Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nastavna jedinica. Gibanje tijela je... tijela u... Položaj točke u prostoru opisujemo pomoću... prostor, brzina, koordinatni sustav,"

Transcript

1 1. UVOD 1. * Odgovorite na sljedeća pitanja tako da dopunite tvrdnje. 1.1 Što je gibanje tijela? Gibanje tijela je... tijela u Osnovni parametri u kinematici su... i Na koji način opisujemo položaj točke u prostoru? Položaj točke u prostoru opisujemo pomoću Gibanje točke je poznato, ako u svakom trenutku poznamo... prostor, brzina, koordinatni sustav, promjena položaja, sila, prostor, vrijeme, koordinate točke * Točnost rješenja teorijskih zadataka provjeri pomoću računala u programu NEWTON.

2 1. UVOD 1.5. Zadatak kinematike je: a) Izračunati snagu koja je potrebna da bi tijelo promijenilo položaj. b) Izračunati rad koji moramo izvršiti da tijelo promijeni položaj. c) Odrediti silu koja je potrebna da tijelo promijeni položaj. d) Odrediti trenutni položaj proizvoljne točke tijela, njenu brzinu i prijeđeni put.

3 2.1. TOČKE 1. TEORETSKI ZADATAK Slika 2.1 prikazuje gibanje točke N u prostoru. a) Označite pozitivni smjer osi z Kartezijevog koordinatnog sustava po pravilu desne ruke. b) Na slici prikažite razliku između puta i putanje. c) Da li je gibanje točke od N do N 1 krivocrtno ili pravocrtno?... Slika 2.1 d) Skicirajte vektor brzine na slici za oba položaja točke. e) Pravci vektora su različiti. f) Zašto?

4 2.1 PRAVOCRTNO GIBANJE 2. Napišite u matematičkom obliku kad se radijus-vektor točke ne mijenja s vremenom. U kakvom stanju je takva točka, kolika je njena brzina i ubrzanje? 3. Kakvo je gibanje točke, ako vektor brzine ima stalno isti pravac i vrijednost mu se ne mijenja? Koliko je ubrzanje? 4. Napišite jednadžbu za ubrzanje, brzinu i put u ovisnosti o vremenu za jednoliko pravocrtno gibanje.

5 2.1 PRAVOCRTNO GIBANJE 1. RAČUNSKI ZADATAK Vlak kreće iz točke A u t 1 = 6.20 h i stiže u točku B u t 2 = 7.30 h. Udaljenost između točaka je s =100 km. a) Izračunajte vrijeme putovanja vlaka i prosječnu brzinu vožnje u km/h i m/s. b) Nacrtajte s-t dijagram i u njemu prikažite te očitajte prijeđeni put do 7. sata. Za dane vrijednosti odredite mjerilo za put i vrijeme. Rješenje: a) Vrijeme putovanja vlaka: b) Prosječna brzina vožnje: b) s-t dijagram:

6 2.1 PRAVOCRTNO GIBANJE 5. Slika 2.2 prikazuje ovisnost puta o vremenu za točke A, B, C i D po pravcu od 0 u desno gore. a) Približno skicirajte položaj točke u trenutku t = t b) Imaju li sve točke jednaku brzinu?... Slika 2.2 c) Gibaju li se sve točke jednoliko pravocrtno?... d) Koja točka, B ili D ima veću brzinu i zašto?... Ako je odgovor NE, napišite koje se točke gibaju jednoliko pravocrtno Kakvo je gibanje ostalih točaka? Kakvo je gibanje točke, ako vektor brzine ima stalan pravac, a njegova se veličina jednoliko povećava?

7 Z A D A T A K 2.1 PRAVOCRTNO GIBANJE 7. Napišite jednadžbu za ubrzanje, brzinu i put točke koja se giba po pravcu jednoliko ubrzano početnom brzinom v Slika 2.3 prikazuje ovisnost brzine o vremenu za točke A, B i C koje se gibaju pravocrtno. a) Kakvo je to gibanje s obzirom na brzinu? Koliko je ubrzanje pojedinih točaka? Slika 2.3 b) Što bi se dogodilo s točkom C, ako bi se još 2 sekunde gibala na isti način?

