטטיסטית מהמדגם לאוכלוסייה. הדגימה בקורס תהייה דגימה מקרית סיכויי להיכלל במדגם. הכוונה לדגימה שבה לכל תצפית באוכלוסייה יש את אותו סטטיסטי )מדגם( פרמטר )אוכלוסייה( P p סטטיסטי גודל המחושב על המדגם. פרמטר גודל המתאר את האוכלוסייה. הסימונים לפרמטר וסטטיסטי הם שונים למשל: ממוצע פרופורציה )שכיחות יחסית( פרמטר הוא גודל קבוע גם אם אנו לא יודעים אותו סטטיסטי הוא משתנה ממדגם למדגם ולכן יש לו התפלגות הנקראת התפלגות הדגימה. לפתרון מלא בסרטון וידאו היכנסו ל-

16 6 דוגמה )פתרון בהקלטה(: 93% מאזרחי המדינה תומכים בהצעת החוק של חבר כנסת מסוים. הוחלט לדגום 9 אזרחים ומתוכם לבדוק מהו אחוז התומכים בהצעת החוק. א. ב. ג. ד. ה. ו. מי האוכלוסייה? מה המשתנה? מה הפרמטרים? מהו גודל המדגם? מהו הסטטיסטי שמתכננים להוציא מהמדגם? האם הפרמטר או הסטטיסטי הוא משתנה מקרי? לפתרון מלא בסרטון וידאו היכנסו ל-

17 7 תרגילים : 0. מתוך כלל הסטודנטים במכללה שסיימו סטטיסטיקה א נדגמו שני סטודנטים. נתון שממוצע הציונים של כלל הסטודנטים היה 78 עם סטיית תקן של 03. א. מי האוכלוסייה? ב. מה המשתנה? ג. מהם הפרמטרים? ד. מהו גודל המדגם? 9. להלן התפלגות מספר מקלטי הטלוויזיה למשפחה בישוב "העוגן". נגדיר את x להיות מספר המקלטים של משפחה אקראית. מתכננים לדגום מאוכלוסיה זו משפחות ולהתבונן בממוצע מספר מקלטי הטלוויזיה במדגם. מספר המשפחות סך הכול N 000 מספר מקלטים א. מיהי האוכלוסייה ומהו המשתנה הנחקר? ב. מהו הסטטיסטי שיילקח מהמדגם ומה סימונו? 3. נתון כי 9% מהשכירים במדינה הם אקדמאיים. נבחרו באקראי 0 שכירים באותה אוכלוסייה ומתכננים לפרסם את מספר האקדמאיים שנדגמו. א. מהי האוכלוסייה? ב. מה המשתנה באוכלוסייה? ג. מהם הפרמטרים? ד. מהו הסטטיסטי? לפתרון מלא בסרטון וידאו היכנסו ל-

18 8 פרק - 4 התפלגות הדגימה ממוצע המדגם ומשפט הגבול המרכזי רקע: בפרק זה נדון בהתפלגות של ממוצע המדגם : x n x מכיוון שממדגם למדגם אנו יכולים לקבל ממוצע מדגם שונה, אזי ממוצע המדגם הוא משתנה מקרי ויש לו התפלגות. גדלים המתארים התפלגות כלשהי או אוכלוסייה כלשהי נקראים פרמטרים. להלן רשימה של פרמטרים החשובים לפרק זה: ממוצע האוכלוסייה נסמן ב ( נקרא גם תוחלת (. שונות אוכלוסייה נסמן ב-. סטיית תקן של אוכלוסייה:. א. תכונות התפלגות ממוצע כל ממוצעי המדגם האפשריים שווה לממוצע האוכלוסייה: Ex ( ) x שונות כל ממוצעי המדגם האפשריים שווה לשונות האוכלוסייה מחולק ב- n. תכונה זו נכונה רק במדגם מקרי: V( x) x n יש יחס הפוך בין גודל המדגם לבין שונות ממוצעי המדגם. אם נוציא שורש לשונות נקבל סטיית תקן של ממוצע המדגם שנקראת גם טעות תקן: ( x) n n דוגמה: )פתרון בהקלטה( השכר הממוצע במשק הינו עם סטיית תקן של. דגמו באקראי 93 עובדים. א. מי אוכלוסיית המחקר? מהו המשתנה הנחקר? ב. מהם הפרמטרים של האוכלוסייה? ג. מה התוחלת ומהי סטית התקן של ממוצע המדגם? לפתרון מלא בסרטון וידאו היכנסו ל-

19 9 ב. דגימה מהתפלגות נורמאלית אם נדגום מתוך אוכלוסייה שהמשתנה בה מתפלג נורמאלית עם ממוצע ושונות המדגם גם יתפלג נורמאלית: ממוצע x ~ N(, ) n x Z x n דוגמה: )פתרון בהקלטה( משקל תינוק ביום היוולדו מתפלג נורמאלית עם ממוצע 3 גרם וסטיית תקן של גרם. מה ההסתברות שבמדגם של תינוקות אקראיים בעת הולדתם המשקל הממוצע של התינוקות יהיה מתחת ל- 3.3 ק"ג? ג. משפט הגבול המרכזי אם אוכלוסייה מתפלגת כלשהו עם ממוצע ושונות ממוצע המדגם מתפלג בקירוב נורמאלית. x ~ N(, ) n אזי עבור מדגם מספיק גדול ( 30 ) n דוגמה: )פתרון בהקלטה( משקל חפיסת שוקולד בקו ייצור מתפלג עם ממוצע 0 גרם וסטיית תקן של גרם. דגמו מקו הייצור 3 חפיסות שוקולד אקראיות. מה ההסתברות שהמשקל הממוצע של חפיסות השוקולד שנדגמו יהיה מתחת ל 09 גרם? לפתרון מלא בסרטון וידאו היכנסו ל-

20 תרגילים : מתוך כלל הסטודנטים במכללה שסיימו סטטיסטיקה א נדגמו שני סטודנטים. נתון שממוצע הציונים של כלל הסטודנטים היה 78 עם סטיית תקן של 03. א. מי האוכלוסייה? ב. מה המשתנה? ג. מהם הפרמטרים? ד. מהו גודל המדגם? ה. מהו תוחלת ממוצע המדגם? ו. מהי טעות התקן?.0 9. להלן התפלגות מספר מקלטי הטלוויזיה למשפחה בישוב מסוים: מספר המשפחות סך הכול N 0000 מספר מקלטים 3 4 נגדיר את x להיות מספר המקלטים של משפחה אקראית. א. בנו את פונקצית ההסתברות של x. ב. חשבו את התוחלת, השונות וסטיית התקן של x. ג. אם נדגום משפחות מהישוב עם החזרה מה תהיה התוחלת, מהי השונות ומהי סטיית התקן של ממוצע המדגם? 3. אם נטיל קובייה פעמיים ונתבונן בממוצע התוצאות שיתקבלו, מה תהיה התוחלת ומה תהיה סטיית התקן של ממוצע זה? לפתרון מלא בסרטון וידאו היכנסו ל-

21 . משקל תינוק ביום היוולדו מתפלג נורמאלית עם ממוצע 3 גרם וסטיית תקן של גרם א. מה ההסתברות שתינוק אקראי בעת הלידה ישקול פחות מ- 38 גרם? נתון כי ביום מסוים נולדו תינוקות. ב. מה ההסתברות שהמשקל הממוצע שלהם יעלה על ק"ג? ג. מה ההסתברות שהמשקל הממוצע של התינוקות יהיה מתחת ל- 9.3 ק"ג? ד. מה ההסתברות שהמשקל הממוצע של התינוקות יהיה רחוק מהתוחלת בלא יותר מ- 3 גרם? ה. הסבירו ללא חישוב כיצד התשובה לסעיף הקודם הייתה משתנה אם היה מדובר על יותר מ- תינוקות? 3. הגובה של המתגייסים לצה"ל מתפלג נורמאלית עם תוחלת של 073 ס"מ וסטיית תקן של 0 ס"מ. ביום מסוים התגייסו 0 חיילים. א. מה ההסתברות שהגובה הממוצע שלהם יהיה לפחות 0 ס"מ? ב. מה ההסתברות שהגובה הממוצע שלהם יהיה בדיוק 08 ס"מ? ג. מה ההסתברות שהגובה הממוצע שלהם יסטה מתחולת הגבהים בפחות מ- 3 ס"מ? ד. מהו הגובה שבהסתברות של % הגובה הממוצע של המדגם יהיה נמוך ממנו?. הזמן הממוצע שלוקח לאדם להגיע לעבודתו 3 דקות עם שונות של 0 דקות רבועות. האדם נוסע לעבודה במשך שבוע 3 פעמים. לצורך פתרון הניחו שזמן הנסיעה לעבודה מתפלג נורמאלית. א. מה ההסתברות שבמשך שבוע משך הנסיעה הממוצע יהיה מעל 33 דקות? ב. מהו הזמן שבהסתברות של % ממוצע משך הנסיעה השבועי יהיה גבוה ממנו? ג. מה ההסתברות שממוצע משך הנסיעה השבועי יהיה מרוחק מ- 3 דקות בלפחות 9 דקות? ד. כיצד התשובה לסעיף הקודם הייתה משתנה אם האדם היה נוסע לעבודה פעמים בשבוע? 7. נפח היין בבקבוק מתפלג נורמאלית עם תוחלת של 73 סמ"ק וסטיית תקן של 0 סמ"ק. א. בארגז בקבוקי יין. מה ההסתברות שהנפח הממוצע של הבקבוקים בארגז יהיה בדיוק 733 סמ"ק? ב. בארגז בקבוקי יין. מה ההסתברות שהנפח הממוצע של הבקבוקים בארגז יהיה יותר מ 733 סמ"ק? ג. בארגז בקבוקי יין. מה ההסתברות שהנפח הממוצע של הבקבוקים בארגז יהיה לפחות 733 סמ"ק? ד. בקבוקיי היין שבארגז נמזגים לקערה עם קיבולת של שלושה ליטר. מה ההסתברות שהיין יגלוש מהקערה? לפתרון מלא בסרטון וידאו היכנסו ל-

22 8. משתנה מתפלג נורמאלית עם תוחלת 8 וסטיית תקן. א. מה ההסתברות שממוצע המדגם יסטה מתוחלתו בלא יותר מיחידה כאשר גודל המדגם הוא? ב. מה ההסתברות שממוצע המדגם יסטה מתוחלתו בלא יותר מיחידה שגודל המדגם הוא 0? ג. הסבר את ההבדל בתשובות של שני הסעיפים.. בקזינו ישנה רולטה. על הרולטה רשומים המס' הבאים כמוראה בשרטוט: אדם מסובב את הרולטה וזוכה בסכום הרשום על הרולטה. א. בנו את פונקצית ההסתברות של סכום הזכייה במשחק בודד. ב. מה התוחלת ומה השונות של סכום הזכייה? ג. אם האדם ישחק את המשחק 3 פעמים מה התוחלת ומה השונות של ממוצע סכום הזכייה בחמשת המשחקים? ד. אם האדם משחק את המשחק 3 פעם מה ההסתברות שבסה"כ יזכה ב- 03 ומעלה? 0. לפי הערכות הלשכה המרכזית לסטטיסטיקה השכר הממוצע במשק הוא 8 עם סטיית תקן של. 3 מה ההסתברות שבמדגם מקרי של 0 עובדים השכר הממוצע יהיה יותר מ-? מטילים קובייה 3 פעמים בכל פעם מתבוננים בתוצאה של הקובייה. מה ההסתברות שהממוצע של התוצאות יהיה לפחות 3.79 ב- 3 ההטלות? 09. אורך צינור שמפעל מייצר הינו עם ממוצע של 7 ס"מ וסטיית תקן של 0 ס"מ. א. נלקחו באקראי 0 מוטות, מה ההסתברות שממוצע אורך המוטות יהיה בין 8 ל 78 ס"מ? ב. יש לחבר 9 בניינים באמצעות מוטות. המרחק בין שני הבניינים הינו 79 ס"מ. מה ההסתברות ש 0 המוטות יספיקו למלאכה? ג. מה צריך להיות גודל המדגם המינימאלי, כדי שבהסתברות של 3% ממוצע המדגם יהיה קטן מ- ס"מ. העזר במשפט הגבול המרכזי. 03. נתון משתנה מקרי בדיד בעל פונקצית ההסתברות הבאה: ¼ ¼ ¼ ¼ P() מתוך התפלגות זו נלקח מדגם מקרי בגודל. 3 מה הסיכוי שממוצע המדגם יהיה קטן מ- 3? לפתרון מלא בסרטון וידאו היכנסו ל-

23 3 _ 0. נתון ש דגמו 3 תצפיות מאותה התפלגות והתבוננו בממוצע המדגם : (, ) N לכן ) P ( יהיה : ( בחר בתשובה הנכונה ) _ א. ב..3 ג. 0 ד. לא ניתן לדעת. 03. נתון ש מתפלג כלשהו עם תוחלת : ושונות. החליטו לבצע מדגם בגודל 9 מתוך ההפלגות הנתונה לפי משפט הגבול המרכזי מתקיים ש: )בחר בתשובה הנכונה ) N(, ) 00 א. N(, ) 00 ב. _ (, ) ג. N N(, ) 00 ד. אזי : n n.0 נתון ש ), N(. אם נדגום n תצפיות מתוך ההתפלגות ונגדיר )בחר בתשובה הנכונה( א. ו- יהיו משתנים מקריים. ב. יהיה משתנה מקרי ו קבוע. ג. יהיה משתנה מקרי ו קבוע. יהיו קבועים. ד. ו לפתרון מלא בסרטון וידאו היכנסו ל-

24 4 07. משקל חפיסת שוקולד בקו ייצור מתפלג עם ממוצע 0 גרם. החפיסות נארזות בקרטון המכיל 3 חפיסות שוקולד אקראיות. ההסתברות שהמשקל הממוצע של חפיסות השוקולד בקרטון יהיה מעל גרם הוא.39. א. מהי סטיית התקן של משקל חפיסת שוקולד בודדת? ב. מה הסיכוי שמתוך קרטונים בדיוק קרטון אחד יהיה עם משקל ממוצע לחפיסה הנמוך מ- 0 גרם? 08. משתנה מקרי כלשהו מתפלג עם סטיית תקן של 9. מה הסיכוי שאם נדגום 0 תצפיות בלתי תלויות מאותה התפלגות אזי ממוצע המדגם יסטה מתוחלתו בפחות מ- 9? לפתרון מלא בסרטון וידאו היכנסו ל-

25 5 פתרונות: שאלה א P(x) ב. ג. ( ) שאלה ( ). שאלה א. ב. ג. ד. שאלה 6 א..3 ב ג..998 שאלה א. ב. ג. ד. לפתרון מלא בסרטון וידאו היכנסו ל-

26 6 שאלה א. ב שאלה 9 א P(x) ב. התוחלת: 99.3 השונות: 8.73 ג. התוחלת: 99.3 השונות: ד..87 שאלה.73 שאלה.080 שאלה א..779 ב..998 ג. 970 שאלה 4 התשובה ב שאלה 5 התשובה ד שאלה 6 התשובה ג שאלה 7 א. 9.9 ב..93 לפתרון מלא בסרטון וידאו היכנסו ל-

27 7 התפלגות פרופורציית ההצלחות במדגם רקע: בפרק זה נדון על התפלגות הדגימה של פרופורציית המדגם. Y- מספר ההצלחות במדגם )למשל, מספר המובטלים במדגם( - פרופורציית ההצלחות במדגם ( למשל, שיעור המובטלים במדגם ) p y n למשל, n 00 Y 0 מספר המובטלים : p פרופורציית המובטלים במדגם נסמן ב- p את שיעור ההצלחה באוכלוסייה וב- q את שיעור הכישלונות באוכלוסייה. נבצע מדגם מקרי ( הנחה שהתצפיות בלתי תלויות זו בזו( ונתבונן בהתפלגות של פרופורציית המדגם. התוחלת, השונות וסטיית התקן של פרופורציית המדגם: E( Pˆ ) V( Pˆ ) ( pˆ ) p pq n pq n משפט הגבול המרכזי עבור הפרופורציה המדגמית : pq p ~ N( p, ) n אם np 5& nq 5 אזי Z p p p pq n לפתרון מלא בסרטון וידאו היכנסו ל-

28 8 הערות: התנאים לקרוב הנורמאלי הם נזילים, כלומר משתנים ממרצה אחד לשני. התנאי שהצגתי כאן הוא הפופולרי ביותר: np 5.0 n( p) 5.9 ישנם מרצים שנותנים את התנאי המחמיר הבא: np 0.0 n( p) 0.9. n 30 וישנם מרצים המשתמשים בתנאי : תאלצו לבדוק מהו התנאי שנתנו לכם בכיתה כדי לעבור לנורמלית. כיוון שפרופורציה אינה חייבת להיות מספר שלם בהכרח לא נהוג לבצע כאן תיקון רציפות. דוגמה : )פתרון בהקלטה ) לפי נתוני משרד החינוך בעיר ירושלים ל- % מתלמידי התיכון זכאים לתעודת בגרות. נדגמו 9 תלמידי תיכון. א. מה ההסתברות שהשכיחות היחסית (p ( של הזכאים לבגרות במדגם תעלה על %? ב. מה ההסתברות שפרופורציית הזכאים לבגרות במדגם תעלה על 7%? לפתרון מלא בסרטון וידאו היכנסו ל-

29 9 תרגילים: במדינה מסוימת 0% מכלל האוכלוסייה הינם מובטלים. נדגמו באקראי 0 אנשים מהמדינה. א. מה התוחלת ומהי השונות של פרופורציות המובטלים שנדגמו? ב. מה ההסתברות שבמדגם לפחות 0% יהיו מובטלים? ג. מה ההסתברות שלכל היותר % מהמדגם יהיו מובטלים?.0 נניח כי 3% מהאוכלוסייה תומכים בהצעת חוק מסוימת. אם נדגום מהאוכלוסייה 9 איש. חשבו את ההסתברויות הבאות: א. לפחות 33% יתמכו בהצעת החוק במדגם. ב. לכל היותר 93% יתמכו בהצעת החוק במדגם. ג. יותר מ 97% יתמכו בהצעת החוק במדגם..9 לפי נתוני משרד התקשורת % מהאוכלוסייה מחזיקים בטלפון נייד מסוג "סמארטפון". נדגמו אנשים מהאוכלוסייה. א. מה ההסתברות שבמדגם לכל היותר ל % יש סמארטפון? ב. מה ההסתברות שבמדגם לרוב יש סמאטרפון? ג. מה ההסתברות שפרופורציית בעלי הסמרטפון במדגם תסטה מהפרופורציה באוכלוסייה בלא יותר מ- %? ד. כיצד התשובה לסעיף הקודם הייתה משתנה אם הינו מגדילים את גודל המדגם?.3 נתון כי 8% מבתי האב מחוברים לאינטרנט. נדגמו בתי אב אקראיים. א. מה ההסתברות שלפחות 3 מהם מחוברים לאינטרנט? ב. מה ההסתברות שפרופורציית המחוברים לאינטרנט במדגם תסטה מהפרופורציה האמתית ביותר מ- %? ג. כמה בתי אב יש לדגום כדי שהסטייה בין הפרופורציה המדגמית לפרופורציה האמתית לא תעלה על 3% בהסתברות של %? ד. מהו העשירון התחתון של התפלגות פרופורציית המדגם?. נתון שציוני פסיכומטרי מתפלגים נורמלית עם תוחלת 3 וסטיית תקן 0. ל"מועדון ה- 7" נכללים נבחנים שמקבלים ציון מעל 7 בפסיכומטרי. מה הסיכוי שבמועד בו נבחנו 9 נבחנים אקראיים יהיו לפחות 3% המשתייכים למועדון?.3 לפתרון מלא בסרטון וידאו היכנסו ל-

30 3. Pˆ n נתון ש p) B( n, נגדיר את המשתנה הבא :. א. הוכיחו ש: E( Pˆ ) p V( Pˆ ) P( P) n ˆP )V להיות במקסימום? ) מה ב. p המביא את לפתרון מלא בסרטון וידאו היכנסו ל-

31 3 פתרונות: שאלה א. התוחלת:.0, השונות:. ב..3 ג..3 שאלה א..08 ב..08 ג שאלה 3 א..3 ב. ג..88 ד. גדלה שאלה 4 א..9 ב..3 לפתרון מלא בסרטון וידאו היכנסו ל-

32 3 רקע: פרק - 5 מושגים בסיסיים באמידה כזכור מהמפגש הקודם פרמטר הוא גודל המתאר את האוכלוסייה או התפלגות מסוימת. כמו ממוצע הגבהים בקרב מתגייסים לצה"ל-. כמו פרופורציית התומכים בממשלה בקרב אזרחי המדינה - p. בדרך כלל הפרמטרים הם גדלים שאינם ידועים באמת, ולכן מבצעים מדגמים במטרה לאמוד אותם. אין אפשרות לחשב אותם הניסיון הוא בלהעריך כמה הם שווים ככל שניתן. ˆ הוא סטטיסטי המחושב על המדגם ˆ. ואומד ב- θ נסמן באופן כללי פרמטר באות ובאמצעותו נאמוד את θ. ˆ שגיאת אמידה: - ההפרש בין האומד לאמת)הפרמטר(. דוגמה: )פתרון בהקלטה( בכנסת ה- 0 קיבלה מפלגת העבודה 03 מנדטים. בערוץ 0 ברגע סגירת הקלפיות העריכו את מספר המנדטים של המפלגה להיות 07 מנדטים וזאת על סמך תוצאות מדגם של הערוץ. מה הפרמטר בדוגמה זו? מהי טעות האמידה של ערוץ 0? : θ תהיה שווה ל ˆ אם התוחלת של θ יהיה אומד חסר הטיה ל ˆ טעות התקן של אומד היא סטיית התקן שלו, כלומר : E( ˆ ) ( ˆ) SE. לפתרון מלא בסרטון וידאו היכנסו ל-

