šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)"

Transcript

1 šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem a 1 = 0.5 m/s. Brzina na kraju prvog vremenskog intervala, u t = 7 s iznosi: v 1 = v 0 + a 1 t 1 = 11.5 m/s. (1 bod) Automobil u prvom vremenskom intervalu prelazi put: s 1 = v 0 t a 1( t 1 ) = 68.5 m. (1 bod) U drugom vremenskom intervalu t = 5 s automobil se giba jednoliko brzinom v = v 1 = 11.5 m/s te prelazi put: s = v t = 57.5 m. (1 bod) U tre em vremenskom intervalu t = s automobil se giba jednoliko ubrzano ubrzanjem a = 1.5 m/s. Brzina na kraju prvog vremenskog intervala, u t = 15 s iznosi: v = v + a t = 16 m/s. (1 bod) Automobil u tre em vremenskom intervalu prelazi put: s = v t + 1 a ( t ) = 41.5 m. (1 bod) U etvrtom vremenskom intervalu t 4 = 8 s automobil se giba jednoliko brzinom v 4 = v = 16 m/s te prelazi put: s 4 = v 4 t 4 = 18 m. (1 bod) U petom vremenskom intervalu t 5 = v [m/s] 6 s automobil se giba jednoliko usporeno usporenjem a 5 = 0.75 m/s. 16 Brzina na kraju petog vremenskog intervala, u t = 9 s iznosi: 14 1 v 5 = v 4 + a 5 t 5 = 11.5 m/s. (1 bod) Automobil u petom vremenskom intervalu prelazi 10 put: s 5 = v 4 t 5 1 a 5( t 5 ) = 8.5 m. (1 bod) Automobil je pre²ao ukupni put: s = s 1 + s + s + s 4 + s 5 = 68.5 m m m + 18 m m = 77.5 m. Srednja brzina automobila iznosi: v = s t ukupno = 77.5 m 9 s = 1 m/s. (1 bod) v(t) graf prikazan je na slici desno. ( boda) t [s]. zadatak (10 bodova) Vlak A od ulaska do izlaska iz tunela prelazi put: d + l A = v A t ukupno, (1 bod) 1

2 gdje je d duljina tunela, l A duljina vlaka A, v A = 6 km/h = 10 m/s brzina vlaka A i t ukupno vrijeme gibanja vlaka A kroz tunel. Slijedi da je: t ukupno = d + l A 554 m + 98 m = = 65. s. (1 bod) v B 10 m/s Vlak B se na putu s giba t s = s jednoliko ubrzano ubrzanjem a B i po etnom brzinom v B0 = 11 m/s. Vrijedi: s = v B0 t s + 1 (v B1 v B0 )t s, (1 bod) gdje je v B1 brzina vlaka B u trenutku ulaska u tunel. Za gibanje vlaka B u tunelu vrijedi: d + l B = v B1 (t ukupno t s ), (1 bod) gdje je l B duljina vlaka B. Slijedi da je brzina v B1 jednaka: v B1 = d + l B 554 m + 79 m = = 15 m/s. (1 bod) t ukupno t s 65. s s Udaljenost vlaka B od tunela u trenutku ulaska vlaka A u tunel jednaka je: s = 1 (v B1 + v B0 )t s = 1 (11 m/s + 15 m/s) s = 99 m. (1 bod) Ubrzanje vlaka B na putu s jednako je: a B = v B1 v B0 = m/s. (1 bod) t s Postavimo ishodi²te koordinatnog sustava u to ku ulaska vlaka A u tunel. trenutak ulaska vlaka B u tunel za po etni trenutak. Tada vrijedi: x A (t) = v A (t s + t), x B (t) = d v B1 t. U trenutku kada su se vlakovi sreli, njihove koordinate poloºaja su jednake: Uzmimo v A (t s + t ) = d v B1 t t = d v At s = 1.96 s. (1 bod) v A + v B1 Prema tome, vlakovi e se sresti na udaljenosti x A (t ) = v A (t s + t ) = 59.6 m od ulaza u tunel vlaka A. (1 bod) Relativna brzina vlaka B u odnosu na referentni sustav, u kojem vlak A miruje, iznosi: v B,rel = v B1 + v A = 5 m/s. Vrijeme mimoilaºenja vlakova jednako je: t m = l A + l B 98 m + 79 m = = 7.08 s. (1 bod) v B,rel 5 m/s. zadatak (10 bodova) Kvadar e se gibati uz kosinu dok se ne zaustavi, a zatim e se gibati niz kosinu. Dijagram sila na kvadar za vrijeme N gibanja uz kosinu prikazan je na slici desno. Slijedi da je drugi Newtonov zakon za gibanje kvadra u smjeru paralelno F tr kosini i u smjeru okomito na kosinu oblika: 0 F g ma 1 = 1 mg + F tr, (1 bod) 0 = mg N. (1 bod) Sila trenja jednaka je: F tr = µn. (1 bod) Silu reakcije podloge izrazimo pomo u druge jednadºbe i uvrstimo u izraz za silu trenja te dobijemo: F tr = µ mg.