8 Z A D A T A K 2.1 PRAVOCRTNO GIBANJE 2. RAČUNSKI ZADATAK Točka se giba pravocrtno brzinom koja je prikazana na v-t dijagramu (slika 2.4). Za pojedine vremenske intervale: a) opišite kako se giba točka, b) izračunajte ubrzanja, c) nacrtajte a-t dijagram, te d) izračunajte prevaljeni put (rezultat usporedite sa površinom osjenčanog lika u v-t dijagramu). Slika 2.4 Rješenje: a) Opis gibanja točke u intervalima: 0-2 s s s s s s... b) Izračun ubrzanja:

9 Z A D A T A K 2.1 PRAVOCRTNO GIBANJE c) Prevaljeni putovi: d) Ukupno prevaljeni put:

10 2.1 VERTIKALNI HITAC 1. Tijelo je u zrakopraznom prostoru izbačeno vertikalno u vis početnom brzinom v 0. a) Kamo je usmjereno ubrzanje tijela i kakvo je gibanje za vrijeme leta u vis? b) Kolika je brzina tijela u najvišoj točki? Je li u toj točki njegovo ubrzanje nula? c) Opišite kakvo je gibanje tijela, koje se giba vertikalno u vis i u kakvom je odnosu vrijeme dizanja i vrijeme padanja tijela. 10

11 Z A D A T A K 2.1 VERTIKALNI HITAC 1. RAČUNSKI ZADATAK S tla je ispaljen metak vertikalno u vis početnom brzinom v 0 = 15,5 m/s. Izračunajte: a) najveću visinu koju postiže metak, b) koliko vremena se giba metak do visine h = 4,4 m i c) kolika je brzina metka na toj visini. Rješenje: a) najveća visina: b) vrijeme gibanja do visine h: c) brzina metka na visini h: 11

12 2.1 SLOBODNI PAD 3.1 SLOBODNI PAD U ZRAKOPRAZNOM PROSTORU 1. U zrakopraznom prostoru (ili prostoru u kojem zanemarujemo otpor zraka) u istom trenutku ispuštamo s iste visine tijela (sl. 3.1): A - lako guščje pero; B - kap vode; C - uteg od jednog kilograma. Slika 3.1 U kakvom vremenskom slijedu padaju tijela na vodoravnu ravninu n-n: a) uteg, voda, pero; b) voda, uteg, pero; c) pero, voda, uteg; d) sva tri istovremeno? 2. Misaoni pokus iz prethodnog zadatka okrenimo tako, da sva tri tijela bacimo u istom trenutku s horizontalne ravnine n-n vertikalno u vis brzinom, koja je suprotna i jednaka po veličini onoj kojom su pala dalje. Zaokružite pravilne tvrdnje. a) Sva tri tijela smo bacili s istom početnom brzinom. b) S najvećom brzinom je izbačen uteg. c) Visinu h ne postiže nijedno tijelo. d) Visinu h postižu sva tri tijela istovremeno. e) Sva tri tijela imaju u svakom trenutku jednaku brzinu. f) Vrijeme dizanja tijela je veće od vremena padanja iz prethodnog zadatka. g) Kad tijela postignu najviši položaj, njihovo ubrzanje je nula. 12