33 33 להלן פרמטרים מרכזיים והאומדים שלהם: ממוצע האוכלוסייה: x x n האומד הנקודתי שלו יהיה : ממוצע המדגם לכן. הינו אומר חסר הטיה ל x E(x) ( x) SE n כמו כן טעות תקן: פרופורציה באוכלוסייה: p pˆ y n האומד הנקודתי שלו יהיה: פרופורציה במדגם:. p לכן ˆp הינו אומר חסר הטיה ל E( pˆ) p ( Pˆ ) p( p) n כמו כן טעות התקן: שונות האוכלוסייה: ( x ) x S n האומד הנקודתי שלו יהיה :. ולכן S הינו אומד חסר הטיה ל ES ( ) ( x ) x x nx S n n הערה: אומד הוא הנוסחה הכללית לאמידת הפרמטר ואומדן הוא הערך הספציפי שהתקבל במדגם מסוים. לפתרון מלא בסרטון וידאו היכנסו ל-

34 34 דוגמה: ( פתרון בהקלטה( נדגמו 0 משפחות בתל אביב ונבדק עבור כל משפחה מספר הילדים שלה. להלן התוצאות שהתקבלו: 9,0,3,9,0,,3,9,0,3 אמדו באמצעות אומדים חסרי הטיה את הפרמטרים הבאים: ממוצע מספר הילדים למשפחה בתל אביב. שונות מספר הילדים למשפחה בתל אביב פרופורציית המשפחות בנות שני ילדים. לפתרון מלא בסרטון וידאו היכנסו ל-

35 35 תרגילים: 0. מתוך 3 טירונים נמצאו 09 בעלי שברי הליכה. נתון שהסיכוי שטירון יהיה עם שבר הליכה הוא.93. א. מהי האוכלוסייה המוצגת בשאלה? מהם הפרמטרים שלה? ב. מהי טעות התקן של האומד כשהמדגם בגודל 3? ג. מהו האומדן לפרמטר? ד. מהי טעות האמידה? 9. לפי נתוני היצרן מקרר צורך בממוצע 9 וואט לשעה עם סטיית תקן של 3 וואט לשעה. במדגם של 93 מקררים של היצרן התקבל ממוצע של 939 וואט לשעה. א.מהי האוכלוסייה המוצגת בשאלה? מהם הפרמטרים שלה? ב.מהי טעות התקן של האומד? ג. מהו האומדן לפרמטר? ד. מהי טעות האמידה? 3. נדגמו עשרה מתגייסים לצה"ל. גובהם נמדד בס"מ. להלן התוצאות שהתקבלו: 077,08,087,077,08,070,09,08,08 ו א. ב. ג. מצא אומדן חסר הטיה לגובה הממוצע של מתגייסי צה"ל. מצא אומדן חסר הטיה לשונות הגבהים של מתגייסי צה"ל. מצא אומדן חסר הטיה לפרופורציות המתגייסים בגובה של לפחות 08 ס"מ נדגמו 9 שכירים באקראי. עבור כל שכיר נמדד השכר באלפי שקלים. להלן התוצאות שהתקבלו: א. אמדו את השכר הממוצע של השכירים במשק. ב. אמדו את סטיית התקן של שכר השכירים במשק. לפתרון מלא בסרטון וידאו היכנסו ל-

36 36 3. במטרה לאמוד את ממוצע האוכלוסייה. דגמו תצפיות בלתי תלויות מהאוכלוסייה וחישבו את הממוצע שלהם. מהי טעות התקן? א. סטיית התקן של האוכלוסייה. ב. סטיית התקן של ממוצע האוכלוסייה. ג. סטיית התקן של המדגם. ד. סטיית התקן של ממוצע המדגם.. משקל הממוצע של אוכלוסייה מסוימת הוא 73 ק"ג עם שונות של. 93 אם יבחרו כל המדגמים האפשריים בגודל 0 מאוכלוסייה זו סטיית התקן של ממוצעי המדגמים תהייה: א. 3 ב. 9.3 ג ד.אין מספיק נתונים לדעת. במדגם מקרי, מתי סכום ריבועי הסטיות מהממוצע, א. כאשר n קטן. ב. כאשר תצפיות המדגם אינן בלתי תלויות. ג. כאשר האוכלוסייה אינה מתפלגת נורמאלית., מחולק ב- ד. כאשר מעוניינים באומד חסר הטיה לשונות האוכלוסייה ממנה הוצא המדגם. ה. כאשר מעוניינים לחשב את שונות התפלגות הדגימה של ממוצע המדגם.? n n (x x).7,,..., 6 מדגם מקרי מתוך אוכלוסייה בעלת ממוצע לא ידוע ושונות טעות התקן של האומד ל- היא: א. 0 ב. 8 ג. ד. 9 לפתרון מלא בסרטון וידאו היכנסו ל-

37 37. מהו אומד חסר הטיה? א. אומד שערכו שווה לממוצע התפלגות הדגימה שלו. ב. אומד שערכו שווה לערך הפרמטר באוכלוסייה. ג. אומד שממוצע התפלגות הדגימה שלו שווה לערך הפרמטר באוכלוסייה. ד. אומד שהסיכוי שערכו יהיה גבוה מערך הפרמטר באוכלוסייה שווה לסיכוי שיהיה נמוך ממנו. לפתרון מלא בסרטון וידאו היכנסו ל-

38 38 פתרונות: שאלה 3 א ב..0 ג.. שאלה 4 א. 8.0 ב. 3.0 שאלה 5 התשובה היא ד. שאלה 6 התשובה היא ג. שאלה 7 התשובה היא ד. שאלה 8 התשובה היא ד. שאלה 9 התשובה היא ג. לפתרון מלא בסרטון וידאו היכנסו ל-

39 39 רקע: פרק - 6 אמידה נקודתית אומד חסר הטיה E( ˆ ) : ˆ יהיה אומד חסר הטיה ל- θ אם התוחלת של θ תהיה שווה ל ˆ דוגמה : ( פתרון בהקלטה( המשתנה הוא בעל פונקציית ההסתברות הבאה: 0 הסתברות ו- מעוניינים לאמוד את על סמך שתי תצפיות מההתפלגות :. הוא אומד מוטה ל- T א. הראו שהאומד E( ˆ ) הטיה של אומד היא:, כמובן שלאומד חסר הטיה אין הטיה..T ב. מהי ההטיה של האומד T ג. תקנו את כך שיהיה אומד חסר הטיה. אם יש שני אומדים חסרי הטיה עדיף זה עם השונות היותר קטנה. ד. T..5 האם הוא עדיף על האומד שהצעת בסעיף ג? מוצא האומד הבא : 3 g אם ˆ אומד חסר הטיה ל- אז g( ˆ ) יהיה אומד חסר הטיה עבור( )g רק אם תהיה לינארית.. P ( 3) ה. מצאו אומד חסר הטיה ל: לפתרון מלא בסרטון וידאו היכנסו ל-

40 4 ( x ) x x nx S n n : אומד חסר הטיה לשונות האוכלוסייה: ו. מצאו אומד חסר הטיה לשונות של. תזכורות חשובות: אם Y a b אזי: Y a x V Y a V ( ) ( ) E( Y) ae( ) b n,...,, אם משתנים מקרים אזי: E( T) E(... ) E( ) E( )... E( ) n n n,...,, אם משתנים מקריים בלתי תלויים בזוגות, אזי: V( T) V(... ) V( ) V( )... V( ) n n לפתרון מלא בסרטון וידאו היכנסו ל-

41 4 תרגילים: הציון במבחן מסוים של תלמידי כתה ח' הנו משתנה מקרי בעל תוחלת וסטיית תקן 0. כדי לאמוד את התוחלת -, נלקח מדגם של 3 ציונים אומדים לתוחלת על סמך מדגם זה:...,,. שלושה חוקרים הציעו 5.0 חוקר א' הציע: חוקר ב' הציע: חוקר ג' הציע: א. איזה מן האומדים הוא חסר הטיה? T T T ב. הצע תיקון לאומד המוטה כך שיהיה חסר הטיה. ג. במדגם התקבלו הציונים הבאים: 0. 89, 38, 78, 3, חשבו את האומדנים המתקבלים עבור האומדים חסרי ההטיה. ד. איזה מבין שני האומדים חסרי ההטיה עדיף? נמקו. 9. כדי לאמוד את המשקל הממוצע של הנשים בארה"ב, נבחר מדגם של n נשים. נסמן את שונות הגובה ב-. הוצעו שני אומדים לממוצע המשקל על סמך מדגם זה: T n n ב. T n n א. ב דקו לגבי כל אומד אם הוא בלתי מוטה. איזה אומד עדיף? נמקו. כלומר הינו משתנה מקרי המתפלג בינומית עם פרמטר ( P סיכוי להצלחה B( n, p).3 בניסיון בודד( במדגם בגודל n. א. פתחו אומד חסר הטיה ל- P. ב. מהו אומד חסר הטיה לסיכוי לכישלון בניסיון בודד. ג. מהו אומד חסר הטיה ל- ד. מצאו אומד חסר הטיה ל-. E ( ) E ( ) לפתרון מלא בסרטון וידאו היכנסו ל-

42 4 בתיק מניות שתי מניות. מספר המניות שיעלו ביום מסוים הוא משתנה מקרי התלוי בפרמטר פרמטר לא ידוע. 0, פונקציית ההסתברות של מספר המניות שיעלו ביום מסוים: P( 0) P( ) P( ) 3 6. א. מ צאו אומד בלתי מוטה ל- שמתבסס על מספר המניות שיעלו ביום מסוים. ב. מצאו אומד בלתי מוטה ל- שמתבסס על מספר המניות שעלו ביום במשך והם בלתי,, 3 )לכל אחד מהם אותה התפלגות כנ"ל שלושה ימים תלויים(..3 התלויה בקרב המטפלות בת"א מספר התינוקות שבטיפולן הוא אחת מהן בפרמטר באופן הבא: הסיכוי שמטפלת תטפל בתינוק אחד בלבד הוא 3, הסיכוי שמטפלת תטפל ב- 9 תינוקות הוא 0, הסיכוי שמטפלת תטפל ב- 3 תינוקות הוא. משתנה מיקרי בעל התפלגות במדגם מיקרי של מטפלות מת"א, נמצא כי שתים מהם מטפלות בתינוק אחד בלבד, בשנים ואחת השלושה תינוקות. א. מצא אומד חסר הטיה לפרמטר על סמך תצפית בודדת. ב. מצאו אומד חסר הטיה לפרמטר על סמך תצפיות. ג. מהו האומדן לפרמטר על סמך תוצאות המדגם. ד. מצאו אומד חסר הטיה לסיכוי שלמטפלת בת"א תטפל בתינוק בודד אחד. ה. מצאו אומדים חסרי הטיה לתוחלת ולשונות של מספר התינוקות בטיפול אצל מטפלת מת"א.חשבו אומדנים. 5T. קבע אילו מהטענות הבאות נכונות: א. אם T הוא אומד בלתי מוטה עבור פרמטר, אז. ב. אם T הוא אומד בלתי מוטה עבור פרמטר, אז אומד בלתי מוטה עבור הפרמטר 5 אומד בלתי מוטה עבור הפרמטר. T לפתרון מלא בסרטון וידאו היכנסו ל-

43 וT במפעל שתי מכונות המייצרות מוצרים. במכונה הראשונה ההסתברות שמכשיר תקין היא, מכונה השנייה ההסתברות שמכשיר תקין היא נסמן ב- א. ב. ג. ד.. p דוגמים 9 מכשירים מהייצור של כל מכונה. את מספר המכשירים התקינים שיוצרו על ידי המכונה הראשונה, המכשירים התקינים שיוצרו על ידי המכונה השנייה. איזה מבין האומדים הבאים אינו אומד חסר הטיה ל- p - מספר Y? p 0 Y 0 Y 60 Y 80 T T ו- 8. יהי אומדים חסרי הטיה ובלתי תלויים לפרמטר. T ו- א. מצא אומד חסר הטיה ל- המתבסס על.T.T - ב. מצא אומד חסר הטייה ל- ) ) המתבסס על. נתון ש מאותה אוכלוסיה. הינו משתנה מקרי עם תוחלת ושונות n תצפיות בלתי תלויים. נדגמו א. הראה ש. n אומד חסר הטייה ל כאשר p n px. ב. נתבונן במכפלת שתי התצפיות הראשונות הראה שהוא אומד חסרי הטיה ל-,..., n כאשר N(,).0 נתון שהתצפיות הינן בלתי תלויות זו בזו. מצא אומד חסר הטיה ל-. לפתרון מלא בסרטון וידאו היכנסו ל-

44 44 שאלה ו- א. פתרונות: T T 3 ב. 3 T ג. T 0 T 76.6 T ד. שאלה T ב. שאלה 3 x n א. x n x ב. ג. שאלה 4 3x 3x א. ב. שאלה 5 x א. ג..093 ה. לשונות.07 שאלה 6 א. נכון. ב. לא נכון. שאלה 7 תשובה: ב לפתרון מלא בסרטון וידאו היכנסו ל-

45 45 T T T T T שאלה 8 א. ב. שאלה 9 הוכחה לפתרון מלא בסרטון וידאו היכנסו ל-

46 46 רקע: פרק - 7 רווח סמך לתוחלת )ממוצע האוכלוסייה( רווח סמך כששונות האוכלוסייה ידועה ממוצע המדגם הוא אומד לממוצע האוכלוסייה, אך לא באמת ניתן להבין ממנו על גודלו של ממוצע האוכלוסייה. ההסתברות שממוצע המדגם יהיה בדיוק כמו הממוצע האמתי הוא אפסי. מה שנהוג לעשות כדי לאמוד את ממוצע האוכלוסייה זה לבנות רווח סמך. נבנה מרווח בטחון שהסיכוי שהפרמטר ייכלל בתוכו הוא α-. α- : נקרא רמת בטחון או רמת סמך. כך ש: P( A B) A- גבול התחתון של רווח הסמך B- הגבול העליון של רווח הסמך L B A - אורך רווח הסמך דוגמה : )פתרון בהקלטה( חוקר דגם 93 חיילים שנבחנו במבחן הפסיכומטרי. הוא בנה רווח סמך לממוצע הציונים במבחן הפסיכומטרי בקרב אוכלוסיית החיילים וקיבל בין 30 ל- 3. רווח הסמך נבנה ברמת סמך של.3% מהי אוכלוסיית המחקר? מה המשתנה באוכלוסייה? מה הפרמטר שהחוקר רצה לאמוד? מהו רווח הסמך? מה אורך רווח הסמך? מהי רמת הביטחון של רווח הסמך? לפתרון מלא בסרטון וידאו היכנסו ל-

47 47 בפרק זה נרצה לבנות רווח סמך לתוחלת ( ) במקרה ש )שונות האוכלוסייה( ידועה הפרמטר שנרצה לאמוד: האומד נקודתי: x 0 התנאים לבניית רווח הסמך: n או 30 ~ N 9 )שונות האוכלוסייה( ידועה הנוסחה לרווח הסמך: x Z n דוגמה : )פתרון בהקלטה ) על פי נתוני היצרן אורך חיי סוללה מתפלג נורמאלית עם סטיית תקן של 0 שעה. מעוניינים לאמוד את תוחלת חיי סוללה. נדגמו באקראי סוללות, אורך החיים הממוצע שהתקבל הוא 03.3 שעות. בנו רווח סמך ברמת סמך של 3% לתוחלת אורך חיי סוללה. לפתרון מלא בסרטון וידאו היכנסו ל-

48 48 שגיאת האמידה המקסימלית: Z n -נותן את שגיאת האמידה המקסימלית, דבר שנקרא גם טעות סטטיסטית, טעות דגימה. דוגמה : )פתרון בהקלטה ) בהמשך לשאלה עם הסוללות. מה ניתן להגיד בביטחון של 3% על שגיאת האמידה? קשרים מתמטיים ברווח הסמך:. L אורך רווח הסמך הוא פעמיים שגיאת האמידה המקסימלית : A B ממוצע המדגם נופל תמיד באמצע רווח הסמך: ככל שמספר התצפיות (n) גבוה יותר, כך יש יותר אינפורמציה ולכן האומד יותר מדויק, ולכן נקבל רווח סמך יותר קצר. ככל שרמת הביטחון ( ) גבוהה יותר כך z יותר גבוה, ורווח הסמך יותר ארוך. לפתרון מלא בסרטון וידאו היכנסו ל-

49 49 תרגילים : חוקר התעניין לאמוד את השכר הממוצע במשק. על סמך מדגם הוא קבע שבביטחון של -3% כי השכר הממוצע במשק נע בין 9 ל- 8. א. מי האוכלוסייה במחקר? ב. מה המשתנה הנחקר? ג. מה הפרמטר שאותו רוצים לאמוד? ד. מה רווח הסמך לפרמטר? ה. מהי רמת הסמך לפרמטר? ו. מה אורך רווח הסמך? ז. מה הסיכוי שטעות הדגימה תעלה על? 3.0 מעוניינים לאמוד את התפוקה היומית הממוצעת של מפעל מסוים ברמת סמך של 3%. במדגם אקראי של 0 ימים התקבלה תפוקה ממוצעת 3 מוצרים ביום. לצורך פתרון הנח שסטיית התקן האמתית ידועה ושווה 03 מוצרים ביום. בנה את רווח הסמך..9 מעוניינים לאמוד את ממוצע אורך החיים של מכשיר. מנתוני היצרן ידוע שאורך החיים מתפלג נורמאלית עם סטיית תקן של 9 שעות. נדגמו 93 מכשירים ונמצא כי ממוצע אורך החיים שלהם היה 93 שעות. א. בנו רווח סמך ברמת סמך של % לאורך החיים הממוצע של מכשיר. ב. בנו רווח סמך ברמת סמך של 3% לאורך החיים הממוצע של מכשיר. ג. הסבר כיצד ומדוע השתנה רווח הסמך..3 דגמו 9 עובדים מהמשק הישראלי. השכר הממוצע שלהם היה. 7 נניח שסטיית התקן של השכר במשק היא. 3 א. בנו רווח סמך ברמת סמך של 3 % לתוחלת השכר במשק. ב. מה ניתן לומר בביטחון של 3% על הסטייה המרבית בין ממוצע המדגם לתוחלת השכר? ג. מה היה צריך להיות גודל המדגם אם הינו רוצים להקטין את רווח הסמך ב 3%? ד. אם היינו מגדילים את גודל המדגם ובונים רווח סמך באותה רמת סמך האם היה ניתן לטעון בביטחון רב יותר שרווח הסמך מכיל את הפרמטר? בנו רווח סמך לממוצע הציונים של מבחן אינטליגנציה. ידוע שסטיית התקן היא 03 והמדגם מתבסס על 0 תצפיות. רווח הסמך שהתקבל הוא ),03(. שחזרו את : א. ממוצע המדגם. ב. ג. שגיאת האמידה המקסימאלית. רמת הסמך...3 לפתרון מלא בסרטון וידאו היכנסו ל-

50 5 זמן החלמה מאנגינה מתפלג עם סטיית תקן של יומיים. חברת תרופות מעוניינת לחקור אנטיביוטיקה חדשה שהיא פיתחה. במחקר השתתפו אנשים שחלו באנגינה וקיבלו את האנטיביוטיקה החדשה. בממוצע הם החלימו לאחר ימים. א. בנו רווח סמך לתוחלת זמן ההחלמה תחת האנטיביוטיקה החדשה ברמת סמך של.% ב. מה היה קורה לאורך רווח הסמך אם היה תקציב להגדלת גודל המדגם פי? הסבירו. ג. מה היה קורה לאורך רווח הסמך אם היינו בונים את רווח הסמך ברמת סמך גדולה יותר? הסבירו.. חוקר בנה רווח סמך לממוצע וקיבל את רווח הסמך הבא:. 8 9 נתון שסטיית התקן בהתפלגות שווה ל- 0 ושהמדגם מתבסס על 0 תצפיות. התפלגות המשתנה היא נורמאלית. א. מהו ממוצע המדגם? ב. מהי רמת הסמך של רווח הסמך שנבנה? ג. מה הסיכוי ששגיאת האמידה באמידת ממוצע האוכלוסייה תעלה על? 3.7 חוקר בנה רווח סמך לתוחלת כאשר השונות בהתפלגות ידועה ברמת סמך של 3%. אם החוקר כעת יבנה על סמך אותם נתונים רווח סמך ברמת סמך קטנה מ- 3%, מי מהמשפטים הבאים אינו יהיה נכון. א. אורך רווח הסמך החדש יהיה קטן יותר. ב. גודל המדגם יהיה כעת קטן יותר. ג. המרחק בין ממוצע המדגם לקצות רווח הסמך יהיו קטנים יותר ברווח הסמך החדש. ד. רמת הביטחון לבנות רווח הסמך החדש תהיה קטנה יותר מה נכון בהכרח: חוקר בנה רווח סמך ל- וקיבל 54 א. 5 ב. 6 ג. 5 ד. אורך רווח הסמך הינו 3.. איזה מהגורמים הבאים אינו משפיע על גודלו של רווח בר סמך, כאשר שונות האוכלוסייה ידועה? )בחר בתשובה הנכונה( א.רמת הביטחון. ב. ג. סטיית התקן באוכלוסייה. מספר המשתתפים. ד. סטיית התקן במדגם..0 לפתרון מלא בסרטון וידאו היכנסו ל-

51 5 פתרונות : שאלה 9.> >7. שאלה 3 א. > > 937.8< ב > שאלה 5 א. 09 ב. 3 ג..3 שאלה 6 א. > > ב. יקטן פי 9 ג. גדל שאלה 7 א. 87 ב. 3 ג..3 שאלה 8 א. 03 ב. >93 90> שאלה 9 התשובה היא : ב שאלה התשובה היא : ג שאלה התשובה היא : ד לפתרון מלא בסרטון וידאו היכנסו ל-