3 Uvr²tavanjem u prvu jednadºbu za ubrzanje kvadra dobijemo: a 1 = 1 ( ) 1 + µ g = 6.69 m/s. (1 bod) Dakle, kvadar se giba jednoliko usporeno uz kosinu. Vrijeme do zaustavljanja je: 0 = v 0 a 1 t 1 t 1 = v 0 = 4 m/s = 0.6 s. a m/s Put koji priježe u tom vremenu jednak je: s 1 = v 0 t 1 1 a 1t 1 = v 0 = 1. m. a 1 Tijelo e se nakon zaustavljanja po eti gibati jednoliko ubrzano niz kosinu. U ovom slu aju sila trenja djeluje paralelno kosini u smjeru uz kosinu. Slijedi da je drugi Newtonov zakon za smjer paralelan kosini u slu aju gibanja niz kosinu oblika: ma = 1 mg F tr. (1 bod) Ubrzanje tijela niz kosinu jednako je: a = 1 ( ) 1 µ g =.1 m/s. (1 bod) Tijelo e ponovo posti i po etnu brzinu nakon vremena: v = v 0 = a t t = v 0 = 4 m/s = 1.8 s. a.1 m/s U ovom vremenu tijelo e prije i put: s = 1 a t = v 0 a =.56 m. Prema tome, tijelo e ponovo posti i po etnu brzinu nakon t = t 1 + t = v 0 ( 1 a a ) = 1.88 s ( boda) vremena te u tom( vremenu priježe ukupan put: s = s 1 + s = v ) =.76 m. ( boda) a 1 a 4. zadatak (9 bodova) Na slici su prikazane sve sile na tijela A i B pri emu su sile na tijelo A ozna ene crvenom bojom, a sile na tijelo B zelenom bojom ( boda). Tijelo A e se gibati vertikalno prema dolje ubrzanjem a A, a tijelo B e se gibati u horizontalnom smjeru ulijevo ubrzanjem a B. Drugi Newtonov zakon za tijelo A u horizontalnom i vretikalnom smjeru, respektivno, glasi: 0 = F BA N A, m A a A = m A g 1 F BA. (1 bod) Drugi Newtonov zakon za tijelo B u horizontalnom i vretikalnom smjeru, respektivno, glasi: m B a B = F AB, (1 bod) 0 = N B m B g 1 F AB. N B F gb F AB N A F ga F BA

4 Prema tre em Newtonovom zakonu sila tijela A na tijelo B F AB jednakog je iznosa sili tijela B na tijelo A F BA, odnosno vrijedi F AB = F BA (1 bod). Tijelo A u vremenskom intervalu t pomakne se u vertikanom smjeru za y. U istom vremenskom intervalu tijelo B pomakne se u horizontalnom smjeru za x. Sa slike se moºe vidjeti da je omjer pomaka jednak: 1 y x = =. Budu i da su vremenski intervali u kojima tijela A i B naprave pomake y i x, respektivno, jednaki, njihova ubrzanja se odnose na isti na in. Prema tome, vrijedi: a A =. (1 bod) a B U zadatku je zadan omjer masa tijela A i B m A = 1 4 iz ega slijedi m B = 4m A. Iz tre e jednadºbe slijedi: F AB = m B a B = 1 4m A a A = 8 m Aa A. (1 bod) Uvr²tavanjem u drugu jednadºbu dobije se: m A a A = m A g 1 8 m Aa A, ( ) a A = g, a A = g. (1 bod) 7 Slijedi da je ubrzanje tijela B jednako: a B = 1 a A = g. (1 bod) 7 m B Δx Δy 5. zadatak (10 bodova) Vrijeme od trenutka izba aja loptica do njihovog sudara jednako je vremenu potrebnom da loptica, koju je bacila Marica, priježe njihov mežusobni horizontalni razmak: s = v M t ukupno t ukupno = s v M = 1 s. (1 bod) U tom e vremenu loptica, koju je bacila Marica, pasti za: h M = 1 gt ukupno = 5 m, (1 bod) dok se loptica, koju je bacio Ivica, u istom trenutku nalazi na visini: h I = v I0 t ukupno 1 gt ukupno = m u odnosu na svoju po etnu visinu. Prema tome, vertikalna udaljenost poloºaja izba aja loptica iznosi: h = h I + h M = 8 m. (1 bod) Ovisnost brzine loptice, koju je bacio Ivica, o vremenu je oblika: v I (t) = v I0 gt. Uvr²tavanjem t ukupno u prethodnu jednadºbu dobije se brzina loptice, koju je bacio Ivica, neposredno prije sudara: v I (t ukupno ) = v I0 gt ukupno = m/s. (1 bod) Dakle, iznos brzine je m/s, a smjer vertikalno prema dolje. Brzina loptice, koju je bacila Marica, neposredno prije sudara ima dvije komponente: komponentu u horizontalnom smjeru iznosa 5 m/s i u vertikalnom smjeru prema dolje iznosa: 4