13 Z A D A T A K 2.1 SLOBODNI PAD 1. RAČUNSKI ZADATAK S visine H =140 m ispustimo na tlo predmet bez početne brzine (zračni otpor zanemarite). a) Opišite kakvo je to gibanje. b) Izračunajte vrijeme padanja do tla. c) Kolika je brzina predmeta pri dodiru s tlom? d) Izračunajte brzinu predmeta na visini h = 40 m. e) Nacrtajte dijagram brzine u ovisnosti o visini H, ako predmet pada s visine H (za područje 0 < H < 100 m). f) Opišite, koliko bi bilo vrijeme padanja i brzina pri dodiru s tlom, ako bi uzeli u obzir otpor zraka. Rješenje: a) Predmet se giba... b) Vrijeme padanja do tla: c) Brzina predmeta pri dodiru s tlom: d) Brzina predmeta na visini h = 40 m: e) Dijagram brzine u ovisnosti o visini H. Brzina u ovisnosti o visini: f) S otporom zraka vrijeme padanja je... i brzina predmeta u trenutku dodira s tlom... 13

14 2.2 KRIVOCRTNO GIBANJE 4.1 KOSI HITAC U ZRAKOPRAZNOM PROSTORU 1. Kosi hitac u bezračnom prostoru opisuju jednadžbe: v x = v 0 cos a v y = v 0 sin a g t x = (v 0 cos a)t y = (v 0 sin a) t g t2 2 Posebni slučajevi hica u zrakopraznom prostoru su vodoravni hitac, vertikalni hitac u vis, vertikalni hitac dolje i slobodni pad. Za navedene slučajeve u tablici upišite: imaju li početnu brzinu, kut hica, te im pridružite gornje jednadžbe. kosi hitac vodoravni hitac vertikalni hitac gore vertikalni hitac dolje slobodni pad početna brzina v 0 kut hica v x v y a v 0 cos a v 0 sin a- g t x (v 0 y (v 0 sin a) t g t2 2 14

15 2.2 KRIVOCRTNO GIBANJE 2. Ako promatramo kosi hitac pod kutom α, zaokružite ispravne tvrdnje: a) Vodoravna komponenta brzine tijela se mijenja, vertikalna komponenta brzine tijela je u svim točkama jednaka. b) U najvišoj točki su vertikalna i vodoravna komponenta brzine jednake i njihova vrijednost je nula. c) U najvišoj točki hica je vertikalna komponenta brzine 0, vodoravna komponenta je v o. cos α. d) Ubrzanje tijela je najveće u početnom trenutku, zatim jednoliko pada i u položaju najveće visine je jednako 0, a onda raste dok tijelo ne dodirne tlo. e) Ubrzanje tijela je sve vrijeme jednako, usmjereno je vertikalno dolje i vrijednost mu je g. f) Visina hica je ovisna o težini tijela. g) Najveći domet L tijela je ako je kut α = h) Najveća visina hica je pri kutu α=

16 Z A D A T A K 2.2 KRIVOCRTNO GIBANJE 1. RAČUNSKI ZADATAK Helikopter se giba vodoravno brzinom v = 160 km/h na visini h = 250 m i ispušta teret (slika 4.1). a) Nacrtajte put gibanja tereta u zrakopraznom prostoru. b) Koliko je ubrzanje tereta? c) Izračunajte na kojoj udaljenosti od mjesta ispuštanja teret pada na tlo. d) Nacrtajte vektor brzine tereta u trenutku dodira s tlom. e) Nacrtajte putanju gibanja tereta uzevši u obzir otpor zraka. f) Nacrtajte putanju gibanja tereta ako se helikopter diže vertikalno u trenutku ispuštanja tereta. Rješenje: a) Slika 4.1 b) Ubrzanje tereta je..., koje ima smjer.... c) Izračun udaljenosti L: 16

17 Z A D A T A K 2.2 KRIVOCRTNO GIBANJE 2. RAČUNSKI ZADATAK Uređaj za navodnjavanje ima ugrađeni raspršivač vode na visini h = 3,6 m. Mlaz vode istječe brzinom v o pod kutom α = 36 o i navodnjava polje na udaljenosti L = m od raspršivača (slika 4.2). a) Izračunajte brzinu vode pri istjecanju v o pri kojoj je doseg navodnjavanja L= 25 m. b) Izračunajte kut β koji vodeni mlaz čini s podlogom. c) Koliko je vode potrebno za 1 ha, da bi palo 10 mm umjetne kiše (uređaj se giba po polju translatorno). Rješenja: a) Izračun brzine istjecanja v o : b) Izračun kuta β : c) Izračun količine vode: 17