52 5 רקע: קביעת גודל מדגם באמידת תוחלת עם שונות אוכלוסייה ידועה אם מעוניינים לאמוד את ממוצע האוכלוסייה כאשר סטיית התקן של האוכלוסייה ידועה: ברמת סמך של ושגיאת אמידה שלא תעלה על מסוים, נציב בנוסחה הבאה: z n כדי להציב בנוסחה צריך שהמשתנה הנחקר יתפלג נורמלית או שהמדגם ייצא בגודל של לפחות 3 תצפיות. דוגמה: )פתרון בהקלטה ) חברת תעופה מעוניינת לאמוד את תוחלת משקל המטען של נוסע. נניח שמשקל מטען של נוסע מתפלג נורמאלית עם סטיית תקן של 9 ק"ג. כמה נוסעים יש לדגום אם מעוניינים שבביטחון של 8% הסטייה המרבית בין ממוצע המדגם לממוצע האמתי לא יעלה על.3 ק"ג? ( תשובה :87 ) לפתרון מלא בסרטון וידאו היכנסו ל-

53 53 תרגילים: 0. משתנה מקרי מתפלג נורמאלית עם סטיית תקן ידועה 09. מה צריך להיות גודל המדגם כדי לבנות רווח סמך ברמת סמך של 8% שאורכו לא יעלה על 9? 9. מעוניינים לאמוד את הדופק הממוצע של מתגייסים לצבא. מעוניינים שבביטחון של 3% שגיאת האמידה המרבית תהיה.3. נניח שהדופק מתפלג נורמאלית על סטיית תקן של 3 פעימות לדקה. א. כמה מתגייסים יש לדגום? ב. אם ניקח מדגם הגדול פי מהמדגם של סעיף א ונאמוד את הממוצע באותה רמת סמך כיצד הדבר ישפיע על שגיאת האמידה? יהי משתנה מקרי עם ממוצע μ וסטיית תקן. σ חוקר רוצה לבנות רווח בר סמך ל μ ברמת ביטחון של.3 כך שהאורך של הרווח יהיה..3σ מהו גודל המדגם הנדרש?.3 לפתרון מלא בסרטון וידאו היכנסו ל-

54 54 פתרונות : שאלה 78 שאלה א. 03 ב. הדבר יקטין את פי 9. שאלה 3 n 6 לפתרון מלא בסרטון וידאו היכנסו ל-

55 55 רווח סמך לתוחלת )ממוצע האוכלוסייה( כששונות האוכלוסייה אינה ידועה רקע: בבואנו לבנות רווח סמך לתוחלת אנו צריכים להתמקד בשני המצבים הבאים: רווח סמך לתוחלת: שונות האוכלוסייה ידועה שונות האוכלוסייה אינה ידועה בפרק זה נעסוק במקרה ששונות האוכלוסייה) σ ) אינה ידועה לנו.מקרה יותר פרקטי. התנאי: ~ N או שהמדגם גדול ( n) S n רווח סמך: S n n n n n האומד לשונות : התפלגות T: הינה התפלגות סימטרית פעמונית שהתוחלת שלה היא. ההתפלגות דומה להתפלגות Z רק שהיא יותר רחבה ולכן הערכים שלה יהיו יותר גבוהים. התפלגות T תלויה במושג שנקרא דרגות חופש. דרגות החופש הן.df=n- ככל שדרגות החופש עולות ההתפלגות הופכת להיות יותר גבוהה וצרה. כשדרגות החופש שואפות לאינסוף התפלגות T שואפת להיות כמו התפלגות Z. לפתרון מלא בסרטון וידאו היכנסו ל-

56 56 דוגמה : )פתרון בהקלטה( הזמן שלוקח לפתור שאלה מסוימת בחשבון מתפלג אצל תלמידי כיתות ח' נורמאלית. במטרה לאמוד את תוחלת זמן הפתרון נדגמו תלמידים בכיתה ח'. להלן התוצאות שהתקבלו בדקות:.7,3.9,.,3.3. בנו רווח סמך ברמת סמך של 3% לממוצע זמן הפתרון לשאלה בקרב תלמידי כיתה ח'. פתרון :.3> >3.30 לפתרון מלא בסרטון וידאו היכנסו ל-

57 57 תרגילים: מחקר מעוניין לדעת כיצד תרופה מסוימת משפיעה על קצב פעימות הלב. ל- 3 אנשים שנטלו את התרופה מדדו את הדופק והתקבל מספר פעימות לדקה: 8. 7, 8, 88, 8, הערה: לצורך פתרון הנח שקצב פעימות הלב מתפלג נורמאלית בקירוב. א. בנו רווח סמך ברמת סמך של 3 % לתוחלת הדופק של נוטלי התרופה הנ"ל. ב. נתון שהדופק הממוצע ללא לקיחת התרופה הינו 7. לאור זאת, האם בביטחון של 3% התרופה משפיעה על הדופק? ג. בהמשך לסעיף א, אם היינו בונים את רווח הסמך ברמת ביטחון של % כיצד הדבר היה משפיע על רווח הסמך?.0 במדגם שנעשה על 93 מתגייסים לצבא האמריקאי התקבל כי : גובה ממוצע של חייל הינו 078 ס"מ עם סטיית תקן 3=S ס"מ. בנו רווח סמך ברמת סמך של % לתוחלת גובה המתגייסים לצבא האמריקאי. מה יש להניח לצורך פתרון?.9 אדם מעוניין לאמוד את זמן הנסיעה הממוצע שלו לעבודה. לצורך כך הוא דוגם 3 ימים שזמן הנסיעה בהם בדקות הוא:. 97,3,39,,3 א. ברמת ביטחון של 3% אמוד את זמן הנסיעה הממוצע. מהי ההנחה הדרושה לצורך פתרון? ב. איך גודל רווח הסמך היה משתנה אם היו דוגמים עוד ימים?.3 ציוני מבחן אינטליגנציה מתפלגים נורמאלית. נדגמו 93 מבחנים והתקבל ממוצע ציונים 09 וסטיית תקן מדגמית 03. א. בנו רווח סמך לממוצע הציונים באוכלוסייה ברמת ביטחון של 3%. ב. חזרו על סעיף א' אם סטיית התקן הינה סטיית התקן האמתית של כלל הנבחנים. ג. הסבירו את ההבדלים בין שני הסעיפים הנ"ל.. 60 נשקלו תינוקות אשר נולדו בשבוע ה- של ההיריון. המשקל נמדד בקילוגרמים. להלן התוצאות שהתקבלו: 95 לתוחלת משקל תינוק ביום היוולדו.. בנו רווח סמך ברמת סמך של 3%.3 נדגמו 09 אנשים אקראיים מעל גיל 3. עבור כל אדם נבדק מספר שנות השכלתו. x 3.8 להלן התוצאות שהתקבלו : S בנו רווח סמך ברמת סמך של % לממוצע ההשכלה של אזרחים מעל גיל 3.. לפתרון מלא בסרטון וידאו היכנסו ל-

58 58 שני סטטיסטיקאים בנו רווח בר-סמך לאותו פרמטר. לכל אחד מהסטטיסטיקאים מדגם אחר, אך באותו גודל. 0 שניהם קבעו אותה רמת סמך. סטטיסטיקאי א : הניח = 9 סטטיסטיקאי ב : חישב לפי המדגם וקיבל 0= S למי משני הסטטיסטיקאים יהיה רווח סמך ארוך יותר? ( בחר בתשובה הנכונה ) א. סטטיסטיקאי א ב. סטטיסטיקאי ב ג. אותו אורך רווח סמך לשני הסטטיסטיקאים. ד. תלוי בתוצאות המדגם של כל סטטיסטיקאי. נתון ש : ), )N ביצעו מדגם בגודל 0 וקיבלו סטיית תקן מדגמית 0. אורך רווח הסמך שהתקבל הוא: מהי רמת הביטחון של רווח הסמך?.7.8 לפתרון מלא בסרטון וידאו היכנסו ל-

59 59 נספח : טבלת התפלגות T P דרגות חופש לפתרון מלא בסרטון וידאו היכנסו ל-

60 6 פתרונות: שאלה א. > > שאלה 4 א. > > ב. >07.0.> שאלה 5 3.0> >3.330 שאלה 8 % לפתרון מלא בסרטון וידאו היכנסו ל-

61 6 רקע: פרק - 8 רווח סמך לפרופורציה מטרה: לאמוד את P פרופורציה באוכלוסייה. ( Y- מספר ההצלחות שבמדגם ) pˆ y n האומד הנקודתי: pˆ( pˆ) pˆ Z n רווח הסמך ל p: התנאי לבנות את רווח הסמך הינו מדגם של לפחות 3 תצפיות) לעיתים נותנים תנאי של מספר הצלחות ומספר כשלונות לפחות 3 או לפחות ) 0 pˆ( pˆ) n האומד לטעות התקן: L Pˆ A B מתקיים ש: דוגמה: )פתרון בהקלטה( במטרה לאמוד את אחוז המובטלים במשק נדגמו 9 אזרחים. מתוכם התקבל ש 9 היו מובטלים. בנו רווח סמך לאחוז המובטלים באוכלוסייה ברמת סמך של 3%. מהו האומד לטעות התקן?.0 א. ב. פתרון: א. 0.3%<p<7.3% ב. 9.9% לפתרון מלא בסרטון וידאו היכנסו ל-

62 6 תרגילים: נדגמו 9 דירות בעיר חיפה. 8 מתוכן נמצאו כבעלות ממ"ד. א. בנו רווח סמך ברמת סמך של 3% לאחוז הדירות בחיפה עם ממ"ד. ב. על סמך סעיף א' מה ניתן לומר על שגיאת האמידה המקסימאלית? ג. בהנחה ובחיפה 8 אלף דירות, בנו רווח סמך ברמת סמך של 3 % למספר הדירות בחיפה עם ממ"ד בפועל..0 במדגם של 3 אנשי היי-טק התקבל ש- 08 מהם אקדמאים. א. בנו רווח סמך לפרופורציית אקדמאים ברמת סמך של 3% )בקרב אנשי היי-טק(. ב. כיצד רווח הסמך של סעיף א היה משתנה אם היינו מקטינים את רמת הסמך? ג. כיצד רווח הסמך היה משתנה אם הינו מגדילים את גודל המדגם?.9 במדגם של נהגים התקבל רווח סמך לפרופורציית הנהגים החדשים: 0.08 p 0.8 א. כמה נהגים במדגם היו נהגים חדשים? ב. מהי רמת הסמך של רווח הסמך שנבנה?.3 במסגרת מערכת הבחירות בארה"ב נשאלו 8 אנשים עבור איזה מועמד יצביעו. 30 אנשים ענו כי יצביעו בעד ברק אובמה. בסקר פורסם שתתכן סטייה של 3% באיזו רמת ביטחון הסקר השתמש? האמת. מתוצאות. במדגם של 3 נשים בגילאי 33- נמצא ש- 0 היו נשואות, 8 היו גרושות, רווקות והיתר אלמנות. א. מצאו רווח סמך ברמה של % לאחוז הגרושות באוכלוסייה הנחקרת. ב. מצאו רווח סמך ברמה של % לסיכוי שבאוכלוסייה הנחקרת תמצא אישה לא נשואה?.3. ביצעו מדגם באוכלוסייה. שיעור ההצלחות במדגם היה 0% ורווח הסמך ניבנה ברמת סמך של. 3% אורכו הינו 8.303%. מהו גודל המדגם שנלקח? לפתרון מלא בסרטון וידאו היכנסו ל-

63 63 פתרונות: שאלה 3 א. 39 ב..7 שאלה 5 א. 3.%<p<99.3% ב..79%<p<3.0% שאלה 6 9 לפתרון מלא בסרטון וידאו היכנסו ל-

64 64 רקע: קביעת גודל מדגם באמידת פרופורציה בפרק זה נדון איך קובעים גודל מדגם שבאים לאמוד פרופורציה באוכלוסייה מסוימת: החוקר קובע מראש את רמת הסמך הרצויה:. החוקר קובע מראש את הטעות הסטטיסטית המרבית שבה הוא מעוניין: ) או את אורך רווח הסמך(. - L אורך רווח הסמך. - טעות אמידה מרבית : המרחק המקסימאלי )הסטייה( בין הפרמטר ( p ) לאומד ( ˆp (. z. pˆ( pˆ) n ויתעניין לדעת מהו גודל המדגם הרצוי לשם כך. Z pˆ pˆ n L נקבל ש: הבעיה שאין אנו יודעים את ˆp. : pˆ pˆ נתבונן בביטוי כיוון שאין לנו ידע מוקדם על ˆp נציב את המקרה השמרני ביותר שממקסם את הביטוי עבור pˆ 0.5 z z n n L L לפתרון מלא בסרטון וידאו היכנסו ל-

65 65 אך אם תהיה לנו אינפורמציה מוקדמת על הפרופורציה נציב את הערך הקרוב ביותר ל-.3 האפשרי. דוגמה: ( פתרון בהקלטה( מעוניינים לאמוד את שיעור האבטלה במשק. האמידה צריכה להתבצע ברמת סמך של % ועם שגיאת אמידה שלא תעלה על %. א. מהו גודל המדגם המינימאלי שיש לקחת? ב. חזור לסעיף א' אם ידוע שהאבטלה לא אמורה לעלות על 9%. פתרון : א. 93 ב. 970 לפתרון מלא בסרטון וידאו היכנסו ל-

66 66 תרגילים: הממשלה אומדת מדי חודש את אחוז התמיכה בה. מהו גודל המדגם אשר יש לקחת אם דורשים שהאומדן לא יסטה מהאחוז האמתי באוכלוסייה ביותר מ- 3%, וזאת בביטחון של 3%?.0 משרד התקשורת מעוניין לדעת מה שיעור בתי האב עם אינטרנט. א. כמה בתי אב יש לדגום אם מעוניינים שבביטחון של % אורך רווח הסמך לא יעלה על 8%? ב. חזרו על סעיף א. אם ידעו שלפני חמש שנים ל- 8% מבתי האב היה אינטרנט וכיום יש להניח שיש ליותר אינטרנט..9 ערוץ טלוויזיה מעוניין לאמוד את הרייטינג של הערוץ בפריים טיים. המטרה שבביטחון של 3% הסטייה המרבית בין האומד לרייטינג האמתי לא תעלה על %. א. כמה מכשירי PEOPLE METER יש להתקין לצורך האמידה? ב. לפי הערכה מוקדמת הרייטינג של הערוץ לא יכול לעלות על 9%. בהנחה ומכשיר כזה עולה 3 ליחידה מה החיסכון הכספי מאינפורמציה זאת?.3 השאלות הבאות מתייחסות לסעיף : א. כמה אזרחים יש לדגום כדי לאמוד את אחוז התמיכה בממשלה עם אורך רווח הסמך שלא עולה על % ברמת סמך של %? ב. בהנחה ובוצע מדגם שאת גודלו חישבתם בסעיף א והתקבל שאחוז התמיכה בממשלה במדגם הנו 9%. בנו רווח סמך לאחוז התמיכה בממשלה ברמת סמך של 3%. ג. על סמך סעיף ב'. האם תקבל את הטענה שמיעוט האוכלוסייה תומך הממשלה?. משרד הבריאות מתכנן לבצע מדגם שמטרתו לבדוק את הסיכוי לחלות בשפעת עם לקיחת חיסון נגד שפעת. הוא מעוניין שבסיכוי של 8% טעות האמידה לא תעלה על 3%. א. כמה מחוסנים יש לדגום? ב. משרד הבריאות ביצע את המדגם שאת גודלו חישבת בסעיף הקודם וקיבל ש 03% מבין אלה שקיבלו חיסון נגד שפעת בכל זאת חלו במשך החורף בשפעת. בנו ברמת סמך של 8% את הסיכוי לחלות בחורף בשפעת עם לקיחת חיסון נגד שפעת. ג. בהמשך לסעיף הקודם. מהי טעות האמידה המרבית בביטחון של? 8% מדוע הוא קטן מ 3%?.3 לפתרון מלא בסרטון וידאו היכנסו ל-

67 67 פתרונות: שאלה 08 שאלה 3 א. 0 ב.. 08 לפתרון מלא בסרטון וידאו היכנסו ל-

68 68 רקע: המטרה: לאמוד את פרק - 9 רווח סמך להפרש פרופורציות : p p הפרש פרופורציות בין שתי אוכלוסיות שונות. pˆ p ˆ האומד הנקודתי: התנאי לבניית רווח הסמך: כל מדגם מעל 3 או לבדוק שמספר ההצלחות ומספר הכישלונות בכל מדגם לפחות 3 בכל מדגם )יש כאלה שבודקים לפחות 0(. רווח סמך: pˆ ( pˆ ˆ ˆ ) p( p) ( pˆ ˆ p) Z n n רק שאפס נופל בתחומי רווח הסמך להפרש הפרופורציה נאמר שלא ניתן לקבוע שקיים הבדל מובהק בין הפרופורציות באוכלוסיות. דוגמה: )פתרון בהקלטה( במטרה להשוות בין שתי תרופות נדגמו 9 איש שלקחו תרופה x. מתוכם 08 טענו שהתרופה עזרה להם. כמו כן נלקחו 3 איש שלקחו את תרופה y. מתוכם 03 טענו שהתרופה עזרה להם. בנו רווח סמך להפרש אחוזי ההצלחה של התרופות ברמת סמך של 3%. מה ניתן לומר על סמך רווח הסמך על ההבדלים בין התרופות? ) 33%,7%( פתרון : לפתרון מלא בסרטון וידאו היכנסו ל-

69 69 תרגילים: מתוך 03 נשים שנדגמו באקראי 3% תמכו בהצעת חוק מסוימת. מתוך 9 גברים שנדגמו באקראי 93% תמכו בהצעת החוק. א. בנו רווח סמך לפער בין אחוזי התמיכה של הנשים לעומת הגברים ברמת סמך של.% ב. בנו רווח סמך ברמת סמך של 3% לאחוז התמיכה בהצעת החוק..0 במחקר רפואי השתתפו 9 אנשים הסובלים מכאבים כרוניים. הם חולקו באקראי ל- 9 קבוצות שוות בגודלן. קבוצה 0 קיבלה את תרופה A וקבוצה שנייה קיבלה את תרופה B. בקרב לוקחי תרופה A טענו שמצבם השתפר. בקרב לוקחי תרופה 7 B טענו שמצבם השתפר. א. בנו רווח סמך ברמת סמך של 3% להפרש בין שיעורי ההצלחה של שתי התרופות. ב. האם על סמך סעיף א ניתן לקבוע שקיים הבדל בין התרופות מבחינת שיעורי ההצלחה?.9 נדגמו 9 משפחות מגוש דן. ל- 7% מתוכן מכשיר DVD בבית. נדגמו 3 משפחות מאזור הצפון ל- 3% מתוכן מכשיר DVD בבית. א. בנו רווח סמך ברמת סמך של 8% לפרופורציות המשפחות בגוש דן עם DVD בבית. ב. בנו רווח סמך ברמת סמך של 3% להפרש בין פרופורציות המשפחות בגוש דן עם.DVD לבין פרופורציות המשפחות בצפון עם DVD.3 לפתרון מלא בסרטון וידאו היכנסו ל-

70 7 פתרונות: שאלה P P A א. B שאלה p א. לפתרון מלא בסרטון וידאו היכנסו ל-

71 7 רקע: פרק - רווח סמך להפרש תוחלות ממדגמים בלתי תלויים כששונויות האוכלוסייה ידועות מטרה: האוכלוסיות., כלומר ההבדלים של הממוצעים בין שתי לאמוד את פער התוחלות: x x האומד נקודתי: התנאים לבניית רווח הסמך: n, n 30 ידועות.,, או ~ N שני מדגמים בלתי תלויים. רווח סמך: ( x x) Z n n אם הערך אפס נופל בגבולות רווח הסמך נגיד שבביטחון של לא קיים הבדל בין התוחלות. דוגמה: )פתרון בהקלטה( נדגמו 0 תושבים מאזור a והמשכורת הממוצעת הייתה שם. 9 כמו כן נדגמו 09 תושבים מאזור b וממוצע המשכורות שהתקבל שם. 87 לצורך פתרון נניח שסטיית התקן של המשכורות באוכלוסיית שני האזורים היא. 08 אמדו ברמת סמך של % את הפרש השכר הממוצע בין אזור a לאזור. b לפתרון מלא בסרטון וידאו היכנסו ל-

72 7 תרגילים: מעוניינים לבדוק האם קיים הבדל בין ממוצע ציוני הפסיכומטרי של חיילים לממוצע ציוני הפסיכומטרי של תלמידי תיכון. ידוע שציוני הפסיכומטרי מתפלגים נורמאלית עם סטיית תקן 0. במדגם של 0 נבחנים חיילים התקבל ממוצע 33. במדגם של 9 תלמידי תיכון התקבל ממוצע 38. בנו רווח סמך לפער תוחלות הציונים בין חיילים לתלמידי תיכון ברמת סמך של %. מה ניתן להסיק מרווח סמך זה?.0 ציוני I.Q. מתוכננים כך שיתפלגו נורמאלית עם סטיית תקן של 03. במדגם של 9 נבחנים ישראלים התקבל ממוצע ציונים 0. במדגם של 93 נבחנים אמריקאיים התקבל ממוצע ציונים. א. בנו רווח סמך ברמת סמך של 3% לפער בין ישראל לארה"ב בממוצע הציונים במבחן ה- IQ. ב. האם קיים הבדל בין ישראלים לאמריקאים מבחינת ממוצע הציונים?.9 3. חברה להנדסת בניין מעוניינת להשוות ברמת הקשיות של שני סוגי ברגים. ידוע שרמת הקשיות של ברגים מתפלגת נורמלית עם סטיית תקן של יחידות. במדגם של 03 ברגים מסוג א' התקבל רמת קשיות ממוצעת של 98 יחידות ובמדגם של 09 ברגים מסוג ב' התקבל רמת קשיות ממוצעת של. 93 עבור אילו רמות בטחון יקבע שאין הבדל בין שני סוגי הברגים מבחינת ממוצע רמת הקשיות שלהם? לפתרון מלא בסרטון וידאו היכנסו ל-