5 v M,vertikalno = gt ukupno = 10 m/s. Ukupna brzina je: v M = m/s = 11. m/s. (1 bod) Smjerovi brzina loptica neposredno prije sudara prikazani su na slici (1 bod). U slu aju sudara loptica u to ki najvi²e putanje loptice koju je bacio Ivica, najprije treba odrediti poloºaj sudara. Vrijeme potrebno da loptica, koju je bacio Ivica, dosegne maksimalnu visinu svoje putanje jednako je: 0 = v I gt max t max = v I0 = 0.8 s, (1 bod) a maksimalna visina iznosi: h max = 1 gt max =. m. g Prema tome, loptica, koju je bacila Marica, mora prije i vertikalnu udaljenost: h M = 8 m. m = 4.8 m. (1 bod) Time je odreženo vrijeme pada loptice koju je bacila Marica: h M = 1 h gt t = M = 0.98 s. g Nadalje, brzina kojom Marica treba baciti lopticu u horizontalnom smjeru iznosi: v M = l t = 5.1 m/s. (1 bod) Marica treba baciti lopticu prije Ivice i to za t = t t max = 0.18 s. (1 bod) v M v I 5

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):

Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE): Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji

Διαβάστε περισσότερα

1. Jednoliko i jednoliko ubrzano gibanje

1. Jednoliko i jednoliko ubrzano gibanje 1. JEDNOLIKO I JEDNOLIKO UBRZANO GIBANJE 3 1. Jednoliko i jednoliko ubrzano gibanje Jednoliko gibanje po pravcu je ono gibanje pri kojem se ne mijenja ni iznos ni smjer brzine. Ako se ne mijenja iznos

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1

Dinamika tijela. a g A mg 1 3cos L 1 3cos 1 Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split

Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split DINAMIKA Izradio: Željan Kutleša, mag.educ.phys. Srednja tehnička prometna škola Split Ova knjižica prvenstveno je namijenjena učenicima Srednje tehničke prometne škole Split. U knjižici su korišteni zadaci

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,

Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav, 1. UVOD 1. * Odgovorite na sljedeća pitanja tako da dopunite tvrdnje. 1.1 Što je gibanje tijela? Gibanje tijela je... tijela u... 1.2 Osnovni parametri u kinematici su... i... 1.3 Na koji način opisujemo

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Rad, snaga i energija zadatci

Rad, snaga i energija zadatci Rad, snaga i energija zadatci 1. Tijelo mase 400 g klizi niz glatku kosinu visine 50 cm i duljine 1 m. a) Koliki rad na tijelu obavi komponenta težine paralelna kosini kada tijelo s vrha kosine stigne

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

1. KINEMATIKA MATERIJALNE TOČKE

1. KINEMATIKA MATERIJALNE TOČKE 1 1. KINEMATIKA MATERIJALNE TOČKE 1. Automobil prvu trećinu puta vozi brzinom 50km/h, a preostali dio puta brzinom 20km/h. Kolika je srednja (prosječna) brzina tijekom putovanja? R: 25 km/h 2. Biciklista

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

Rad, energija i snaga

Rad, energija i snaga Rad, energija i snaga 1. Koliko se puta promijeni kinetička energija automobila kada se njegova brzina poveća tri puta? A. Poveća se 3 puta. B. Poveća se 6 puta. C. Poveća se 9 puta. D. Poveća se 12 puta.