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva

Fizika 1. Auditorne vježbe 5. Dunja Polić. Dinamika: Newtonovi zakoni. Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Fakultet elektrotehnike, strojarstva i brodogradnje Studij računarstva Školska godina 2006/2007 Fizika 1 Auditorne vježbe 5 Dinamika: Newtonovi zakoni 12. prosinca 2008. Dunja Polić (dunja.polic@fesb.hr)

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Zadaci (teorija i objašnjenja):

Zadaci (teorija i objašnjenja): KOLOKVIJ K, 1-4 F1_I semestar; 9.01.08. (analiza zadataka i rješenja) Napomena: razmatrani su svi zadaci iz četiri grupe, K, 1-4 na način da su obrađeni oni s istim temama; posebno je obraćena pažnja onim

Διαβάστε περισσότερα

Predavanja iz mehanike u okviru predmeta Fizika 1 i 2

Predavanja iz mehanike u okviru predmeta Fizika 1 i 2 Predavanja iz mehanike u okviru predmeta Fizika 1 i 2 Saša Ilijić (UniZG/FER) 27. lipnja 2016. Sadržaj 1 Materija, prostor, vrijeme i fizikalne veličine 1 1.1 Tijela, čestice i gustoća mase.............................

Διαβάστε περισσότερα

Rad, snaga i energija zadatci

Rad, snaga i energija zadatci Rad, snaga i energija zadatci 1. Tijelo mase 400 g klizi niz glatku kosinu visine 50 cm i duljine 1 m. a) Koliki rad na tijelu obavi komponenta težine paralelna kosini kada tijelo s vrha kosine stigne

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

2.Kolika je relativna vlažnost zraka pri temperaturi 30 C ako svaki m 3 zraka sadrži 22,7 g vodene pare?

2.Kolika je relativna vlažnost zraka pri temperaturi 30 C ako svaki m 3 zraka sadrži 22,7 g vodene pare? Ponavljanje 1. Kolika je korisnost toplinskog stroja koji radi prema Carnotovom kružnom procesu, prilikom kojega je najveća razlika u temperaturi 100 C, a najveća temperatura tokom procesa je 130 C? 2.Kolika

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

( pol funkcije), horizontalna ili kosa.

( pol funkcije), horizontalna ili kosa. 4. ANALIZA TOKA FUNKCIJE, EKSTREMI 4. Opci pojmovi Nultocke funkcije - su tocke u kojima je funkcija jednak nula. Za razlomljenu racionalnu funkciju, je kada je brojnik nula. Polovi funkcije - su tocke

Διαβάστε περισσότερα

Matrice i vektori. Modeliranje Statistika i vjerojatnost Rata. 3. vježbenica

Matrice i vektori. Modeliranje Statistika i vjerojatnost Rata. 3. vježbenica XV c b d r a Matrice i vektori a b c d Modeliranje Statistika i vjerojatnost Rata Glavnica Kamata Iznos rate 0 1 2.083,33 214,58 2.297,91 2 2.083,33 205,64 2.288,97 3 2.083,33 197,6 2.280,03 4 2.083,33

Διαβάστε περισσότερα

ZAKONI OČUVANJA U IZOLIRANOM SUSTAVU

ZAKONI OČUVANJA U IZOLIRANOM SUSTAVU Poglavlje 6 ZAKONI OČUVANJA U IZOLIRANOM SUSTAVU U praksi se često dogada da nekoliko tijela uzajamno djeluju jedno na drugo mnogo snažnije nego što na njih djeluju druga okolna tijela. Teorijsko razmatranje

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne

Διαβάστε περισσότερα

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove.