73 73 פתרונות : שאלה )-9,( שאלה 3: רמות בטחון הגבוהות מ:.7 לפתרון מלא בסרטון וידאו היכנסו ל-

74 74 רקע: כששונויות האוכלוסייה אינן ידועות אך שוות והמדגמים בלתי תלויים מטרה: לאמוד את פער התוחלות: האוכלוסיות., כלומר ההבדלים של הממוצעים בין שתי x x האומד נקודתי: התנאים לבניית רווח הסמך:., ~ N מדגמים בלתי תלויים. השונות המשוקללת : כיוון שאנו מניחים שבין שתי האוכלוסיות השונויות שוות אנו אומדים את השונות הזו על ידי שקלול שתי השונויות של שני המדגמים על ידי הנוסחה הבאה: S p n S n S n n d. f n n דרגות החופש : רווח סמך: p p S S nn ( x x) n n אם הערך אפס נופל בגבולות רווח הסמך נגיד שבביטחון של לא קיים הבדל בין התוחלות. לפתרון מלא בסרטון וידאו היכנסו ל-

75 75 דוגמה: )פתרון בהקלטה ) מחקר מעוניין לבדוק האם קיים הבדל בין תל אביב לבאר שבע מבחינת ההכנסה הממוצעת של אקדמאים.להלן תוצאות המדגם שנעשה: באר שבע תל אביב 0 9 מספר האקדמאים 3 00, ממוצע הכנסות של אקדמאים 93 9 סטיית התקן של הכנסות אקדמאים בנו רווח סמך ברמת ביטחון של % להפרש תוחלות ההכנסה בשני האזורים. הניחו שהשכר מתפלג נורמלית עם אותה שונות בכל אחד מהאזורים. פתרון : )0337,03( לפתרון מלא בסרטון וידאו היכנסו ל-

76 76 תרגילים: נדגמו 03 ישראלים ו- 03 אמריקאים. כל הנדגמים נגשו למבחן.IQ להלן תוצאות המדגם: המדינה ישראל ארה"ב גודל המדגם סכום הציונים 07,3 03,3 סכום ריבועי הציונים.0 מצאו רווח סמך ברמת סמך של 3% לסטייה בין ממוצע הציונים בישראל לממוצע הציונים בארה"ב. רשמו את כל ההנחות הדרושות לצורך פתרון התרגיל.. N ( y, ) N( x להלן תצפיות על משתנה שמתפלג ), ומשתנה Y שמתפלג Y חשבו רווח סמך ל- ברמת הסמך %, בהנחה ששני המדגמים בלתי תלויים. y x לפתרון מלא בסרטון וידאו היכנסו ל-

77 77 רקע: פרק - רווח סמך לתוחלת ההפרש במדגם מזווג מדגם מזווג: מדגם אחד שבו יש n צמדים. כל תצפית במדגם תנפק זוג ערכים: ניצור משתנה חדש: ו- Y. D x y D הפרמטר שנרצה לאמוד: התנאים לבניית רווח הסמך: x, y ~ N המדגם מזווג נוסחת רווח הסמך: D n SD n d. f n כאשר דרגות החופש: לפתרון מלא בסרטון וידאו היכנסו ל-

78 78 דוגמה: )פתרון בהקלטה( מעוניינים לבדוק האם יש הבדל בין מהירות הריצות של שתי תוכנות מחשב. לקחו 3 קבצים אקראיים והריצו אותם בשתי התוכנות: הקובץ 38 8 הזמן בתוכנה הראשונה הזמן בתוכנה השנייה 97 הניחו כי זמני הריצות מתפלגים נורמלית. מ צאו רווח סמך של 3% להפרש תוחלת הזמן בין שתי התוכנות. לפתרון מלא בסרטון וידאו היכנסו ל-

79 79 תרגילים: נדגמו 3 סטודנטים שסיימו את הקורס סטטיסטיקה ב'. להלן הציונים בסמסטר א' ו- ב': סמסטר א סמסטר ב נניח שהציונים מתפלגים נורמאלית. א. ב. ג. בנו רווח סמך ברמת סמך של 3% לתוחלת פער הציונים בין סמסטר א לבין סמסטר ב. האם על סמך רווח הסמך קיים הבדל בין הסמסטרים מבחינת תוחלת הציונים? מה צריך לשנות בנתונים כדי שהמדגמים יהיו בלתי תלויים? במטרה לבדוק האם קיים הבדל בין קווי זהב לבזק מבחינת ממוצע המחירים לשיחות בינ"ל. נגדמו באקראי 7 מדינות ועבור כל מדינה נבדקה עלות דקת שיחה. להלן התוצאות: המדינה בזק- קווי זהב- Y ארה"ב קנדה הולנד פולין מצרים סין יפן בהנחה והמחירים מתפלגים נורמלית עבור כל חברה בנו רווח סמך ברמת סמך של % לתוחלת הפרש המחירים של שתי החברות. לפתרון מלא בסרטון וידאו היכנסו ל-

80 8 רקע: פרק - רווח סמך לשונות וסטיית תקן בפרק זה נדון על בניית רווח סמך לשונות האוכלוסייה. התנאי לבניית רווח הסמך: המשתנה הנחקר מתפלג נורמלית, למרות שנהוג לא לדרוש את התנאי הזה אם המדגם מספיק גדול. רווח הסמך יתבסס על התפלגות הנקראת חי בריבוע. התפלגות זו היא התפלגות אסימטרית חיובית המתחילה מהערך אפס ותלויה בדרגות חופש. דרגות החופש במקרה זה יהיו: -n ( n ) S ( n ) S, n, n רווח הסמך לשונות: S n n n n n כאשר אומד לשונות הלא-ידועה. אם נרצה לבנות רווח סמך לסטיית תקן אז נוציא שורש לרווח סמך לשונות. דוגמה: )פתרון בהקלטה( זמן התגובה מתפלג נורמאלית. במטרה לאמוד את שונות זמן התגובה נדגמו תצפיות. להלן התוצאות בשניות:.7,3.9,.,3.3. בנו רווח סמך, ברמת סמך של 3% לשונות זמן התגובה באוכלוסייה. פתרון :.3> >0.78 לפתרון מלא בסרטון וידאו היכנסו ל-

81 8 תרגילים : חמישה מטופלים קבלו תרופה מסוימת. בדקו לכל מטופל את זמני התגובה שלו. להלן הזמנים שהתקבלו בדקות: 08,07,90,9,98. בהנחה וזמני התגובה מתפלגים נורמאלית, בנו רווח סמך ברמת סמך של 3 % לשונות זמן התגובה נדגמו 9 ימים אקראיים מחודשי יולי-אוגוסט ונמדדה בהם הטמפ' במעלות צלזיוס בת"א. במדגם התקבל טמפ' ממוצעת 3.8 וסטיית תקן מדגמית 0.0. בהנחה והטמפ' מתפלגת נורמאלית: א. בנו רווח סמך לתוחלת הטמפ' בחודשים אלה בת"א ברמת סמך של 3%. ב. בנו רווח סמך לסטיית התקן של הטמפ' בחודשים אלה בת"א ברמת סמך של 3%. ציוני IQ בארה"ב מתפלגים נורמאלית עם ממוצע 0 וסטיית תקן 3. נבחנו 9 נבחנים ישראלים במבחן ה- IQ. להלן התוצאות שהתקבלו : , 0 נניח שגם בישראל הציונים מתפלגים נורמאלית. א. מצאו אומדנים לממוצע הציונים בישראל ולשונות הציונים בישראל באמצעות אומדנים חסרי הטיה. ב. אמדו ברמת ביטחון של 3% את תוחלת הציונים של נבחנים בישראל. ג. אמדו ברמת סמך של % את סטיית התקן של הציונים של נבחנים ישראלים. ד. על סמך הסעיפים הקודמים, האם בישראל ממוצע הציונים וסטיית התקן של הציונים שונה מבארה"ב? הסבירו. לפתרון מלא בסרטון וידאו היכנסו ל-

82 ( ) 900. באוכלוסייה מסוימת נדגמו 0 תצפיות והתקבלו התוצאות הבאות: (, ) נתון ש N א. בנו רווח סמך ל- ברמת סמך של 3%. ב. בנו רווח סמך ל- ברמת סמך של 3%. לפתרון מלא בסרטון וידאו היכנסו ל-

83 83 פתרונות : שאלה א < 3.983> ב. > > תשובה 3 א. לממוצע 0, לשונות ב. ג. לפתרון מלא בסרטון וידאו היכנסו ל-

84 84 טבלת התפלגות חי-בריבוע ערכי החלוקה p p df לפתרון מלא בסרטון וידאו היכנסו ל-

85 85 רקע: פרק - 3 רווח סמך ליחס שוניות נרצה לאמוד את ההבדל בין שתי שונויות משתי אוכלוסיות שונות. הפרמטר יהיה : : כלומר היחס בין השונויות., או מדגמים גדולים. ~ התנאים : N מדגמים בלתי תלויים. רווח הסמך יבנה על סמך התפלגות הנקראת התפלגות F. התפלגות זו היא אסימטרית חיובית ומושפעת משתי דרגות החופש זו של המונה וזו של המכנה., df df n n רווח הסמך יהיה : s s F n, n s F n n s לפתרון מלא בסרטון וידאו היכנסו ל-

86 86 דוגמה: ( פתרון בהקלטה( מחקר סוציולוגי מעוניין לחקור את הרגלי הבילויים בקבוצות גיל שונות: במדגם שנעשה על סטודנטים בגילאי 90-9 התקבל אומד חוסר הטיה לשונות ההוצאה החודשית על בילויים 0,. כמות הסטודנטים שנדגמו 0. במדגם שנעשה על 00 מבוגרים בשנות השלושים התקבל אומד חסר הטיה לשונות ההוצאה החודשית על בילויים,. נניח שההוצאה החודשית לבילוי בכל קבוצת גיל מתפלג נורמאלית. בנו רווח סמך ברמת סמך של 3% ליחס בין השונויות. לפתרון מלא בסרטון וידאו היכנסו ל-

87 87 תרגילים: בתחום הבינוי משתמשים בשני סוגי מתכות: מתכת A ומתכת B. מחקר מעוניין לבדוק האם קיים הבדל בין שני סוגי המתכות מבחינת שונות החוזק שלהן. דגמו מספר יחידות. מתכת מכל סוג והתקבלו התוצאות הבאות: סוג המתכת B A 8 0 N.0 יש להניח שרמת החוזק של המתכות מתפלגת נורמאלית. א. בנו רווח סמך ליחס השונויות של רמות החוזק בין שני סוגי המתכות ברמת סמך של %. ב. בנו רווח סמך ליחס סטיות התקן של רמות החוזק בין שני סוגי המתכות ברמת סמך של %. ג. האם בבטחון של % ניתן לומר שסטיות התקן של שני סוגי המתכות שונות? מעוניינים להשוות בין נשים וגברים מבחינת השונות בזמנים שלהם לבצע משימה מסוימת. במדגם של 0 גברים התקבלו התוצאות הבאות לגבי זמני ביצוע המשימה:.9 ( y y) 04 במדגם של 03 נשים התקבלו התוצאות הבאות: ( x x) 00 אמוד ברמת בטחון של 3% פי כמה גדולה השונות של הגברים באוכלוסייה מהשונות של הנשים. מה יש להניח לצורך פתרון? לפתרון מלא בסרטון וידאו היכנסו ל-

88 88 טבלת התפלגות F.ערכי החלוקה Fp של התפלגות (n F(m, m דרגות חופש המונה ;n דרגות חופש המכנה m p n לפתרון מלא בסרטון וידאו היכנסו ל-

89 89 m p n לפתרון מלא בסרטון וידאו היכנסו ל-

90 9 פרק - 4 תרגול מסכם ברווחי סמך מהירות הגלישה באינטרנט במקום מסוים מתפלגת נורמאלית. בדקו את מהירות הגלישה ב- 3 זמנים אקראיים. מהירות הגלישה נמדדה ב- Mbps. מהירות מתחת ל- 0 Mbps מוגדרת על ידי החברה כנמוכה. התוצאות שהתקבלו במדגם : ממוצע היה 87 עם סטיית תקן 07 ו- 09 פעמים המהירות הייתה נמוכה.בנו רווחי סמך ברמת סמך של 3% לפרמטרים הבאים: א. תוחלת מהירות הגלישה. ב. סטיית תקן של מהירות הגלישה. ג. הסיכוי שמהירות הגלישה תהיה נמוכה..0 9 אנשים נשאלו כמה פעמים ביום הם שותים כוס קפה. להלן התפלגות התשובות: מספר פעמים מספר אנשים.9.3 א. תנו רווח סמך לממוצע מספר כוסות הקפה שאנשים נוהגים לשתות ביום ב. אדם השותה לפחות כוסות קפה ביום נקרא "מכור לקפה". בנו רווח סמך לאחוז "המכורים לקפה" 0. הוא חוקר בנה רווח סמך לאחוז האנשים שהתקררו לפחות פעם אחת בשנה. רווח הסמך שהתקבל 8 p 9 רווח הסמך הנ"ל התבסס על מדגם של 3 איש. א. כמה אנשים במדגם טענו שכלל לא התקררו השנה? ב. באיזו רמת סמך נבנה רווח הסמך? ג. בנו רווח סמך לאחוז האנשים שהתקררו לפחות פעם אחת השנה ברמת סמך של 3% על סמך תוצאות המדגם לפתרון מלא בסרטון וידאו היכנסו ל-

91 9. ציוני IQ בארה"ב מתפלגים נורמאלית עם תוחלת 0. במדגם של 9 ישראלים שנבחנו במבחן 0 0 x 040 x 0740 ה- IQ התקבלו התוצאות הבאות: א. אמדו ברמת ביטחון של % את ממוצע ציוני בחינת ה- IQ בישראל מהי ההנחה הדרושה לפתרון? ב. על סמך רווח הסמך של סעיף א האם תקבלו את הטענה שבישראל ממוצע הציונים שונה מארה"ב? ג. מה היה קורה לרווח הסמך אם הינו מגדילים את רמת הסמך שלו? להלן תוצאות מדגם שבדק עבור כל משפחה האם יש לה בבית מכשיר טאבלט. שאר הארץ גוש דן אזור מגורים 9 9 גודל המדגם 08 0 מספר משפחות בעלי טאבלט.3 א. בנו רווח סמך להבדל בין אחוז המשפחות עם טאבלט בגוש דן ואחוז המשפחות בעלי טאבלט בשאר חלקי הארץ. ברמת סמך של 8%. ב. בנו רווח סמך לפרופורצית משפחות בעלות טאבלט בכלל הארץ ברמת סמך של 3%.. הגובה של מתגייסים לצה"ל מתפלג נורמלית במדגם של 93 מתגייסים התקבלו התוצאות הבאות: x 76.cm ( x x) 83cm א. ב. אמדו את הגובה הממוצע של המתגייסים ברמת סמך של 8%. אמדו ברמת סמך של % את סטיית התקן של הגובה של מתגייסים של צה"ל. לפתרון מלא בסרטון וידאו היכנסו ל-

92 9 בנק מתלבט האם לפתוח סניף באזור A או באזור B.לצורך פתרון נניח שסטית התקן של המשכורת באזור A היא 09 ובאזור 03 B.הבנק דגם 3 אנשים מאזור A, המשכורת הממוצעת שהתקבלה במדגם היא.,8 כמו כן נדגמו אנשים מאזור B, המשכורת הממוצעת שהתקבלה במדגם היא., א. בנו רווח סמך ברמת סמך של 3% להפרש הממוצעים של המשכורות בשני האזורים. האם על סמך רווח הסמך ניתן להמליץ לבנק היכן לפתוח את הסניף. אם כן, היכן?.7 ב. בנו רווח סמך לתוחלת המשכורת באזור A ברמת סמך של 3%. להלן מדגם של שכר הדירה בש"ח של 3 דירות שלושה חדרים בשכונת בבלי בתל אביב : שנת שנת 903 בנו רווח סמך ברמת סמך של 3% לתוחלת עליית שכר הדירה משנת 909 לשנת 903 בשכונת בבלי. ניתן להניח ששכר הדירה בשכונה מתפלג נורמלית. לפתרון מלא בסרטון וידאו היכנסו ל-

93 93 פתרונות: שאלה א ב..9 ג p שאלה. א..65 ב. 0.85% p 9.5% שאלה 3 א. 7 ב..88% ג. 89% 83% p שאלה א ב. לא ג. יגדל שאלה 5 0.5% p p 9.5% p א. ב. שאלה א ב. 4.3 לפתרון מלא בסרטון וידאו היכנסו ל-

94 94 שאלה A B א. ב. שאלה לפתרון מלא בסרטון וידאו היכנסו ל-

95 95 פרק - 5 בדיקת השערות כללית רקע: תהליך של בדיקת השערות הוא תהליך מאד נפוץ בעולם הסטטיסטיקה. בתהליך זה ישנן שתי השערות שנבדקות : השערת האפס המסומנות ב- H 0. H והשערה אלטרנטיבית ( השערת המחקר ) המסומנת ב- בדרך כלל השערת האפס מסמנת את אשר היה מקובל עד עכשיו, את השגרה הנורמה ואילו ההשערה האלטרנטיבית את החדשנות בעצם ההשערה האלטרנטיבית מדברת על הסיבה שהמחקר נעשה. למשל, ישנה תרופה קיימת למחלה A אשר גורמת ל % 0 מהמשתמשים בה לתופעות לוואי. חברת תרופות טוענת שפיתחה תרופה שיעילה באותה מידה, אך מקטינה את הסיכוי לתופעות הלוואי. לכן יש לבצע מחקר שעל סמך תוצאותיו ננסה להכריע איזה השערה נקבל: H 0 : התרופה החדשה הנה קונבנציונאלית וגורמת ל- 0% תופעות לוואי. : H התרופה החדשה מקטינה את אחוז הסובלים מתופעות לוואי מתחת ל -0%. בתהליך של בדיקת השערות יוצרים כלל שניקרא כלל הכרעה : הכלל יוצר אזור שניקרא אזור דחייה ( דחייה של השערת האפס כלומר קבלה של האלטרנטיבה( ואזור קבלה ( קבלה של השערת האפס ודחייה של האלטרנטיבה(. כלל ההכרעה מתבסס על איזשהו סטטיסטי. בתהליך יש ללכת לתוצאות המדגם ולבדוק האם התוצאות נופלות באזור הדחייה או הקבלה וכך להגיע למסקנה המסקנה היא בעירבון מוגבל כיוון שהיא תלויה בכלל ההכרעה ובתוצאות המדגם. נשנה את כלל ההכרעה אנחנו יכולים לקבל מסקנה אחרת. נבצע מדגם חדש אנחנו עלולים לקבל תוצאה אחרת. לכן יתכנו טעויות במסקנות שלנו: הכרעה מציאות H0 H H0 אין טעות טעות מסוג 0 H טעות מסוג 9 אין טעות לפתרון מלא בסרטון וידאו היכנסו ל-

96 96 הגדרת הטעויות: H 0 H 0 טעות מסוג ראשון- להכריע לדחות את למרות שבמציאות נכונה. H H 0 טעות מסוג שני- להכריע לקבל את למרות שבמציאות נכונה. מה הן הטעויות האפשריות במחקר של התרופות? ( בהקלטה ) נגדיר את ההסתברויות הבאות: הסיכוי לבצע טעות מסוג ( 0 רמת מובהקות ) ) לדחות H 0 (= P H0 (H 0 נכונה לדחות את α=p)h 0 הסיכוי לבצע טעות מסוג 9: ) לקבל H (=P H (H 0 נכונה לקבל את β =P)H 0 רמת בטחון: ) לקבל H 0 (= P H0 (H 0 נכונה לקבל את )-α( =P)H 0 עוצמה : ) לדחות H ( =P H (H 0 נכונה לדחות את π=)-β ( =P)H 0 דוגמה: ( פתרון בהקלטה ) בכד יש 0 כדורים. יתכן ש- 3 מהם לבנים והיתר שחורים )כד א- השערת האפס( או ש- 7 מהם לבנים והיתר שחורים )כד ב- השערה אלטרנטיבית(. כדי להחליט איזה מהכדים ברשותנו, הוחלט להוציא כדור ולהשתמש בכלל ההחלטה הבא: אם הכדור שהוצא הוא לבן שזהו כד ב' ( H(. א. חשבו את רמת המובהקות ואת רמת הביטחון של המבחן המוצע. ב. חשבו את הסיכוי לטעות מסוג שני והעוצמה של המבחן המוצע. לפתרון מלא בסרטון וידאו היכנסו ל-

97 97 תרגילים: 0. אדם חשוד בביצוע פשע. מהן הטעויות האפשריות בהכרעת הדין? ילד קנה שקית סוכריות אטומה שבה ציפה ל- 0 סוכריות תות ו- 3 לימון. ישנה שקית אחרת אותה הוא לא רצה בה סוכריות תות ו- לימון.הוא החליט להוציא באקראי סוכרייה אם היא תהיה לימון הוא יחזיר את השקית לחנות. מה הסיכויים לכל סוג של טעות בהכרעתו?.9 יהי מספר שלם הנבחר באקראי מבין המספרים השלמים. הסיכוי ש- יקבל ערך k,,..., n עבור p( k) כלשהו נתון על ידי הנוסחה: n נתונות ההשערות הבאות לגבי התפלגות של : H 0 : n 4 H : n 6 כמו כן נתון כלל ההכרעה הבא: נדחה את השערת האפס אם 3<. חשבו את הסיכוי לטעות מסוג ראשון וטעות מסוג שני ואת העוצמה?.3 איכות של מוצר מסווגת ל- רמות איכות: מצוין, טוב, בינוני וירוד. להלן התפלגות טיב המוצר בשני מפעלים: ירוד בינוני טוב מצוין מפעל.9.9. "היוצר" "שמשון". בוחרים ממשלוח מוצר באקראי, אך לא יודעים מאיזה מפעל המשלוח הגיע. על סמך בדיקת האיכות מנסים להכריע האם מדובר במפעל "היוצר" )השערת האפס( או במפעל "שמשון" )השערה אלטרנטיבית(. א. להלן כלל החלטה: אם מדובר במוצר שטיבו "טוב" נכריע שהמוצר בא ממפעל "שמשון", מהן ההסתברויות לסוגי הטעויות השונים? ב. להלן כלל החלטה: אם מדובר במוצר שטיבו "בנוני" או גרוע מכך נכריע שהמוצר בא ממפעל "שמשון", מה מהן ההסתברויות לסוגי הטעויות השונים? ג. איזה כלל החלטה עדיף? נמק! לפתרון מלא בסרטון וידאו היכנסו ל-