Διαβάστε περισσότερα

7. Titranje, prigušeno titranje, harmonijsko titranje

7. Titranje, prigušeno titranje, harmonijsko titranje 7. itranje, prigušeno titranje, harmonijsko titranje IRANJE Općenito je titranje mijenjanje bilo koje mjerne veličine u nekom sustavu oko srednje vrijednosti. U tehnici titranje podrazumijeva takvo gibanje

Διαβάστε περισσότερα

Srednje škole 1. skupina

Srednje škole 1. skupina ŠKOLSKO/OPĆINSKO NATJECANJE IZ FIZIKE..009. Srednje škole 1. skupina 1. zadatak (11 bodova) Tijelo se giba duž x-osi, a ovisnost brzine o vremenu prikazana je na v-t dijagramu. U početnom trenutku tijelo

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

VJEŽBE IZ FIZIKE GRADEVINSKI FAKULTET U OSIJEKU. ilukacevic/

VJEŽBE IZ FIZIKE GRADEVINSKI FAKULTET U OSIJEKU.  ilukacevic/ VJEŽBE IZ FIZIKE GRADEVINSKI FAKULTET U OSIJEKU www.fizika.unios.hr/ ilukacevic/ ilukacevic@fizika.unios.hr Igor Lukačević Odjel za fiziku Trg Ljudevita Gaja 6 1. kat, soba 6 9. listopada 7. LITERATURA

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet

Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

Impuls i količina gibanja

Impuls i količina gibanja FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba 4 Impuls i količina gibanja Ime i prezime prosinac 2008. MEHANIKA

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PITANJA IZ DINAMIKE 1

PITANJA IZ DINAMIKE 1 PITANJA IZ DINAMIKE 1 1. Što je teţina tijela a što sila teţa?. Objasni razliku izmeďu sile teţe i teţine. 3. Kakav je odnos (razjasni pojmove) izmeďu mase tijela, teţine tijela i sile teţe koja djeluje

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1

I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1 I PARCIJALNI ISPIT IZ INŽENJERSKE FIZIKE 1 Grupa A 1. Definisati šta je jednoliko kružno kretanje i naći vezu između linearne i ugaone brzine i izvesti izraz za ugaoni pomak i ukupno ubrzanje (ako ga ima).

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Mehanika. Uvod. Mikrometarskim vijkom odredili ste debljinu jedne vlasi d = 0,12 mm. Kolika je ta debljina izražena potencijama od deset u metrima?

Mehanika. Uvod. Mikrometarskim vijkom odredili ste debljinu jedne vlasi d = 0,12 mm. Kolika je ta debljina izražena potencijama od deset u metrima? Mehanika Uvod Jednoliko gibanje duž pravca Jednoliko ubrzano i usporeno gibanje duž pravca Nejednoliko gibanje Osnovni zakon gibanja Impuls sile i količina gibanja Složena gibanja Sastavljanje i rastavljanje

Διαβάστε περισσότερα

Vektorska analiza doc. dr. Edin Berberović.

Vektorska analiza doc. dr. Edin Berberović. Vektorska analiza doc. dr. Edin Berberović eberberovic@mf.unze.ba Vektorska analiza Vektorska algebra (ponavljanje) Vektorske funkcije (funkcije sa vektorima) Jednostavna analiza (diferenciranje) Učenje

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

2 m. 2 m. MEHANIKA 2 ispit m. 1 m. 2 m

2 m. 2 m. MEHANIKA 2 ispit m. 1 m. 2 m 1 m 1 m m MEHNIK ispit - 01.0.01. NPOMEN: Zadatak mora biti riješen uredno i pregledno. Rješenja moraju sadržavati crteže s potrebnim oznakama i kotama. Prije numeričkog računa napisati općeniti izraz

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Rješenje 469. m = 200 g = 0.2 kg, v 0 = 5 m / s, h = 1.75 m, h 1 = 0.6 m, g = 9.81 m / s 2, E k =?

Rješenje 469. m = 200 g = 0.2 kg, v 0 = 5 m / s, h = 1.75 m, h 1 = 0.6 m, g = 9.81 m / s 2, E k =? Zadatak 469 (Davor, tehnička škola) Kuglicu mase 00 g izbacimo početnom brzinom 5 m / s sa visine.75 m. Koliko iznosi kinetička energija kuglice kada se nalazi na visini 0.6 m iznad tla? Zanemarite gubitak

Διαβάστε περισσότερα

Kinematika i vektori

Kinematika i vektori ZADACI ZA INTERAKTIVNE VJEŽBE IZ OPĆE FIZIKE 1 Kinematika i vektori 1. Svjetiljka udaljena 3m od vertikalnog zida baca na zid svijetlu mrlju. Svjetiljka se jednoliko okreće oko svoje osi frekvencijom f

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?

Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5? Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Kružno gibanje. Pojmovi. Radijus vektor (r), duljina luka (s) Kut (φ), kutna brzina (ω), obodna brzina (v)

Kružno gibanje. Pojmovi. Radijus vektor (r), duljina luka (s) Kut (φ), kutna brzina (ω), obodna brzina (v) Predavanja 2 Kružno gibanje Pojmovi Kod kružnog gibanja položaj čestice jednoznačno je određen kutom kojeg radijus vektor zatvara s referentnim pravcem Radijus vektor (r), duljina luka (s) Kut (φ), kutna

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

ZADATCI S NATJECANJA

ZADATCI S NATJECANJA ZADATCI S NATJECANJA MAGNETIZAM 41. Na masenom spektrometru proučavamo radioaktivni materijal za kojeg znamo da se sastoji od mješavine 9U 35 9U. Atome materijala ioniziramo tako da im je naboj Q +e, ubrzavamo

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

9. Vježbe. između fluida i remena za slučaj Q = 0.

9. Vježbe. između fluida i remena za slučaj Q = 0. 9 VJEŽBE MEANIKA FIDA II / 9 9 Vježbe 4 Široki remen, prema slici, postavljen je vertikalno između dva spremnika ispunjena istim fluidom i giba se prema gore konstantnom brzinom v, povlačeći fluid iz donjeg

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

VJEŽBENICA 1.: PRAVOCRTNA PROGRAMSKA STRUKTURA

VJEŽBENICA 1.: PRAVOCRTNA PROGRAMSKA STRUKTURA PRIMJER 11 VJEŽBENICA 1.: PRAVOCRTNA PROGRAMSKA STRUKTURA Treba izračunati otpor bakrene žice za koju su uneseni duljina l u metrima i promjer d u milimetrima. Upisi promjer zice (u mm): Upisi duljinu

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

OPĆINSKO NATJECANJE IZ FIZIKE 2012/13. OSNOVNA ŠKOLA

OPĆINSKO NATJECANJE IZ FIZIKE 2012/13. OSNOVNA ŠKOLA OPĆINSKO NATJECANJE IZ FIZIKE 2012/13. OSNOVNA ŠKOLA Uputa: U svim zadacima gdje je to potrebno koristiti g = 10 N/kg. 1. Poluga zanemarive mase dugačka je 1,8 m. Na lijevi krak poluge objesimo tijelo

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

2. Kolokvijum iz MEHANIKE (E1)

2. Kolokvijum iz MEHANIKE (E1) Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

I. Zadatci višestrukoga izbora

I. Zadatci višestrukoga izbora I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Točne odgovore morate označiti znakom X na listu za odgovore kemijskom olovkom. Svaki točan odgovor

Διαβάστε περισσότερα

Lokalni ekstremi funkcije vi²e varijabla

Lokalni ekstremi funkcije vi²e varijabla VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 9 Lokalni ekstremi funkcije više varijabla Poglavlje 1 Lokalni ekstremi funkcije vi²e varijabla Denicija 1.0.1 Za funkciju f dviju varijabli

Διαβάστε περισσότερα

Ampèreova i Lorentzova sila zadatci za vježbu

Ampèreova i Lorentzova sila zadatci za vježbu Ampèreova i Lorentzova sila zadatci za vježbu Sila na vodič kojim prolazi električna struja 1. Kroz horizontalno položen štap duljine 0,2 m prolazi električna struja jakosti 15 A. Štap se nalazi u horizontalnom

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.

ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3. Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki

Διαβάστε περισσότερα

Rotacija krutog tijela

Rotacija krutog tijela Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Izdavač HINUS Zagreb, Miramarska 13 B tel. (01) , , fax (01)

Izdavač HINUS Zagreb, Miramarska 13 B tel. (01) , , fax (01) Izdavač HINUS Zagreb, Miramarska 3 B tel. (0) 65 4 96, 668738, 6 55 8 fax (0) 6 55 8 e-mail hinus@zg.htnet.hr Urednik Mr. sc. Hrvoje Zrnčić Recenzenti Prof. dr. sc. Ivica Picek Prof. Anđela Gojević ISBN

Διαβάστε περισσότερα