Fizika 2. Dr. sc. Damir Lelas. Predavanje 2 Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje titranja. Uvod u mehaničke valove. Školska godina 008./009. Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje Matematičko i fizikalno njihalo. Fazorski prikaz titranja i zbrajanje

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

OPĆA FIZIKA 1. I. DIO (pitanja 1 56) odgovori na ispitna pitanja prema predavanjima. prof. Emila Babića

OPĆA FIZIKA 1. I. DIO (pitanja 1 56) odgovori na ispitna pitanja prema predavanjima. prof. Emila Babića OPĆA FIZIKA odgovori na ispitna pitanja prema predavanjima prof. Emila Babića I. DIO (pitanja 56) OPĆA FIZIKA odgovori na ispitna pitanja (I. dio) Sažetak Ovo je prvi dio odgovora na pitanja iz kolegija

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. TRIGONOMETRIJA 5. Definicija trigonometrijskih funkcija Naj jednostavnija definicija trigonometrijskih funkcija dobije se promatranjem pravokutnog ( ) ( r) ( ) trokuta. Svaki takav trokut, za promatrani

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

F2_K1_geometrijska optika test 1

F2_K1_geometrijska optika test 1 F2_K1_geometrijska optika test 1 1. Granični lom i totalna refleksija. Izračunajte granični kut upada za sistem staklozrak, ako je indeks loma stakla 1,47. Primjena totalne refleksije na prizmi; jednakokračna

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD

VELEUČILIŠTE U RIJECI Prometni odjel. Zdenko Novak 1. UVOD 10.2012-13. VELEUČILIŠTE U RIJECI Prometni odjel Zdenko Novak TEHNIČKA SREDSTVA U CESTOVNOM PROMETU 1. UVOD 1 Literatura: [1] Novak, Z.: Predavanja Tehnička sredstva u cestovnom prometu, Web stranice Veleučilišta

Διαβάστε περισσότερα

EKSTERNA MATURA za učenike osnovne škole

EKSTERNA MATURA za učenike osnovne škole EKSTERNA MATURA za učenike osnovne škole ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 202/203. GODINI FIZIKA Stručni tim za fiziku: Maida Beganović Sanela Karović Mirsada Ţiko Sead Hanjalić Divna Petrović

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina

ŽUPANIJSKO NATJECANJE IZ FIZIKE Srednje škole 1. skupina ŽUPANIJSKO NATJECANJE IZ FIZIKE 6..9. Srednje škole. skupina. zadatak ( bodova) Tramvaj vozi između dvije stanice udaljene 6 m tako da polazi sa prve stanice iz mirovanja i ubrzava ubrzanjem m/s dok ne

Διαβάστε περισσότερα

E2. Električni titrajni krug

E2. Električni titrajni krug Električni titrajni krug 1 E. Električni titrajni krug 1. Ključni pojmovi Impedancija, rezonancija, faktor dobrote, LC titrajni krug. Teorijski uvod a) Slobodne oscilacije Serijski titrajni krug zamišljamo

Διαβάστε περισσότερα

Računske vežbe iz Fizike

Računske vežbe iz Fizike Računske vežbe iz Fizike Praktikum Decembar 2009 Mašinski Fakultet Kraljevo Zlatan Šoškić Predgovor Ovaj praktikum je zamišljen kao pomoćni materijal koji se koristi u nastavi predmeta Fizika na Mašinskom

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

GEOMETRIJA KUGLE I SFERE

GEOMETRIJA KUGLE I SFERE Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Ružica Korać GEOMETRIJA KUGLE I SFERE Diplomski rad Voditelj rada: doc.dr.sc. Maja Starčević Zagreb, rujan 2015. Svaki dan je