98 98 במטרה לבדוק האם מטבע תקין הטילו אותו 8 פעמים. הוחלט שאם מספר העצים יהיה בין 0 ל 7 כולל יוחלט שהמטבע תקין, אחרת נחליט שהמטבע מזויף. א. רשמו את השערות המחקר. ב. מה ההסתברות לטעות מסוג ראשון? ג. מהי עצמת המבחן אם במציאות אכן המטבע אינו תקין כי הסיכוי לעץ בו הוא 9%..3 להלן השערות: H0 )התפלגות עם 3 דרגות חופש( : ~ (5) )התפלגות נורמאלית סטנדרטית( H : ~ Z ((סטנדארטית כלל החלטה: נדחה את השערת האפס אם גדול מ א. מהי רמת המובהקות של כלל ההחלטה? ב. מהי העוצמה של כלל ההחלטה?. במפעל מסוים נפלטים לאוויר חומרים רעילים. במצב שיגרה העוצמה הממוצעת של החומר הרעיל אמורה להיות, יחידות עם סטיית תקן. במצב חירום העוצמה הממוצעת היא 7, עם סטיית תקן. במפעל מערכת התראה נתמכת על ידי חיישנים. אם ממוצע העוצמה של החומר הרעיל לפי תשעת החיישנים עולה על יחידות מופעלת מערכת ההתראה. נתון שעוצמת הזיהום מתפלגת נורמאלית. א. מה הסיכוי להתראת שווא? )באיזה סוג טעות מדובר(? ב. מה הסיכוי שבמצב חירום מערכת ההתראה לא תפעל? )באיזה סוג טעות מדובר(? מה ההסתברות שאם המצב הוא מצב חירום מערכת ההתראה תפעל? )איך קוראים ג. להסתברות זו(? בסעיפים הבאים נשנה בכל סעיף נתון מסוים. כל סעיף עומד בפני עצמו, כיצד השינוי ד. ישנה את הסיכוי לטעות מסוג ראשון ושני? המפעל יקנה עוד חיישנים. 0. מצב חרום מוגדר כעת בתוחלת של 73 יחידות. 9. מערכת ההתראה תופעל אם ממוצע של תשעת החיישנים יהיה מעל במטרה לבדוק האם במקום עבודה מסוים פרופורציית הבנים נמוכה מפרופורציית הבנות נדגמו באקראי 0 עובדים. הוחלט שאם מספר הבנים במדגם יהיה לכל היותר 9 תתקבל הטענה שפרופורציית הבנים נמוכה מפרופורציית הבנות. א. מה רמת המובהקות של כלל ההכרעה הנ"ל? ב. מהי העצמה בהנחה ובחברה 3% בנים?.8 לפתרון מלא בסרטון וידאו היכנסו ל-

99 99 זמן ההשפעה של משכך הכאבים "אופטלנוס" מתפלג נורמאלית עם תוחלת של דקות וסטיית תקן של 09 דקות. חברת התרופות המייצרת את התרופה מנסה לשפר את התרופה כך שתוחלת הזמן עד להשפעה תתקצר. לצורך כך, דגמו 93 מטופלים שיקבלו את התרופה "אופטלנוס פורטה", ממוצע זמן התגובה של המטופלים היה 3.3 דקות. חברת התרופות החליטה מראש שאם ממוצע הזמן עד להשפעה יהיה נמוך מ 33 דקות, היא תמשיך בתהליך שיווק "אופטלנוס פורטה". א. מהי רמת המובהקות של המבחן המוצע? ב. על סמך תוצאות המדגם. מהי המסקנה ומהי הטעות האפשרית במסקנה? ג. מהי עצמת המבחן המוצע אם במציאות התרופה "אופטלנוס פורטה" מפחיתה את התוחלת לכדי 39 דקות? ד. כיצד תשתנה התשובה לסעיף ג' אם החברה הייתה מחליטה שהיא תמשיך בתהליך שיווק התרופה החדשה כאשר ממוצע המדגם יהיה נמוך מ- 3 דקות?. 0. ציוני פסיכומטרי מתפלגים נורמלית עם סטיית תקן 09. מכון טוען שלימודים אצלו מעלים את ממוצע הציונים ביותר מ- 3 נקודות. נלקחו 9 שלמדו במכון ו- 9 שניגשו לבחינה בלמידה עצמית. הוחלט במשרד פרסום לקבל את טענת המכון רק אם במדגם ממוצע הציונים של אלה שלמדו במכון יהיה גבוהה בלפחות 3 נקודות מאלה שלא היו. א. מהי רמת המובהקות של המחקר? ב. מה הסיכוי לעשות טעות מסוג שני II בהנחה שהמכון מעלה את ממוצע הציונים ב- נקודות? ג. כיצד התשובות לסעיף א ו ב' היו משתנות אם מסתבר שסטיית התקן בציוני הפסיכומטרי הינה 0. הסבירו ללא חישוב. קו ייצור נחשב תקין אם יש בו לכל היותר % פגומים, ונחשב שאינו תקין אחרת. מנהל האיכות דוגם בכל יום מקו הייצור 3 מוצרים. אם במדגם יהיה לפחות 3 מוצרים פגומים יפסיקו באותו היום את קו הייצור. א. מה ההסתברות להפסיק את קו הייצור כשהוא תקין. איך קוראים להסתברות זאת? ב. מה ההסתברות להמשיך ביום מסוים את קו הייצור למרות שאינו תקין כי היו 8% פגומים בקו הייצור. איך קוראים להסתברות זאת?.00 מעוניינים לבדוק האם בפקולטה מסוימת ישנה העדפה לגברים. הוחלט לדגום 9 מתקבלים ועל סמך מספר הבנים לקבוע אם טענת המחקר מתקבלת. חוקר א' קבע רמת מובהקות של 3% וחוקר ב' החליט לקבל את טענת המחקר אם במדגם יהיו לפחות 09 בנים. למי מבין החוקרים רמת מובהקות גדולה יותר?.09 לפתרון מלא בסרטון וידאו היכנסו ל-

100 מספר המכוניות הנכנסות לחניון "עזרים" מתפלג פואסונית. בשנה שעברה המכוניות נכנסו לחניון בקצב של 9 מכוניות לדקה. בעקבות תלונות על עומס יתר בכניסה לחניון מעוניין מנהל החניון לבדוק האם קצב כניסת המכוניות לחניון גדל השנה. מנהל החניון החליט לספור את מספר המכוניות שיכנסו לחניון בדקה אקראית. אם מספר המכוניות שיספרו יהיה לפחות יפתח מנהל החניון שער נוסף לחניון. א. רשום את השערות מנהל החניון ואת כלל ההחלטה שלו. האם כלל ההכרעה הגיוני? ב. מהי רמת המובהקות של כלל ההכרעה? ג. מהי העוצמה של כלל ההחלטה, אם כיום קצב כניסת המכוניות לחניון גדל ל- מכוניות בדקה? עודד עובד במפעל שבו מתחילים לעבוד בשעה 8:. עודד בדרך כלל מאחר לעבודה והמנהל החליט לרשום את שעת בואו לעבודה. המנהל טוען שמשך האיחור של עודד )דקות(,, היא משתנה אחיד (60,0)U. עודד טוען שהוא לא מגיע באיחור כה גדול, אלא שהתפלגות היא בעלת התפלגות מעריכית עם תוחלת איחור של 9 דקות. לבדיקת טענת המנהל ( 0 H( כנגד טענת עודד) H(, המבוסס על משך האיחור של חגי ביום אחד. מוצאים שני ככלי הכרעה: כלל 0: דחה את השערת האפס אם משך האיחור יהיה לפחות דקות. כלל 9 : דחה את השערת האפס אם משך האיחור יהיה לכל היותר 9 דקות. חשב את הסיכוי לטעות מסוג ראשון ושני לכל אחת מכללי ההכרעה. מי עדיף? לפתרון מלא בסרטון וידאו היכנסו ל-

101 פתרונות: שאלה 3 שאלה שאלה א. ב. ג. כלל ב' שאלה ב. ג. שאלה 6 א..3 ב..99 שאלה 7 א..998 ב..08 ג..89 שאלה 8 א..33 ב..383 שאלה א..980 ב..37 ג. קטן שאלה א..003 ב..3 לפתרון מלא בסרטון וידאו היכנסו ל-

102 שאלה חוקר א שאלה 3 ב..098 ג..3 לפתרון מלא בסרטון וידאו היכנסו ל-

103 3 פרק - 6 בדיקת השערות על פרמטרים הקדמה רקע: תהליך של בדיקת השערות הוא תהליך מאד נפוץ בעולם הסטטיסטיקה. בבדיקת השערות על פרמטרים נעבוד לפי השלבים הבאים: שלב א: נזהה את הפרמטר הנחקר. שלב ב: נרשום את השערות המחקר. השערת האפס המסומנות ב- בדרך כלל השערת האפס מסמלת את אשר היה מקובל עד עכשיו, את השגרה הנורמה. השערה אלטרנטיבית ( השערת המחקר ) המסומנת ב-. H H 0 ההשערה האלטרנטיבית מסמלת את החדשנות בעצם ההשערה האלטרנטיבית מדברת על הסיבה שהמחקר נעשה היא שאלת המחקר. שלב ג : נבדוק האם התנאים לביצוע התהליך מתקיימים ונניח הנחות במידת הצורך. שלב ד: נרשום את כלל ההכרעה. בתהליך של בדיקת השערות יוצרים כלל שניקרא כלל הכרעה : הכלל יוצר אזור שניקרא אזור דחייה ( דחייה של השערת האפס כלומר קבלה של האלטרנטיבה( ואזור קבלה ( קבלה של השערת האפס ודחייה של האלטרנטיבה(. כלל ההכרעה מתבסס על איזשהו סטטיסטי. אזור הדחיה מוכתב על ידי סיכון שלוקח החוקר מראש שנקרא רמת מובהקות ומסומן ב- α. שלב ה: בתהליך יש ללכת לתוצאות המדגם ולחשב את הסטטיסטי המתאים נופלות באזור הדחייה או הקבלה. ולבדוק האם התוצאות שלב ו : להסיק מסקנה בהתאם לתוצאות המדגם. לפתרון מלא בסרטון וידאו היכנסו ל-

104 4 דוגמה: ( פתרון בהקלטה( משרד הבריאות פרסם שמשקל ממוצע של תינוקות ביום היוולדם בישראל 33 גר'. משרד הבריאות רוצה לחקור את הטענה שנשים מעשנות בזמן ההיריון יולדות תינוקות במשקל נמוך מהממוצע. במחקר השתתפו 9 נשים מעשנות בהריון. להלן תוצאות המדגם שבדק את המשקל של התינוקות בעת הלידה: n 0 30 S 80 א. מהי אוכלוסיית המחקר? ב. מה המשתנה הנחקר? ג. מה הפרמטר הנחקר? ד. מהן השערות המחקר? לפתרון מלא בסרטון וידאו היכנסו ל-

105 5 תרגילים: ממוצע הציונים בבחינת הבגרות באנגלית הנו 79 עם סטיית תקן 03 נקודות. מורה טוען שפיתח שיטת לימוד חדשה שתעלה את ממוצע הציונים. משרד החינוך החליט לתת למורה 3 תלמידים אקראיים. ממוצע הציונים של אותם תלמידים לאחר שלמדו בשיטתו היה מהי אוכלוסיית המחקר? א. מה המשתנה הנחקר? ב. מה הפרמטר הנחקר? ג. מהן השערות המחקר? ד..0 לפי הצהרת היצרן של חברת משקאות מסוימת נפח הנוזל בבקבוק מתפלג נורמלית עם סמ"ק. אגודת הצרכנים מתלוננת על הפחתת נפח 9 סמ"ק וסטיית תקן 3 תוחלת המשקה בבקבוק מהכמות המוצהרת. במדגם שעשתה אגודת הצרכנים התקבל נפח ממוצע של 9 סמ"ק במדגם בגודל 93. מהי אוכלוסיית המחקר? א. מה המשתנה הנחקר? ב. מה הפרמטר הנחקר? ג. ד. מהן השערות המחקר?.9 במשך שנים אחוז המועמדים שהתקבל לפקולטה למשפטים היה 93%. השנה מתוך מדגם של 09 מועמדים התקבלו 99. מחקר מעוניין לבדוק האם השנה מקשים על הקבלה לפקולטה למשפטים. א. מהי אוכלוסיית המחקר? ב. מה המשתנה הנחקר? ג. מה הפרמטר הנחקר? ד. מהן השערות המחקר?.3. בחודש ינואר השנה פורסם שאחוז האבטלה במשק הוא 8% במדגם עכשווי התקבל שמתוך 9 אנשים.3% מובטלים. רוצים לבדוק ברמת מובהקות של 3% האם כיום אחוז האבטלה הוא כמו בתחילת השנה. א. מהי אוכלוסיית המחקר? ב. מה המשתנה הנחקר? ג. מה הפרמטר הנחקר? ד. מהן השערות המחקר? לפתרון מלא בסרטון וידאו היכנסו ל-

106 6 רקע: טעויות בבדיקת השערות בתהליך של בדיקת השערות יוצרים כלל שניקרא כלל הכרעה : הכלל יוצר אזור שניקרא אזור דחייה ( דחייה של השערת האפס כלומר קבלה של האלטרנטיבה( ואזור קבלה ( קבלה של השערת האפס ודחייה של האלטרנטיבה(. כלל ההכרעה מתבסס על איזשהו סטטיסטי. בתהליך יש ללכת לתוצאות המדגם ולבדוק האם התוצאות נופלות באזור הדחייה או הקבלה וכך להגיע למסקנה המסקנה היא בעירבון מוגבל כיוון שהיא תלויה בכלל ההכרעה ובתוצאות המדגם. נשנה את כלל ההכרעה אנחנו יכולים לקבל מסקנה אחרת. נבצע מדגם חדש אנחנו עלולים לקבל תוצאה אחרת. לכן יתכנו טעויות במסקנות שלנו: הכרעה H0 H מציאות 0 טעות מסוג אין טעות H0 טעות מסוג H 9 אין טעות הגדרת הטעויות: טעות מסוג ראשון- להכריע לדחות את למרות שבמציאות H 0 נכונה. H 0 טעות מסוג שני- להכריע לקבל את למרות שבמציאות H נכונה. H 0 דוגמה: )פתרון בהקלטה( אדם חשוד בביצוע עבירה ונתבע בבית המשפט. אילו סוגי טעויות אפשריות בהכרעת הדין? לפתרון מלא בסרטון וידאו היכנסו ל-

107 7 תרגילים: לפי הצהרת היצרן של חברת משקאות מסוימת נפח הנוזל בבקבוק מתפלג נורמלית עם תוחלת 3 סמ"ק וסטיית תקן 9 סמ"ק. אגודת הצרכנים מתלוננת על הפחתת נפח המשקה בבקבוק מהכמות המוצהרת. במדגם שעשתה אגודת הצרכנים התקבל נפח ממוצע של 9 סמ"ק במדגם בגודל 93. בסופו של דבר הוחלט להכריע לטובת חברת המשקאות. א. רשמו את השערות המחקר. מה מסקנת המחקר? ב. איזו סוג טעות יתכן וביצעו במחקר? ג במחקר על פרמטר מסוים הוחלט בסופו של דבר לדחות את השערת האפס. א. האם ניתן לדעת אם בוצע טעות במחקר? ב. מה סוג הטעות האפשרית? 3. לפי נתוני משרד הפנים בשנת 08 למשפחה ממוצעת היה 9.3 ילדים למשפחה עם סטיית תקן.. ישנה טענה שכיום ממוצע מספר הילדים במשפחה קטן יותר. לצורך כך הוחלט לדגום 090 משפחות. במדגם התקבל ממוצע 9.07 ילדים למשפחה. על סמך תוצאות המדגם נקבע שלא ניתן לקבוע שבאופן מובהק תוחלת מספר הילדים למשפחה קטנה כיום. א. מהי אוכלוסיית המחקר? ב. מה המשתנה הנחקר? ג. מה הפרמטר הנחקר? ד. מה השערות המחקר? ה. מה מסקנת המחקר? ו. מהי סוג הטעות האפשרית במחקר? לפתרון מלא בסרטון וידאו היכנסו ל-

108 8 פרק - 7 בדיקת השערות על תוחלת )ממוצע( כאשר שונות האוכלוסיה ידועה רקע: H : 0 0 H : 0 H : 0 0 H : 0 H H 0 : : 0 0 השערת האפס : השערה אלטרנטיבה:.0 תנאים: ידועה או מדגם מספיק גדול N.9 Z x Z Z x Z Z x Z כלל ההכרעה: Z x או Z : H 0 אזור הדחייה של H 0 Z - דוחים את Z H 0 - דוחים את Z Z H 0 - דוחים את סטטיסטי המבחן : Z 0 n חלופה אחרת לכלל הכרעה: Z 0 n Z 0 n Z 0 Z 0 n n נדחה H 0 אם מתקיים: או / / לפתרון מלא בסרטון וידאו היכנסו ל-

109 9 דוגמה : )פתרון בהקלטה( יבול העגבניות מתפלג נורמלית עם תוחלת של 0 טון לדונם וסטיית תקן של 9.3 טון לדונם בעונה. משערים ששיטת זיבול חדשה תעלה את תוחלת היבול לעונה מבלי לשנות את סטיית התקן. נדגמו חלקות שזובלו בשיטה החדשה. היבול הממוצע שהתקבל היה 09.3 טון לדונם. בדוק את ההשערה ברמת מובהקות של 0%. לפתרון מלא בסרטון וידאו היכנסו ל-

110 תרגילים: ממוצע הציונים בבחינת הבגרות באנגלית הנו 79 עם סטיית תקן 03 נקודות. מורה טוען שפיתח שיטת לימוד חדשה שתעלה את ממוצע הציונים. משרד החינוך החליט לתת למורה 3 תלמידים אקראיים. ממוצע הציונים של אותם תלמידים לאחר שלמדו בשיטתו היה בהנחה שגם בשיטתו סטיית התקן תהייה 03 מה מסקנתכם ברמת מובהקות של 3%?.0 9. לפי הצהרת היצרן של חברת משקאות מסוימת נפח הנוזל בבקבוק מתפלג נורמלית עם תוחלת 3 סמ"ק וסטיית תקן 9 סמ"ק. אגודת הצרכנים מתלוננת על הפחתת נפח המשקה בבקבוק מהכמות המוצהרת. במדגם שעשתה אגודת הצרכנים התקבל נפח ממוצע של 9 סמ"ק במדגם בגודל 93. א. מה מסקנתכם ברמת מובהקות של 9.3%? ב. האם ניתן לדעת מה תהיה המסקנה עבור רמת מובהקות הגבוהה מ- 3%? מהנדס האיכות מעוניין לבדוק אם מכונה מכוילת )מאופסת(. המכונה כוונה לחתוך מוטות באורך 3 ס"מ. לפי נתוני היצרן סטיית התקן בחיתוך המוטות היא.3 ס"מ. במדגם של 3 מוטות התקבל ממוצע אורך המוט 3.3 ס"מ.מה מסקנתכם ברמת מובהקות של 3%?.3. המשקל הממוצע של הספורטאים בתחום ספורט מסוים הוא ק"ג, עם סטיית תקן 8 ק"ג. לפי דעת מומחים בתחום יש צורך בהורדת המשקל ובשימוש בדיאטה מסוימת שצריכה להביא להורדת המשקל. לשם בדיקת יעילות הדיאטה נלקח מדגם מקרי של 3 ספורטאים ובתום שנה של שימוש בדיאטה התברר שהמשקל הממוצע במדגם זה היה 8 ק"ג. יש לבדוק בר"מ של 0%, האם הדיאטה גורמת להורדת המשקל. 3. לפי מפרט נתון, על עובי בורג להיות מ"מ עם סטיית תקן של.9 מ"מ. במדגם של 93 ברגים העובי הממוצע היה.7 מ"מ. קבעו ברמת מובהקות.3, האם עובי הברגים מתאים למפרט. הניחו כי עובי של בורג מתפלג נורמלית וסטיית התקן של עובי בורג היא אכן.9 מ"מ. לפתרון מלא בסרטון וידאו היכנסו ל-

111 בחר בתשובה במחקר נמצא שתוצאה היא מובהקת ברמת מובהקות של 3% מה תמיד נכון?. הנכונה. א. הגדלת רמת המובהקות לא תשתנה את מסקנת המחקר. ב. הגדלת רמת המובהקות תשנה את מסקנת המחקר. ג. הקטנת רמת המובהקות לא תשנה את מסקנת המחקר. ד. הקטנת רמת המובהקות תשנה את מסקנת המחקר. 7. חוקר ערך מבחן דו צדדי ברמת מובהקות של והחליט לדחות את השערת האפס. אם החוקר היה עורך מבחן צדדי ברמת מובהקות של א. השערת האפס הייתה נדחית. ב. השערת האפס הייתה לא נדחית. ג. לא ניתן לדעת מה תהיה מסקנתו במקרה זה. אזי בהכרח: )בחר בתשובה הנכונה ) שני סטטיסטיקאים בדקו השערות H0: 0 כנגד H: 0 עבור שונות ידועה ובאותה רמת מובהקות. שני החוקרים קבלו אותו ממוצע במדגם אך לחוקר א' היה מדגם בגודל 0 ולחוקר ב' מדגם בגודל 9. א. אם חוקר א' החליט לדחות את ב. אם חוקר א' יחליט לא לדחות את, H 0 מה יחליט חוקר ב'? נמקו., H 0 מה יחליט חוקר ב'? נמקו..8 לפתרון מלא בסרטון וידאו היכנסו ל-

112 פתרונות : שאלה : H 0 נקבל שאלה : H 0 נדחה שאלה 3: H 0 נדחה שאלה 4: H 0 נדחה שאלה 5: H 0 נקבל שאלה 6: ב שאלה 7: ג שאלה 8: א. אותה מסקנה ב. לא ניתן לדעת. לפתרון מלא בסרטון וידאו היכנסו ל-

113 3 סיכוי לטעויות ועוצמה כאשר שונות האוכלוסייה ידועה רקע: הכרעה H0 מציאות H H0 H טעות מסוג 0 אין טעות אין טעות טעות מסוג 9 נגדיר את ההסתברויות הבאות: הסיכוי לבצע טעות מסוג ( רמת מובהקות ) ) לדחות H 0 (= P H0 (H 0 נכונה לדחות את α=p)h 0 הסיכוי לבצע טעות מסוג : ) לקבל H (=P H (H 0 נכונה לקבל את β =P)H 0 רמת בטחון: ) לקבל H 0 (= P H0 (H 0 נכונה לקבל את )-α( =P)H 0 עוצמה : ) לדחות H ( =P H (H 0 נכונה לדחות את π=)-β ( =P)H 0 לפתרון מלא בסרטון וידאו היכנסו ל-

114 4 התהליך לחישוב סיכוי לטעות מסוג שני: H : 0 0 H : 0 H : 0 0 H : 0 H H 0 : : 0 0 השערת האפס : השערה אלטרנטיבה:.3 תנאים: ידועה או מדגם מספיק גדול N. Z 0 n Z 0 n Z 0 Z 0 n n : H 0 כלל ההכרעה: אזור הדחייה של או / / P ( Z ) H 0 n P ( Z ) H 0 n P ( Z Z ) n n H 0 0 חישוב : β ~ N(, ) n התפלגות ממוצע המדגם : x התקנון : Z n לפתרון מלא בסרטון וידאו היכנסו ל-

115 5 דוגמה : )פתרון בהקלטה( בתחילת השנה חשבון הטלפון הסלולארי הממוצע לאדם היה 9 עם סטיית תקן של 8 לחודש. בעקבות כניסתן של חברות טלפון סלולארית חדשות מעוניינים לבדוק האם כיום ממוצע חשבון הטלפון הסלולארי פחת. לצורך בדיקה דגמו באקראי 3 אנשים וחשבון הטלפון הסלולארי שלהם היה 03 בממוצע לחודש. א. רשמו את השערות המחקר ובנו כלל הכרעה במונחי חשבון ממוצע מדגמי ברמת מובהקות של 3%. ב. מה מסקנתכם? איזה סוג טעות אפשרית במסקנה? ג. נניח שבמציאות כיום החשבון הממוצע הוא. 0 מה הסיכוי לבצע טעות מסוג שני? ד. אם נקטין את רמת המובהקות מסעיף א', כיצד הדבר ישפיע על התשובה מסעיף ג'? לפתרון מלא בסרטון וידאו היכנסו ל-

116 6 תרגילים: נתון ש ) N(, להלן השערות של חוקר לגבי הפרמטר :.0 H : 5 0 H: 7 מעוניינים ליצור כלל הכרעה המתבסס על הסמך תצפית בודדת כך שרמת המובהקות תהיה.3%? H 0 א. עבור אילו ערכים של שידגם נדחית השערת ב. מה הסיכוי לבצע טעות מסוג שני? ג. אם במדגם התקבל ש. 69 מה תהיה המסקנה ומה הטעות האפשרית? לפי נתוני משרד הפנים בשנת 08 למשפחה ממוצעת היה 9.3 ילדים למשפחה עם סטיית תקן.. מעוניינים לבדוק אם כיום ממוצע מספר הילדים למשפחה קטן יותר. לצורך כך הוחלט לדגום 090 משפחות. במדגם התקבל ממוצע 9.07 ילדים למשפחה. א. רשמו כלל הכרעה במונחי ממוצע מדגם קריטי ברמת מובהקות של 3%. ב. בהמשך לסעיף א מה תהיה המסקנה ומהי הטעות האפשרית במסקנה? ג. אם באמת ממוצע מספר הילדים במשפחה פחת לכדי 9.0 מהי העצמה של הכלל מסעיף א?.9 להלן נתונים על תהליך של בדיקת השערות על תוחלת: : 00 : n 5 א. רשום כלל הכרעה במונחי ממוצע מדגם קריטי וברמת מובהקות של 0%. ב. בהמשך לסעיף א מהי העצמה אם התוחלת שווה ל- 03? ג. הסבר ללא חישוב איך העצמה תשתנה אם רמת המובהקות תהייה 3%? H H 0.3 לפתרון מלא בסרטון וידאו היכנסו ל-

117 7 מפעל לייצור צינורות מייצר צינור שקוטרו מתפלג נורמלית עם תוחלת של 3 מ"מ וסטית תקן של מ"מ. במחלקת ביקורת האיכות דוגמים בכל יום 80 צינורות ומודדים את קוטרם, בכדי לבדוק, בעזרת מבחן סטטיסטי, האם מכונת הייצור מכוילת כנדרש או שקוטר הצינורות קטן מהדרוש. א. רשום את ההשערות ואת כלל ההכרעה ברמת מובהקות של 3%. ב. אם ביום כלשהו מכונת הייצור התקלקלה והיא מייצרת את הצינורות בקוטר שתוחלתו 8 מ"מ בלבד )סטית התקן לא השתנתה(, מה ההסתברות שהתקלה לא תתגלה בביקורת האיכות? כיצד נקראת הסתברות זו? ג. הסבר ללא חישוב כיצד התשובה לסעיף ב תשתנה אם רמת המובהקות תגדל. ד. הסבר ללא חישוב כיצד התשובה לסעיף ב תשתנה אם התוחלת האמיתית היא 7 ולא 8 מ"מ.. 0 להלן השערות של מחקר H : 50 H : 58 מעוניינים לדגום 0 תצפיות. ידוע שסטיית התקן של ההתפלגות הינה 9. א. בנו כלל הכרעה שהסיכוי לטעות מסוג שני בו הוא. 0% מהי רמת המובהקות? ב. כיצד הייתה משתנה רמת המובהקות אם )כל סעיף בפני עצמו(? 0. סטיית התקן הייתה יותר גדולה. 9. הסיכוי לטעות מסוג שני גדול יותר..3 השאלות שלהלן הן שאלות רב בררתיות. בחר בכל שאלה את התשובה הנכונה ביותר: אם חוקר החליט להגדיל את רמת המובהקות במחקר שלו אזי: א. הסיכוי לטעות מסוג ראשון גדל. ב. העוצמה של המבחן גדלה. ג. הסיכוי לטעות מסוג שני גדל. ד. תשובות א ו-ב נכונות. חוקר ביצע מחקר ובו עשה טעות מסוג שני לכן: א. השערת האפס נכונה. ב. השערת האפס נדחתה. ג. השערת האפס לא נדחתה. ד. אף אחת מהתושבות לא נכונה בהכרח...7 לפתרון מלא בסרטון וידאו היכנסו ל-

118 8 מה המצב הרצוי לחוקר המבצע בדיקת השערה: גדולה גדולה א. קטנה גדולה ב. גדולה קטנה ג. קטנה קטנה ד..8 H 0 נערך שינוי בכלל ההחלטה של בדיקת השערה מסוימת ובעקבותיו אזור דחיית קטן. כל שאר הגורמים נשארו ללא שינוי. כתוצאה מכך:. א. הן, והן ) - 0(, יקטנו. ב. יישאר ללא שינוי ואילו ) - 0( יגדל. ג. יגדל ואילו ) - 0( יקטן. ד. הן והן ) - 0( יגדלו. ידוע כי לחץ דם תקין באוכלוסייה הוא. 09 רופא מניח שלחץ הדם בקרב עיתונאים גבוה יותר מהממוצע באוכלוסייה. הוא לקח מדגם של עיתונאים וקיבל ממוצע 037. על סמך המדגם, הוא בודק טענתו ברמת מובהקות.9 ומסיק שלחץ הדם בקרב העיתונאים אינו גבוה יותר. מה הטעות האפשרית שהרופא עושה? א. טעות מסוג ראשון. ב. טעות מסוג שני. ג. טעות מסוג שלישי. ד. אין טעות במסקנתו..0 לפתרון מלא בסרטון וידאו היכנסו ל-

119 9 פתרונות : שאלה : א. מעל.3 ב..339 שאלה :.4 א. נדחה H 0 אם ב. נדחה H 0 ג. 0 שאלה 3: 03.9 א. נדחה H 0 אם או 96.7 ב..830 ג. תקטן. שאלה 4: 48.9 א. נדחה H 0 אם ב..883 ג. תקטן. ד. תקטן. שאלה 6: ד שאלה 7: ג שאלה 8: ג שאלה 9: א שאלה : ב לפתרון מלא בסרטון וידאו היכנסו ל-

120 רקע: קביעת גודל מדגם כששונות האוכלוסיה ידועה H : 0 0 H : השערות המחקר הן : סטיית התקן של האוכלוסייה ידועה ומעוניינים לבצע מחקר שרמת המובהקות לא תעלה על α והסיכוי לטעות מסוג שני לא יעלה על β. הנוסחה הבאה נותנת את גודל המדגם הרצוי : Z ( Z ) n 0 דוגמה: )פתרון בהקלטה( משרד החינוך מפעיל בגן חובה שיטת חינוך שפותחה בשנת 03. לפי שיטת חינוך זו תוחלת הציון במבחן אוצר מילים לגיל הרך הוא 7. אנשי חינוך החליטו לבדוק שיטת חינוך שפותחה בהולנד הנותנת שם תוחלת ציון אוצר מילים של 8. נניח שציוני מבחן זה מתפלגים נורמאלית עם. 7 כדי לבדוק האם גם בישראל הפעלת שיטת החינוך ההולנדית תעבוד בגנים, רוצים לבנות מחקר ברמת מובהקות של 3%. כמו כן, מעוניינים שאם בהפעלת השיטה ההולנדית תוחלת הציונים תעלה לכדי 8, המחקר יגלה זאת בסיכוי של %. כמה ילדי גן חובה דרושים למחקר? לפתרון מלא בסרטון וידאו היכנסו ל-

121 תרגילים: במבחן אינטליגנציה הציונים מתפלגים נורמאלית עם סטיית תקן 8 וממוצע 0. פסיכולוג מעוניין לבדוק את הטענה שבאוכלוסיות במצב סוציו אקונומי נמוך תוחלת הציונים היא 3. אם מעוניינים לגלות את הטענה בהסתברות של לפחות % כשרמת המובהקות היא 3% מהו גודל המדגם הדרוש?.0.9 משרד התקשורת טוענים שאדם מדבר בממוצע 08 דקות בחודש בטלפון הסלולרי. חברות הטלפון הסלולרי טוענות שאינפורמציה זו אינה נכונה ואדם מדבר בממוצע פחות : כ- 0 דקות. לצורך פתרון נניח שסטיית התקן של זמן השיחה החודשי ידוע ושווה ל- דקות. כמה אנשים יש לדגום כך שאם טענת משרד התקשורת נכונה נדחה אותה בסיכוי של 3% )איך קוראים להסתברות זאת?( כמו כן אם טענת חברות הטלפון הסלולרית נכונה המחקר יגלה זאת בסיכוי של % )איך קוראים להסתברות זאת?) 3. השערות המחקר הן : H : 0 0 H : כמו כן נתון שהמשתנה מתפלג נורמלית עם סטיית התקן ידועה מעוניינים לבצע מחקר שרמת המובהקות לא תעלה על α והסיכוי לטעות מסוג שני לא יעלה על β. הוכח שגוגל המדגם הרצוי לכך יהיה : Z ( Z ) n 0 לפתרון מלא בסרטון וידאו היכנסו ל-

122 פתרונות : שאלה : 0 שאלה : 78 שאלה 3: הוכחה לפתרון מלא בסרטון וידאו היכנסו ל-

123 3 מובהקות התוצאה ( p-value ) בבדיקת השערות על תוחלת עם שונות ידועה רקע: דרך נוספת להגיע להכרעות שלא דרך כלל הכרעה, היא דרך חישוב מובהקות התוצאה:. p v באמצעות תוצאות המדגם מחשבים את מובהקות התוצאה שמסומן ב- את רמת המובהקות החוקר קובע מראש לעומת זאת,את מובהקות התוצאה החוקר יוכל לחשב רק אחרי שיהיו לו את התוצאות. המסקנה של המחקר תקבע לפי העיקרון הבא: H 0 pv אם דוחים את p v = מובהקות התוצאה זה הסיכוי לקבלת תוצאות המדגם וקיצוני מתוצאות אלה בהנחת השערת האפס. P H 0 (לקבל את תוצאות המדגם וקיצוני) אם ההשערה היא דו צדדית : (לקבל את תוצאות המדגם וקיצוני) p = P v H 0 מובהקות התוצאה היא גם האלפא המינימלית לדחיית השערת האפס. H : 0 0 H : 0 H : 0 0 H : 0 H H 0 : : 0 0 השערת האפס : השערה אלטרנטיבה:.3 תנאים: ידועה או מדגם מספיק גדול N. P ( ) H 0 x P ( ) H 0 x P ( x) אם x H0 0 P ( x) אם x H0 0 p-value כאשר בהנחת השערת האפס : ~ N( 0, ) n לפתרון מלא בסרטון וידאו היכנסו ל- Z x x 0 n

124 4 דוגמה: )פתרון בהקלטה( המשקל הממוצע של מתגייסים לצבא לפני 9 שנה היה 3 ק"ג. מחקר מעוניין לבדוק האם כיום המשקל הממוצע של מתגייסים גבוה יותר. נניח שמשקל המתגייסים מתפלג נורמאלית עם סטיית תקן של 09 ק"ג. במדגם של 0 מתגייסים התקבל משקל ממוצע של 70 ק"ג. א. מהי מובהקות התוצאה? ב. מה המסקנה אם רמת המובהקות היא 3% ואם רמת המובהקות היא 0%? לפתרון מלא בסרטון וידאו היכנסו ל-

125 5 לפניך השערות של מחקר : H0 : 70. H : 70 תרגילים: המשתנה הנחקר מתפלג נורמלית עם סטיית תקן 9. במדגם מאותה אוכלוסייה התוצאות הבאות: התקבלו n 00 x 74 מהי מובהקות התוצאה?.0 השכר הממוצע במשק בשנת 909 היה 88 עם סטיית תקן 9. במדגם שנעשה אתמול על 0 עובדים התקבל שכר ממוצע. 3 מטרת המחקר היא לבדוק האם כיום חלה עליה בשכר. עבור אילו רמות מובהקות שיבחר החוקר יוחלט שחלה עליה בשכר הממוצע במשק?.9 אדם חושד שחברת ממתקים לא עומדת בהתחייבויותיה, ומשקלו של חטיף מסוים אותו הוא קונה מדי בוקר נמוך מ 0 גרם. חברת הממתקים טוענת מצידה שהיא אכן עומדת בהתחייבויותיה. ידוע כי סטית התקן של משקל החטיף היא 09 גרם. האדם מתכוון לשקול 0 חפיסות חטיפים ולאחר מכן להגיע להחלטה. לאחר הבדיקה הוא קיבל משקל הממוצע של 8.3 גרם. א. רשמו את השערות המחקר..3 ב. ג. ד. מהי רמת המובהקות המינימלית עבורה דוחים את השערת האפס? מהי רמת המובהקות המקסימלית עבורה נקבל את השערת האפס? מה המסקנה ברמת מובהקות של 3? מכונה לחיתוך מוטות במפעל חותכת מוטות באורך שמתפלג נורמאלית עם תוחלת אליה כוונה המכונה וסטיית תקן 9 ס"מ. ביום מסוים כוונה המכונה לחתוך מוטות באורך 8 ס"מ. אחראי האיכות מעוניין לבדוק האם המכונה מכוילת. לצורך כך נדגמו מקו הייצור 0 מוטות שנחתכו אורכן הממוצע היה 80.7 ס"מ. א. מהי רמת המובהקות המינימלית עבורה נכריע שהמכונה לא מכוילת? ב. אם נוסיף עוד תצפית שערכה יהיה 89 ס"מ, כיצד הדבר ישפיע על התשובה של הסעיף הקודם? ג. הכרע ברמת מובהקות של 3% האם המכונה מכוילת.. לפתרון מלא בסרטון וידאו היכנסו ל-

126 6 אם מקבלים בחישובים אלפא מינימלית value( P( קטנה מאוד, סביר להניח כי החוקר ידחה את השערת האפס בקלות. נכון? לא נכון? נמק..3 בבדיקת השערות התקבל שה- p-value=0.0. מה תהיה מסקנת חוקר המשתמש ברמת מובהקות 0%? בחר בתשובה הנכונה. א. יקבל את השערת האפס בכל מקרה.. ב. ידחה את השערת האפס מקרה. ג. ידחה את השערת האפס רק אם המבחן הנו דו צדדי. ד. לא ניתן לדעת כי אין מספיק נתונים. מובהקות התוצאה PV( ) היא גם : ( בחר בתשובה הנכונה ) א. רמת המובהקות המינימאלית לדחות השערת האפס. ב. רמת המובהקות המקסימאלית לדחיית השערת האפס. ג. רמת המובהקות שנקבעת מראש על ידי החוקר טרם קיבל את תוצאות המחקר. ד. רמת המובהקות המינימאלית לאי דחיית השערת האפס..7 לכן )בחר בתשובה בבדיקת השערות מסוימת התקבל value=0.054 p הנכונה(: א. ברמת מובהקות של.0 אך לא של.3 נדחה את H. 0 ברמת מובהקות של.0 ושל.3 לא נדחה את H. 0 ב. ברמת מובהקות של.3 אך לא של.0 נדחה את H. 0 ג. ברמת מובהקות של.0 ושל.3 נדחה את H. 0 ד..8 לפתרון מלא בסרטון וידאו היכנסו ל-

127 7 פתרונות : שאלה :.998 שאלה : עבור כל רמת מובהקות סבירה. שאלה 3: ב..03 ג..03 ד. נכריע שיש עמידה בהתחייבות של החברה. שאלה 4:. א. יקטן. ב. נכריע שאין כיול. ג. שאלה 5: נכון שאלה 6: תשובה :א שאלה 7: תשובה: א שאלה 8: תשובה: ג לפתרון מלא בסרטון וידאו היכנסו ל-

128 8 בדיקת השערות על תוחלת )ממוצע( כאשר שונות האוכלוסייה אינה ידועה רקע: H : 0 0 H : 0 H : 0 0 H : 0 H H 0 : : 0 0 השערת האפס : השערה אלטרנטיבה:.7 תנאים: אינה ידועה או מדגם מספיק גדול N.8 x ( n ) x ( n) ( n) x x ( n ) כלל ההכרעה: או : H 0 אזור הדחייה של, n, n, n, n - דוחים את H 0 H 0 - דוחים את H 0 - דוחים את n 0 S n n 0 S n 0 0 n n S n א S n חלופה לכלל הכרעה : נדחה H 0 אם מתקיים: ו S n סטטיסטי המבחן : x x S 0 n n n n n לפתרון מלא בסרטון וידאו היכנסו ל-

129 9 התפלגות T: הינה התפלגות סימטרית פעמונית שהתוחלת שלה היא. ההתפלגות דומה להתפלגות Z רק שהיא יותר רחבה ולכן הערכים שלה יהיו יותר גבוהים. התפלגות T תלויה במושג שנקרא דרגות חופש. דרגות החופש הן.df=n- ככל שדרגות החופש עולות ההתפלגות הופכת להיות יותר גבוהה וצרה. כשדרגות החופש שואפות לאינסוף התפלגות T שואפת להיות כמו התפלגות Z. דוגמה: )פתרון בהקלטה( מפעל קיבל הזמנה לייצור משטחים בעובי של.0 ס"מ. כדי לבדוק האם המפעל עומד בדרישה נדגמו 0 משטחים ונמצא שהעובי הממוצע הוא.0 עם אומדן לסטיית תקן.9 ס"מ. א. מהן השערות המחקר? ב. מה ההנחה הדרושה לצורך פתרון? ג. בדוק ברמת מובהקות של 3%. לפתרון מלא בסרטון וידאו היכנסו ל-

130 3 תרגילים: משך זמן ההחלמה בלקיחת אנטיביוטיקה מסוימת הוא 09 שעות בממוצע עם סטיית תקן לא ידועה. מעוניינים לבדוק האם אנטיביוטיקה אחרת מקטינה את משך זמן ההחלמה. במדגם של 3 חולים שלקחו את האנטיביוטיקה האחרת התקבלו זמני ההחלמה הבאים:,3,0,8,093 שעות. מה מסקנתכם ברמת מובהקות של 3%. מהי ההנחה הדרושה לצורך הפתרון?.0 משרד הבריאות פרסם שמשקל ממוצע של תינוקות ביום היוולדם בישראל 33 גר'. משרד הבריאות רוצה לחקור את הטענה שנשים מעשנות בזמן ההיריון יולדות תינוקות במשקל נמוך מהממוצע. במחקר השתתפו 9 נשים מעשנות בהריון. להלן תוצאות המדגם שבדק את המשקל של התינוקות בעת הלידה: n 0 x 30 S 80.9 מה מסקנתכם ברמת מובהקות של 3% מה יש להניח לצורך פתרון? ציוני מבחן אינטליגנציה מתפלגים נורמלית. בארה"ב ממוצע הציונים הוא 0. במדגם שנעשה על 93 נבחנים ישראלים, התקבל ממוצע ציונים 0.3 וסטיית התקן המדגמית 0.האם בישראל ממוצע הציונים שונה מבארה"ב? הסיקו ברמת מובהקות של 3%..3 0 באוכלוסייה מסוימת נדגמו 0 תצפיות והתקבלו התוצאות הבאות: ( ) 900 נתון שההתפלגות היא נורמלית. בדוק ברמת מובהקות של 3% האם התוחלת של ההתפלגות שונה מ- 8.. לפתרון מלא בסרטון וידאו היכנסו ל-

131 3 ליאור ורוני העלו את אותן השערות על ממוצע האוכלוסייה. כמו כן הם התבססו על אותן תוצאות של מדגם. ליאור השתמש בטבלה של התפלגות רוני השתמשה בטבלה של התפלגות. Z. מה נוכל לומר בנוגע להחלטת המחקר שלהם? בחר בתשובה הנכונה. א. אם ליאור ידחה את השערת האפס אז גם בהכרח רוני. ב. אם רוני תדחה את השערת האפס אז גם בהכרח ליאור. ג. שני החוקרים בהכרח יגיעו לאותה מסקנה. ד. לא ניתן לדעת על היחס בין דחיית השערת האפס של שני החוקרים..3 נתון ש N(, ) H : 0 0 H : 0 0 כמו כן נתונות ההשערות הבאות :. חוקר בדק את ההשערות הללו על סמך מדגם שכלל 0 תצפיות. לא הייתה ידועה לחוקר. החוקר החליט לדחות את השערת האפס ברמת מובהקות של 3% לאחר מכן כדי לחזק את קביעתו הוא דגם עוד 3 תצפיות ושקלל את תוצאות אלה גם למדגם כך שכלל עכשיו 03 תצפיות. בחר בתשובה הנכונה: א. כעת בברור הוא ידחה את השערת האפס. ב. כעת הוא דווקא יקבל את השערת האפס. ג. כעת לא ניתן לדעת מה תהיה מסקנתו. לפתרון מלא בסרטון וידאו היכנסו ל-

132 3 פתרונות: שאלה : נדחה H 0 שאלה : H 0 נדחה שאלה 3: H 0 נקבל שאלה 4: H 0 נקבל שאלה 5: התשובה היא : ב שאלה 6: התשובה היא : ג לפתרון מלא בסרטון וידאו היכנסו ל-

133 33 מובהקות התוצאה ( p-value ) כאשר שונות האוכלוסייה לא ידועה רקע: נזכיר שהמסקנה של המחקר תקבע לפי העיקרון הבא: H 0 pv אם דוחים את p v = מובהקות התוצאה זה הסיכוי לקבלת תוצאות המדגם וקיצוני מתוצאות אלה בהנחת השערת האפס. P H 0 (לקבל את תוצאות המדגם וקיצוני) אם ההשערה היא דו צדדית : (לקבל את תוצאות המדגם וקיצוני) p = P v H 0 מובהקות התוצאה היא גם האלפא המינימלית לדחיית השערת האפס. H : 0 0 H : 0 H : 0 0 H : 0 H H 0 : : 0 0 השערת האפס : השערה אלטרנטיבה:. תנאים: אינה ידועה או מדגם מספיק גדול N.0 P ( ) H 0 x P ( ) H 0 x P ( x) אם x H0 0 P ( x) אם x H0 0 p-value x x S 0 n S n n n n n d. f n לפתרון מלא בסרטון וידאו היכנסו ל-

134 34 דוגמה : )פתרון בהקלטה( ממוצע זמן הנסיעה של אדם לעבודה הינו דקות. הוא מעוניין לבדוק דרך חלופית שאמורה להיות יותר מהירה. לצורך כך הוא דוגם 3 ימים שבהם הוא נוסע בדרך החלופית. זמני הנסיעה שקיבל בדקות הם : 97,3,39,,3. הנח שזמן הנסיעה מתפלג נורמלית. א. רשום את השערות המחקר. ב. מצא חסמים למובהקות התוצאה. ג. מה המסקנה ברמת מובהקות של? 3% לפתרון מלא בסרטון וידאו היכנסו ל-

135 35 תרגילים : קו ייצור אריזות סוכר נארזות כך שהמשקל הממוצע של אריזות הסוכר צריך להיות אחד קילוגרם. בכל יום דוגמים מקו הייצור 3 אריזות במטרה לבדוק האם קו הייצור תקין. בבדיקה דגמו 3 אריזות סוכר ולהלן משקלן בגרמים: 08,09,,03,7 א. רשמו את השערות המחקר. ב. מהי מובהקות התוצאה? הצג חסמים. ג. מה המסקנה ברמת מובהקות של 3%?.0 חוקר בדק את הטענה כי פועלים העובדים במשמרת לילה איטיים יותר מפועלים העובדים ביום. ידוע כי משך הזמן הממוצע הדרוש לייצר מוצר מסוים ביום הוא שעות. במדגם מיקרי של 93 פועלים שעבדו במשמרת לילה נמצא כי הזמן הממוצע לייצר אותו מוצר הוא 7 שעות עם סטית תקן של 3 שעות. מהי ה- המינימלית שלפיה ניתן להחליט שאכן העובדים במשמרת לילה איטיים יותר?.9 הגובה של מתגייסים לצה"ל מתפלג נורמלית. במדגם של 93 מתגייסים מדדו את הגבהים שלהם בס"מ והתקבלו התוצאות הבאות: x 76. ( x x) 83 מטרת המחקר היא לבדוק האם תוחלת הגבהים של המתגייסים גבוה מ- 07 ס"מ באופן מובהק. מהי בקרוב מובהקות התוצאה ועל פיה מה תהיה המסקנה ברמת מובהקות של? %.3 לפתרון מלא בסרטון וידאו היכנסו ל-

136 36 פתרונות : שאלה 3: H 0 נקבל לפתרון מלא בסרטון וידאו היכנסו ל-

137 37 הקשר בין רווח סמך לבדיקת השערות על תוחלת רקע: ניתן לבצע בדיקת השערות דו צדדית ברמת מובהקות על µ: H H 0 : : 0 0 על ידי בניית רווח סמך ברמת סמך של ל µ: H 0 0 אם נופל ברווח נקבל את H 0 0 אם לא נופל ברווח נדחה את דוגמה: )פתרון בהקלטה( חוקר ביצע בדיקת השערות לתוחלת. להלן השערותיו: H 0 : 80 H : 80 5%. 79 החוקר בנה רווח סמך ברמה של % וקיבל : 84 האם אפשר לדעת מה מסקנתו, ואם כן מהי? לפתרון מלא בסרטון וידאו היכנסו ל-

138 38 תרגילים : 0 חוקר רצה לבדוק את ההשערות הבאות: H H : 90 : 90 החוקר בנה רווח סמך לתוחלת ברמת סמך של 3% וקיבל את רווח הסמך הבא: אם החוקר מעוניין לבצע בדיקת השערות ברמת מובהקות של 0% האם ניתן להגיע למסקנה ע"ס רווח הסמך? נמקו.. (87,97).0 חוקר מעוניין לבדוק השפעת דיאטה חדשה על רמת הסוכר בדם. ידוע כי מספר מיליגרם הסוכר בסמ"ק דם הוא משתנה מקרי שמתפלג נורמלית עם סטיית תקן 0. מ"ג. נלקח מדגם של נבדקים שניזונו מדיאטה זו. נמצא כי ממוצע מספר המיליגרם סוכר היה מ"ג לסמ"ק. א. בנה רווח סמך ברמת סמך 3% לתוחלת רמת הסוכר בדם אצל הניזונים מדיאטה זו. ב. ידוע שתוחלת רמת הסוכר בדם באוכלוסיה היא מ"ג לסמ"ק. האם לדעתך ניתן להסיק על סמך תוצאת סעיף א שהדיאטה משפיעה על רמת הסוכר בדם? הסבר..9 יצרן אנטיביוטיקה רושם על גבי התרופות שכמות הפנצלין היא 9 מ"ג לקפסולה. משרד הבריאות ביצע מדגם של 8 קפסולות אקראיות מקו הייצור ומצא שבממוצע יש 0 מ"ג פנצילין לקפסולה עם סטיית תקן מדגמית של של 3 מ"ג. בהנחה וכמות הפנצלין בקפסולה מתפלגת נורמלית. א. בנה רווח סמך ברמת סמך של 3% לממוצע כמות הפנצלין לקפסולה המיוצרת על ידי יצרן האנטיביוטיקה. ב. בדוק ברמת מובהקות של 3% האם יש אמת באינפורמציה המסופקת על ידי היצרן..3 לפתרון מלא בסרטון וידאו היכנסו ל-

139 39 פתרונות : H 0 שאלה : 0. נקבל השערת שאלה : א. 3 ב. נכריע שהדיאטה משפיעה על תוחלת רמת הסוכר בדם. שאלה 3: א. ב. נכריע שיש אמת בפרסום. לפתרון מלא בסרטון וידאו היכנסו ל-

140 4 רקע: פרק - 8 בדיקת השערות על פרופורציה התהליך H : p p 0 0 H : p p 0 Z pˆ Z H : p p 0 0 H : p p 0 Z p ˆ Z H H 0 : p p : p p 0 0 ˆ p Z או 0 0 np 5& n( p ) 5 Z p ˆ Z Z השערת האפס : השערה אלטרנטיבית: תנאים: כלל ההכרעה: אזור הדחייה של : H 0 Z - דוחים את Z H 0 - דוחים את Z Z H 0 - דוחים את סטטיסטי המבחן : pˆ p 0 Z p ˆ p0 p0 n חלופה אחרת לכלל הכרעה: pˆ p 0 Z p 0 p n 0 pˆ p 0 Z p 0 p n 0 pˆ p 0 Z / pˆ p0 Z / כלל ההכרעה: אזור הדחייה של או p p 0 0 p n p n 0 0 H 0 לפתרון מלא בסרטון וידאו היכנסו ל-

141 4 דוגמה: )פתרון בהקלטה( בחודש ינואר השנה פורסם שאחוז האבטלה במשק הוא 8% במדגם עכשווי התקבל שמתוך 9 אנשים.3% מובטלים. בדקו ברמת מובהקות של 3% האם כיום אחוז האבטלה הוא כמו בתחילת השנה. לפתרון מלא בסרטון וידאו היכנסו ל-

142 4 תרגילים: במשך שנים אחוז המועמדים שהתקבל לפקולטה מסוימת היה 93%. השנה מתוך מדגם של 09 מועמדים התקבלו 99. ברמת מובהקות של 3% האם השנה הקשו על תנאי הקבלה?.0 במדגם של 3 אזרחים 37% מתנגדים להצעת חוק מסוימת. לאור נתונים אלה האם רוב האזרחים מתנגדים להצעת החוק? בדקו ברמת מובהקות של 0% הטילו מטבע 3 פעמים וקיבלו 98 פעמים עץ. האם המטבע הוגן ברמת מובהקות של 3%? קפיטריה במכללה מסוימת מעריכה כי אחוז הסטודנטים שקונים קפה בקפיטריה הינו 9%. נערך סקר אשר כלל 9 סטודנטים. התברר כי 33 מהם רוכשים קפה בקפיטריה. מטרת הסקר הייתה לבדוק את אמיתות הערכה של הקפיטריה. א. רשמו את ההשערות. ב. בדוק את ההשערות ברמת מובהקות של 0%. ג. מה תהיה המסקנה אם נקטין את רמת המובהקות?. חבר כנסת רוצה להעביר חוק. לצורך כך הוא דוגם אזרחים במטרה לבדוק האם רוב האזרחים תומכים בחוק. במדגם התקבל ש- 97 אזרחים תומכים בחוק. א. מה מסקנתכם ברמת מובהקות של 3%? ב. האם ניתן לדעת מה תהיה המסקנה אם רמת המובהקות תהיה גדולה יותר? הסבירו..3 שני חוקרים בדקו את ההשערות הבאות: H :p p 0 0 H :p p 0 חוקר א השתמש ברמת מובהקות וחוקר ב ברמת מובהקות החוקר הראשון דחה את. H 0 ואילו החוקר השני קיבל את בחר בתשובה הנכונה: א.. H 0 שניהם התבססו על אותם תוצאות של מדגם. ב. ג. ד. המצב המתואר לא אפשרי. לפתרון מלא בסרטון וידאו היכנסו ל-

143 43 פתרונות : שאלה : H 0 נדחה שאלה : H 0 נדחה שאלה 3: H 0 נקבל שאלה 4: ב. נקבל H 0 ג. המסקנה לא תשתנה. שאלה 5: H 0 א. נדחה ב. המסקנה לא תשתנה. שאלה 6: התשובה היא : ג. לפתרון מלא בסרטון וידאו היכנסו ל-

144 44 רקע: סיכוי לטעויות ועוצמה הכרעה מציאות H0 H טעות מסוג 0 אין טעות H0 אין טעות טעות מסוג 9 H נגדיר את ההסתברויות הבאות: הסיכוי לבצע טעות מסוג ( רמת מובהקות (: נכונה לדחות את α=p)h 0 H 0 (= הסיכוי לבצע טעות מסוג : β נכונה לקבל את =P)H 0 H (= )0-α( נכונה לקבל את =P)H 0 H 0 (= רמת בטחון: π=)0-β ( נכונה לדחות את =P)H 0 H ( = עוצמה : לפתרון מלא בסרטון וידאו היכנסו ל-

145 45 התהליך לחישוב סיכוי לטעות מסוג שני: H : p p 0 0 H : p p 0 H : p p 0 0 H : p p 0 H H 0 : p p : p p np 5& n( p ) 5 השערת האפס : השערה אלטרנטיבית: תנאים: pˆ p0 Z p 0 p n 0 pˆ p Z 0 p0 p0 n pˆ p Z 0 pˆ p Z 0 / / כלל ההכרעה: אזור הדחייה של או p0 p0 n p0 p0 n H 0 P pˆ p Z 0 0 ( ) H 0 p p n P pˆ p Z 0 0 ( ) H 0 p p n p p p p P ( p Z pˆ p Z ) H 0 0 n n חישוב : β ˆ p( p) P ~ N ( p, ) n כאשר : Z pˆ pˆ p p p n והתקנון: לפתרון מלא בסרטון וידאו היכנסו ל-

146 46 דוגמה: )פתרון בהקלטה( רופאי שיניים טוענים שיותר ממחצית האוכלוסייה הבוגרת בארץ אינם מבקרים אצל רופא שיניים באופן קבוע, כנדרש. כדי לבדוק טענה זו, נערך סקר בקרב 03 אנשים בוגרים. א. רשמו את ההשערות וכלל הכרעה ברמת מובהקות של 0%. ב. מהי עוצמת המבחן אם מסתבר ש % מהאוכלוסייה אינם מבקרים אצל רופא שיניים באופן קבוע. לפתרון מלא בסרטון וידאו היכנסו ל-

147 47 תרגילים: משרד הבריאות פרסם ש 0% מתושבי המדינה סובלים ממחלת האסטמה. מחקר דורש לבדוק האם בחיפה, בגלל זיהום האוויר, שיעור הסובלים מאסטמה גבוה יותר. לצורך המחקר נבדקו 9 מתושבי חיפה. א. רשמו את השערות המחקר, וצרו מבחן ברמת מובהקות של 3% לבדיקתן. ב. מהי עצמת המבחן של סעיף א' בהנחה ובחיפה 0% מהתושבים סובלים מאסטמה? ג. כיצד תשנה התשובה לסעיף ב' אם מסתבר שבחיפה 08% סובלים מאסטמה? ד. בהמשך לסעיף א' האם נכון לומר שבהסתברות של 3% ההשערה שבחיפה 0% מהתושבים סובלים מאסטמה אינה נכונה? אחוז הסובלים מתופעות הלוואי מתרופה מסוימת הוא 03%. חברת תרופות טוענת שפיתחה תרופה שאמורה לצמצם את אחוז הסובלים מתופעות לוואי. לצורך בדיקת הטענה הוחלט לבצע מחקר שיכלול 09 חולים שיקבלו את התרופה הנבדקת. א. נניח שהתרופה נבדקת אכן מורידה את פרופורציות הסובלים מתופעות הלוואי ל- 0% מהי עצמת המבחן עבור רמת מובהקות של 3%?.0.9 בעיר מסוימת היו 9% אקדמאים. בעקבות פתיחת מכללה בעיר לפני כמה שנים מעוניינים לבדוק האם אחוז האקדמאים גדל. מעוניינים שהמחקר יכלול 9 אנשים והוא יהיה ברמת מובהקות של 3%. א. חשבו את הסיכוי לבצע טעות מסוג שני בהנחה והיום יש 98% אקדמאים. ב. כיצד התשובה לסעיף הקודם תשתנה אם נגדיל את רמת המובהקות?.3 מעוניינים לבדוק האם בפקולטה מסוימת ישנה העדפה לגברים. הוחלט לדגום 9 מתקבלים ועל סמך מספר הבנים לקבוע אם טענת המחקר מתקבלת. חוקר א' קבע רמת מובהקות של 3% וחוקר ב' החליט לקבל את טענת המחקר אם במדגם יהיו לפחות 09 בנים. למי מבין החוקרים רמת מובהקות גדולה יותר?. חוקר ביצע מחקר ובו עשה טעות מסוג שני לכן ( בחר בתשובה הנכונה ) א. השערת האפס נכונה. ב. השערת האפס נדחתה. ג. השערת האפס לא נדחתה. ד. אף אחת מהתושבות לא נכונה בהכרח..3. קבע אם הטענה הבאה נכונה: "בבדיקת השערות לא ניתן לבצע בו זמנית טעות מסוג ראשון וטעות מסוג שני" לפתרון מלא בסרטון וידאו היכנסו ל-

148 48 שאלה : ב..03 ג. תגדל ד. טענה לא נכונה. פתרונות: שאלה :. שאלה 3: א..0 ב. תקטן. שאלה 4: חוקר א. שאלה 5: התשובה הנכונה היא ג. שאלה 6: נכונה. לפתרון מלא בסרטון וידאו היכנסו ל-

149 49 רקע: קביעת גודל מדגם H : p p 0 0 H : p p השערות המחקר הן : מעוניינים לבצע מחקר שרמת המובהקות לא תעלה על α והסיכוי לטעות מסוג שני לא יעלה על β. הנוסחה הבאה נותנת את גודל המדגם הרצוי : Z p0q0 Z pq n p0 p דוגמה: )פתרון בהקלטה( רוצים לבדוק האם אחוז האנשים השוהים בשמש ללא הגנה ירד בעקבות הפרסומת על נזקי השמש. בעבר % מהאוכלוסייה שהתה בשמש ללא הגנה. מה גודל המדגם המינימלי שיש לקחת כדי לבדוק שהאחוז הנ"ל ירד ל 8% אם מעוניינים שהסיכוי לטעות מסוג ראשון יהיה 3% והסיכוי לטעות מסוג שני יהיה 0%? לפתרון מלא בסרטון וידאו היכנסו ל-

150 5 תרגילים: משרד התמ"ת פרסם שאחוז האבטלה במשק היום עומד על 8%. לעומתו, משרד הפנים טוען שחלה עלייה בשיעור האבטלה עד לכדי 00%. כדי לבדוק מי מבניהם צודק, מה צריך להיות גודל המדגם שיענה על שני התנאים הבאים: אם משרד התמ"ת צודק, נדחה את טענתו בסיכוי של 0%. אם משרד הפנים צודק, נדחה את טענתו בסיכוי של %..0 מפעיל קזינו מפרסם שהסיכוי לזכות במכונת מזל הינו.9. אדם טוען שהסיכויים לזכות במשחק נמוכים יותר. כמה פעמים יש לשחק את המשחק כדי שאם טענת מפעיל הקזינו נכונה נקבל את טענת האדם בסיכוי של 0% ואם במציאות הסיכוי לזכות במכונה הוא.3 נקבל את מפעיל הקזינו בסיכוי של 8%..9 לפתרון מלא בסרטון וידאו היכנסו ל-

151 5 פתרונות: שאלה : 80 שאלה : 99 לפתרון מלא בסרטון וידאו היכנסו ל-

152 5 מובהקות התוצאה רקע: דרך נוספת להגיע להכרעות שלא דרך כלל הכרעה, היא דרך חישוב מובהקות התוצאה:. p v באמצעות תוצאות המדגם מחשבים את מובהקות התוצאה שמסומן ב- את רמת המובהקות החוקר קובע מראש לעומת זאת,את מובהקות התוצאה החוקר יוכל לחשב רק אחרי שיהיו לו את התוצאות. המסקנה של המחקר תקבע לפי העיקרון הבא: H 0 pv אם דוחים את p v = מובהקות התוצאה זה הסיכוי לקבלת תוצאות המדגם וקיצוני מתוצאות אלה בהנחת השערת האפס. P H 0 (לקבל את תוצאות המדגם וקיצוני ( אם ההשערה היא דו צדדית : (לקבל את תוצאות המדגם וקיצוני) p = P v H 0 מובהקות התוצאה היא גם האלפא המינימלית לדחיית השערת האפס. H : p p 0 0 H : p p 0 P ( Pˆ pˆ ) H 0 H : p p 0 0 H : p p 0 P ( Pˆ pˆ ) H 0 H H 0 : p p : p p 0 0 np 5& n( p ) P ( Pˆ pˆ) pˆ p H 0 0 P ( Pˆ pˆ) pˆ p H 0 0 השערת האפס : השערה אלטרנטיבית: תנאים: p-value אם אם p ( p ) n ˆ ~ 0 0 N ( p0, ) P כאשר בהנחת השערת האפס : והתקנון: pˆ p 0 Z p ˆ p0 p0 n לפתרון מלא בסרטון וידאו היכנסו ל-

153 53 דוגמה: )פתרון בהקלטה( ישנה טענה שיש הבדל בין אחוז הבנים ואחוז הבנות הפונים ללמוד להנדסאי מחשבים. לשם כך נלקח מדגם מקרי של 9 תלמידים הלומדים מחשבים והתברר כי 009 מהם בנים. א. מהי מובהקות התוצאה? ב. מה המסקנה ברמת מובהקות של 3%? לפתרון מלא בסרטון וידאו היכנסו ל-

154 54 תרגילים: במשך שנים אחוז המועמדים שהתקבל לפקולטה מסוימת היה 93%. השנה מתוך מדגם 09 מועמדים התקבלו 99. רוצים לבדוק האם השנה הקשו על תנאי הקבלה. א. מהי מובהקות התוצאה? ב. מה תהיה המסקנה ברמת מובהקות של 0% וברמת מובהקות של 3%? של.0 נהוג לחשוב ש % מהילדים בגיל שלוש קמים מהמיטה במהלך הלילה לפחות פעם אחת. ישנה טענה שללא שנת צהריים פחות מ % מהילדים בגיל זה יקומו לפחות פעם אחת במהלך הלילה. נדגמו 8 ילדים בגיל 3 אשר אינם ישנים בצהריים מתוכם התקבל ש 0 קמו במהלך הלילה. א. מהי רמת המובהקות המינימלית עבורה תתקבל הטענה במחקר? ב. מהי רמת המובהקות המקסימלית עבורה לא תתקבל טענת המחקר? ג. עבור אילו רמות מובהקות נקבל את טענת המחקר? ד. מה תהיה מסקנת המחקר ברמת מובהקות של %?.9 במטרה לבדוק האם מטבע הוא הוגן מטילים אותו 8 פעמים. התקבל ש מההטלות הראו עץ. רשמו את השערות המחקר, חשבו את מובהקות התוצאה והסיקו מסקנה ברמת מובהקות של 3%..3 בבדיקת השערות על פרופורציה התקבל שה- p-value=0.0. מה תהיה מסקנת חוקר המשתמש ברמת מובהקות 3%: ( בחר בתשובה הנכונה( א. יקבל את השערת האפס ב. ידחה את השערת האפס. ג. לא ניתן לדעת כי אין מספיק נתונים.. קבע אם הטענה הבאה נכונה: "במבחן לבדיקת השערות חד-צדדי התקבל ערך p-value של 3% לכן אם היינו מבצעים מבחן דו-צדדי )כאשר יתר הנתונים ללא שינוי( היינו מקבלים ערך p-value של %".3. במפעל 0% מהעובדים נפגעים לפחות פעם אחת בשנה מתאונות עבודה. לאור זאת, המפעל החליט לצאת בתוכנית לצמצום שיעור הנפגעים. תכנית זו נוסתה על 0 עובדים. מתוכם 09 נפגעו בתאונות עבודה במשך השנה. מהי רמת המובהקות הקטנה ביותר עבורה יוחלט שהתכנית יעילה? לפתרון מלא בסרטון וידאו היכנסו ל-

155 55 פתרונות : שאלה : א..33 שאלה : א..38 ב..38 ג. מעל.38 ד. נכריע לטובת טענת המחקר. שאלה 3: p 0 v שאלה 4: התשובה הנכונה: ב שאלה 5: הטענה נכונה שאלה 6:.78 לפתרון מלא בסרטון וידאו היכנסו ל-

156 56 H : p p 0 0 H : p p 0 Z pˆ pˆ Z רקע: פרק - 9 בדיקת השערות על הפרש פרופורציות H : p p 0 0 H : p p 0. 9 מדגמים גדולים Z pˆ pˆ Z H : p p 0 0 H : p p 0 השערת האפס : השערה אלטרנטיבית: תנאים: כלל ההכרעה: אזור הדחייה של :.מדגמים בלתי תלויים Z או pˆ pˆ Z pˆ pˆ Z Z Z - דוחים את H 0 Z H 0 - דוחים את Z Z H 0 - דוחים את y y n pˆ n pˆ ˆp n n n n סטטיסטי המבחן : Z p ˆ כאשר הפרופורציה המשוקללת: p ˆ p ˆ ˆ p H 0 pq ˆ ˆ pq ˆ ˆ n n חלופה אחרת לכלל הכרעה: pq ˆˆ pq ˆ ˆ pˆ ˆ p 0 Z n n pq ˆ ˆ pˆ qˆ pˆ ˆ p 0 Z n n pˆ qˆ pˆ qˆ pˆ ˆ p 0 Z / n n כלל ההכרעה: אזור הדחייה של או pq ˆˆ pq ˆ ˆ pˆ pˆ 0 Z / n n H 0 p q p q pˆ pˆ N( p p, ) n n Z Z pˆ pˆ pˆ pˆ H 0 pˆ pˆ ( p p) pˆ ˆ ˆ ˆ q pq n n pˆ ˆ p pq ˆ ˆ pq ˆ ˆ n n : pˆ pˆ התפלגות של : תקנון: לפתרון מלא בסרטון וידאו היכנסו ל-

סטודנטים יקרים. לפניכם ספר תרגילים בקורס הסקה סטטיסטית. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.

סטודנטים יקרים. לפניכם ספר תרגילים בקורס הסקה סטטיסטית. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט. 1 סטודנטים יקרים לפניכם ספר תרגילים בקורס הסקה סטטיסטית. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית

Διαβάστε περισσότερα

סטודנטים יקרים. מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line

סטודנטים יקרים. מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line 1 סטודנטים יקרים לפניכם ספר תרגילים בקורס חשיבה סטטיסטית. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.O-lie הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את התיאוריה הרלוונטית

Διαβάστε περισσότερα

סטודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line

סטודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line סטודנטים יקרים לפניכם תרגילים בקורס ספר מבוא לסטטיסטיקה והסתברות א'. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-lne הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את

Διαβάστε περισσότερα

ןמנירג ןואל \ הקיטסיטטס הקיטסיטטסב הרזח ה יפד ךותמ 14 דו 1 מע

ןמנירג ןואל \ הקיטסיטטס הקיטסיטטסב הרזח ה יפד ךותמ 14 דו 1 מע עמוד מתוך 4 סטטיסטיקה תיאורית X- תצפית -f( שכיחות מספר פעמים שהתצפית חזרה על עצמה - גודל מדגם -F( שכיחות מצטברת ישנם שני סוגי מיון תצפיות משתנה בדיד סוג תצפית ספציפי.משתנה שכל ערכיו מספרים בודדים. משתנה

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

טודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line

טודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line טודנטים יקרים לפניכם תרגילים בקורס ספר מבוא לסטטיסטיקה והסתברות א'. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

א הקיטסי ' טטסל אובמ רלדנ הינור בג '

א הקיטסי ' טטסל אובמ רלדנ הינור בג ' מבוא לסטטיסטיקה א' נדלר רוניה גב' מדדי פיזור Varablty Measures of עד עתה עסקנו במדדים מרכזיים. אולם, אחת התכונות החשובות של ההתפלגות, מלבד מיקום מרכזי, הוא מידת הפיזור של ההתפלגות. יכולות להיות מספר התפלגויות

Διαβάστε περισσότερα

סטודנטים יקרים. לפניכם ספר תרגילים בקורס מבוא לסטטיסטיקה והסתברות א. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.

סטודנטים יקרים. לפניכם ספר תרגילים בקורס מבוא לסטטיסטיקה והסתברות א. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט. 1 סטודנטים יקרים לפניכם ספר תרגילים בקורס מבוא לסטטיסטיקה והסתברות הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן את

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

מחקר כמותי וסטטיסטיקה

מחקר כמותי וסטטיסטיקה מחקר כמותי וסטטיסטיקה מה אנחנו הולכים לעשות היום? מהי סטטיסטיקה? סטטיסטיקה תיאורית והסקית הצגה בלוחות ובגרפים מדדי מרכז ופיזור מדדי מיקום יחסי התפלגות נורמאלית מהי סטטיסטיקה מדע העוסק בנתונים כמותיים עוסקת

Διαβάστε περισσότερα

טושפ הרעשה ןחבמ t ןחבמ

טושפ הרעשה ןחבמ t ןחבמ מבחן השערה פשוט מבחן t מבחן השערה על תוחלת חוקר מעוניין לבדוק את כמות הברגים הפגומים שמיוצרים ע"י מכונה לייצור ברגים. לשם האמידה מחליטים לקחת מדגם של n מכונות מאותו סוג ולאמוד את תוחלת מספר המוצרים הפגומים,

Διαβάστε περισσότερα

תרגילים בנושא משתנה דמי:

תרגילים בנושא משתנה דמי: תרגילים בנושא משתנה דמי: שאלה 1 נתונה המשוואה הבאה: sahar 0 1 D1 2 D2 3 D3 1 EDA U )1( המשוואה מתוארת בפלט מס' 1. = D 1 משתנה דמי : 1= עבור נשים בעלות תואר, 0 =אחרת כאשר : = D 2 משתנה דמי : 1= עבור נשים

Διαβάστε περισσότερα

ההימצאות (או שכיחות) (prevalence) של תכונה שווה. ההארעות (incidence) של תכונה שווה לפרופורציית נתון. = 645/72, או 89 לכל 10,000 אחיות.

ההימצאות (או שכיחות) (prevalence) של תכונה שווה. ההארעות (incidence) של תכונה שווה לפרופורציית נתון. = 645/72, או 89 לכל 10,000 אחיות. שיעורים ופרופורציות הפרופורציה של תופעה שווה למספר האנשים שהם בעלי אותה תכונה מחולק במספר האנשים הנחקרים. ההימצאות (או שכיחות) (prevalence) של תכונה שווה לפרופורציית האנשים באוכלוסייה שהם בעלי אותה תכונה.

Διαβάστε περισσότερα

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן -

פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 20 חודשי הולדת. לכל ילד 12 אפשרויות,לכן. לכן - פתרון תרגיל דוגמא מרחב המדגם הוא כל הקומבינציות של 0 חודשי הולדת לכל ילד אפשרויות,לכן לכן - 0 A 0 מספר קומבינציות שלא מכילות את חודש תשרי הוא A) המאורע המשלים ל- B הוא "אף תלמיד לא נולד באחד מהחודשים אב/אלול",

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

שאלה (25 1 נקודות) תתקבל!) תקן 5 ס"מ. הוא ס"מ.

שאלה (25 1 נקודות) תתקבל!) תקן 5 סמ. הוא סמ. בחינה מס' 1 חלק א ענה על שאלה 1 (שאלת חובה! קובץ בחינות לדוגמה עם תשובות סופיות שאלה (25 1 נקודות) לפניך חמש טענות. ציין לגבי כל טענה נכון/לא נכון ונמק תשובתך. (תשובה ללא נימוק לא תתקבל!) ב- 8 מכל 10 ימי

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

סטודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line

סטודנטים יקרים. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line 1 סטודנטים יקרים לפניכם תרגילים בקורס ספר מבוא לסטטיסטיקה והסתברות א'. הספר הוא חלק מקורס חדשני וראשון מסוגו בארץ בנושא זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים לספר התרגילים, וכן

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N

הרצאה 5 הגדרה D5.1 בין 1 N . כלומר, t N ROBABILITY A STATISTIS הסתברות וסטטיסטיקה יוג'ין מאת קנציפר ugee Kazieer All rights reserved 005/06 כל הזכויות שמורות 005/06 הרצאה 5 התפלגויות בדידות מיוחדות התפלגות אחידה ניסוי והתפלגות ברנולי התפלגות

Διαβάστε περισσότερα

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P...

הסתברות שבתחנה יש 0 מוניות ו- 0 נוסעים. הסתברות שבתחנה יש k-t נוסעים ו- 0 מוניות. λ λ λ λ λ λ λ λ P... שאלה תורת התורים קצב הגעת נוסעים לתחנת מוניות מפולג פואסונית עם פרמטר λ. קצב הגעת המוניות מפולג פואסונית עם פרמטר µ. אם נוסע מגיע לתחנה כשיש בה מוניות, הוא מייד נוסע במונית. אם מונית מגיעה לתחנה כשיש בתחנה

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

אקונומטריקה ד"ר חמי גוטליבובסקי סמסטר א' תש "ע

אקונומטריקה דר חמי גוטליבובסקי סמסטר א' תש ע 009 אקונומטריקה ד"ר חמי גוטליבובסקי סמסטר א' תש "ע סיכום: דביר צנוע הקדמה הדפים שלפניכם מהווים סיכום של קורס מבוא לאקונומטריקה, אשר הועבר באוניברסיטת תל- אביב ע"י ד"ר חמי גוטליבובסקי בסמסטר א' תש"ע. הסיכום

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מבוא לאקונומטריקה א' החוג לכלכלה

מבוא לאקונומטריקה א' החוג לכלכלה מבוא לאקונומטריקה א' החוג לכלכלה גוּל זה בּוּל. בשבילך! תוכן העניינים: הקדמה: תזכורת של סטטיסטיקהומתמטיקה... הגדרותוסימונים... אמידה...3 נוסחאותוחוקיםבסטטיסטיקה...4 חוקיהסיגמה...4 חוקיהתוחלת... 5 חוקי השונות...

Διαβάστε περισσότερα

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311 יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

Prerequisites for the MBA course: Statistics for managers".

Prerequisites for the MBA course: Statistics for managers. Prerequisites for the MBA course: Statistics for managers". The purpose of the course "Statistics for Managers" is to get familiar with the basic concepts required for statistical reasoning: Types of Analyses,

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מ( מבוא לרשתות - תרגול מס 5 תורת התורים M / M / תאור המערכת: תור שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. קצב

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

אילנה, אייל, רועי, רותם, רותם, רותם, נאור, יוני, תמיר

אילנה, אייל, רועי, רותם, רותם, רותם, נאור, יוני, תמיר 9 המושגים הבסיסיים ב (חזרה) משתנה אקראי הגדרות גודל שמאפיין איבר מסוים בקבוצת איברים מאותו סוג, מאיבר לאיבר באקראי. ושעשוי להשתנות משתנה אקראי מאופיין על ידי שם, מספר האיבר שאותו הוא מאפיין, וגודל (ערך).

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

תורת התורים תור לקוחות

תורת התורים תור לקוחות תורת התורים מהו תור? שרת ב תור לקוחות שרת א שרת א תור לקוחות שרת ב שרת א דוגמא במחסן יש אפסנאים שמנפקים כלים לטכנאי אחזקת מטוסים, מצד אחד קיים לחץ של מנהלי העבודה להגדיל את מספר האפסנאיםבכדי להקטין זמני

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

Analyze scale reliability analysis

Analyze scale reliability analysis 1 Analyze scale reliability analysis 6. פקודתמהימנות 2 readstra 3 problem 4 helpread 5 6 7 GET FILE='C:\Users\isaac\Desktop\ ;14_;12_ 06_;13_;14_ ג;.' spssma2\data.sav \חוב DATASET NAME DataSet1 WINDOW=FRONT.

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

מבוא לאקונומטריקה 57322

מבוא לאקונומטריקה 57322 מבוא לאקונומטריקה 57322 חיים שחור סיכומי הרצאות של פרופ' שאול לאך 21 ביוני 2012 5 תכונות אסימפטוטיות של OLS ז' סיון תשע"ב (שעור 1) נרצה לעשות ניתוח כאשר n. יש שתי תכונות עיקריות של :OLS ] [,MLR1 בעיקר

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

יחידה - 7 זוויות חיצוניות

יחידה - 7 זוויות חיצוניות יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת

Διαβάστε περισσότερα

או מעוותים, אשר הביא לכך שבציבור הרחב יש שתי דעות מנוגדות לגבי סטטיסטיקה: ה"תמימה"; אשרמבוססתעלכבודרבלמדעכולוולסטטיסטיקהבפרט,מהשגורםלקבלת

או מעוותים, אשר הביא לכך שבציבור הרחב יש שתי דעות מנוגדות לגבי סטטיסטיקה: התמימה; אשרמבוססתעלכבודרבלמדעכולוולסטטיסטיקהבפרט,מהשגורםלקבלת פרק מבוא לסטטיסטיקה. סטטיסטיקה מהי? הסטטיסטיקה היא מדע העוסק בנתונים כמותיים, איסופם, עיבודם, הצגתם והסקת מסקנות מהם וזאת כדי לסייע בפתרון בעיות מסוגים שונים. בימינו, קשה להעלות על הדעת איזה תחום בחיינו,

Διαβάστε περισσότερα

מבוא לסטטיסטיקה תאורית ולהסתברות

מבוא לסטטיסטיקה תאורית ולהסתברות מבוא לסטטיסטיקה תאורית ולהסתברות פרופ' משה חביב, המחלקה לסטטיסטיקה, האוניברסיטה העברית מבוסס על קורס "יסודות הסתברות נתונים ומחשבים" (52220 תודות רשימות אלו נכתבו ברובן על ידי דנה אוגוסט במהלך קורס שניתן

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו

מבני נתונים מבחן מועד ב' סמסטר חורף תשסו TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו

Διαβάστε περισσότερα

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות 1" (80420) באוניברסיטה העברית,

תורת ההסתברות 1 יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס תורת ההסתברות 1 (80420) באוניברסיטה העברית, תורת ההסתברות יובל קפלן סיכום הרצאות פרופ יורי קיפר בקורס "תורת ההסתברות " (80420) באוניברסיטה העברית, 8 2007. תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן. אין המרצה אחראי לכל טעות שנפלה בו. סודר באמצעות

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

ניסוי מקרי: ניסוי שיש לו מספר תוצאות אפשריות ואי-אפשר לדעת מראש באיזה תוצאה יסתיים הניסוי.

ניסוי מקרי: ניסוי שיש לו מספר תוצאות אפשריות ואי-אפשר לדעת מראש באיזה תוצאה יסתיים הניסוי. 1 תורת ההסתברות מהי? העולם שבו אנחנו חיים הוא עולם של אי-ודאות. מכיוון שאין לנו דרך לקבוע בוודאות את תוצאותיו של תהליך אקראי, אנו מנסים לצמצם את אלמנט אי-הודאות ולהעריך את הסיכויים של התוצאות האפשריות

Διαβάστε περισσότερα

הרצאה 9: CTMC מבוא לתורת התורים

הרצאה 9: CTMC מבוא לתורת התורים הרצאה 9: CTMC מבוא לתורת התורים תורת התורים למערכת תורים שלושה מרכיבים עיקריים: -- זרם של צרכנים שזמני המופע שלהם הם תהליך נקודות T1, T1 + T2,, T1 + + T, -- דרישות שרות של הצרכנים, שהם סדרה של משתנים מקריים

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות. 1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33

Διαβάστε περισσότερα

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל

משפטי בקרה ולולאות שעור מס. 3 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל משפטי בקרה ולולאות שעור מס. 3 דרור טובי דר' 1 כל הזכויות שמורות דר' דרור טובי המרכז האוניברסיטאי אריאל - הקדמה משפט התנאי if המשימה: ברצוננו לכתוב תוכנית המקבלת שני מספרים בסדר כל שהוא ולהדפיס אותם בסדר

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

יווקיינ לש תוביציה ןוירטירק

יווקיינ לש תוביציה ןוירטירק יציבות מגבר שרת הוא מגבר משוב. בכל מערכת משוב קיימת בעיית יציבות מהבחינה הדינמית (ולא מבחינה נקודת העבודה). חשוב לוודא שהמגבר יציב על-מנת שלא יהיו נדנודים. קריטריון היציבות של נייקוויסט: נתונה נערכת המשוב

Διαβάστε περισσότερα

c>150 c<50 50<c< <c<150

c>150 c<50 50<c< <c<150 מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

למידה חישובית אלי דיין 1.

למידה חישובית אלי דיין 1. למידה חישובית אלי דיין תקציר מסמך זה יביא את סיכומי השיעורים מהקורס למידה חישובית, שהועבר על ידי פרופ ישי מנצור בסמסטר א בשנה ל תשע ג. תוכן עניינים 5 מה זה למידה חישובית? 5 סוגי

Διαβάστε περισσότερα

מבוא לרשתות - תרגול מס 5 תורת התורים

מבוא לרשתות - תרגול מס 5 תורת התורים מבוא לרשתות - תרגול מס 5 תורת התורים תאור המערכת: תור / M M / ( ) שרת שירות פואסוני הגעה פואסונית הערות: במערכת M/M/ יש חוצץ אינסופי ולכן יכולים להיות בה אינסוף לקוחות, כאשר מקבל שירות והשאר ממתינים. זמן

Διαβάστε περισσότερα

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

Διαβάστε περισσότερα

משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה

משרד החינוך המזכירות הפדגוגית אגף מדעים הפיקוח על הוראת המתמטיקה משולשים חופפים, תיכון במשולש )41 שעות( ומשולש שווה שוקיים שתי צורות נקראות חופפות אם אפשר להניח אחת מהן על האחרת כך שתכסה אותה בדיוק )לשם כך ניתן להזיז, לסובב ולהפוך את הצורות(. בפרק זה נתמקד במשולשים

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים

תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים הרצאה : תור תורת התורים תור שרת יחיד, תורים במקביל ובטור, רשתות תורים ) W t n t n : M/G/ נחשב את זמן השהיה הממוצע בתור צרכן שמגיע ברגע רואה לפניו את נניח שהשרות הוא שם אחר הוא FIFO first in first out אז

Διαβάστε περισσότερα

תוכניות דגימה לפי תקן ISO2859

תוכניות דגימה לפי תקן ISO2859 תוכניות דגימה לפי תקן ISO2859 הזכויות שמורות למכון התקנים עדכון מצגת 02-2016 עמיר רייז מטרות דגימה איסוף נתונים באמצעות ביצוע דגימה לצורך: איסוף נתונים לצורך בקרת התהליך וניתוחו איסוף נתונים כדי לקבל החלטה

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי

גיאומטריה גיאומטריה מצולעים ניב רווח פסיכומטרי מצולע הוא צורה דו ממדית, עשויה קו "שבור" סגור. לדוגמה: משולש, מרובע, מחומש, משושה וכו'. אלכסון במצולע הוא הקו המחבר בין שני קדקודים שאינם סמוכים זה לזה. לדוגמה: בסרטוט שלפניכם EC אלכסון במצולע. ABCDE (

Διαβάστε περισσότερα