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE

AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE MJEŠOVITA SREDNJA TEHNIČKA ŠKOLA TRAVNIK AKTIVNI I REAKTIVNI OTPORI U KOLU NAIZMJENIČNE STRUJE Električna kola Profesor: mr. Selmir Gajip, dipl. ing. el. Travnik, februar 2014. Osnovni pojmovi- naizmjenična

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO

FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO FIZIKA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole MAJ, školske 2014/2015. godine UPUTSTVO Vrijeme rješavanja testa je 60 minuta. Ne otvarajte test dok vam test-administrator ne

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

='5$9.2 STRUJNI IZVOR

='5$9.2 STRUJNI IZVOR . STJN KGOV MŽ.. Strujni krug... zvori Skup elektrotehničkih elemenata koji su preko električnih vodiča međusobno spojeni naziva se električna mreža ili elektrotehnički sklop. električnoj mreži, kada su

Διαβάστε περισσότερα

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo, Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ FIZIKE 2012/13. ZA OSNOVNU ŠKOLU

ŽUPANIJSKO NATJECANJE IZ FIZIKE 2012/13. ZA OSNOVNU ŠKOLU ŽUPNIJSKO NTJECNJE IZ FIZIKE 2012/13. Z OSNOVNU ŠKOLU Uputa: U svim zadacima gdje je to potrebno koristiti g = 10 N/kg. 1. U posudu pravokutnog oblika ulijemo 55 ml vode. Dimenzije dna posude iznose 2

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

KORISNOST VJETROENERGIJE

KORISNOST VJETROENERGIJE Karla Srnec Željka Toplek Mentor: Karmena Vadlja-Rešetar, prof. karmena.vadlja-resetar@ck.t-com.hr KORISNOST VJETROENERGIJE Čakovec 11.02.2013. Gimnazija Josipa Slavenskog Čakovec Vladimira Nazora 34 40

Διαβάστε περισσότερα

STATIČKO I DINAMIČKO TRENJE. LITERATURA Physics with Computers 3rd edition, Vernier Software & Technology, 2003, POKUS 12.

STATIČKO I DINAMIČKO TRENJE. LITERATURA Physics with Computers 3rd edition, Vernier Software & Technology, 2003, POKUS 12. 1 STATIČKO I DINAMIČKO TRENJE LITERATURA Physics with Computers 3rd edition, Vernier Software & Technology, 2003, POKUS 12. PRIBOR Računalo s instaliranim programom Logger Pro, Vernier međusklop, drvena

Διαβάστε περισσότερα

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm?

4. Koliki naboj treba dati kugli mase 1 kg da ona lebdi ispod kugle s nabojem 0,07 µc na udaljenosti 5 cm? 1 Coulombov zakon 1. Koliki je omjer gravitacijske i elektrostatske sile izmedu dva elektrona? m e = 9, 11 10 31 kg 2. Na kojoj će udaljenosti u zraku odbojna sila izmedu dvaju jednakih naboja q 1 = q

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

PRIMJENJENA SATELITSKA NAVIGACIJA TEMELJNI POSTUPAK ODREĐIVANJA POLOŽAJA SATELITSKIM SUSTAVIMA

PRIMJENJENA SATELITSKA NAVIGACIJA TEMELJNI POSTUPAK ODREĐIVANJA POLOŽAJA SATELITSKIM SUSTAVIMA PRIMJENJENA SATELITSKA NAVIGACIJA TEMELJNI POSTUPAK ODREĐIVANJA POLOŽAJA SATELITSKIM SUSTAVIMA Satelitska navigacija Određivanje položaja i brzine pokretnog objekta (korisničke opreme) u prostornom koordinatnom

Διαβάστε περισσότερα

Franka Miriam Brückler. Travanj 2009.

Franka Miriam Brückler. Travanj 2009. Osnove kvantne kemije za matematičare Franka Miriam Brückler PMF-MO, Zagreb Travanj 2009. Nekoliko uvodnih zadataka Zadatak Odredite frekvenciju i valni broj elektromagnetskog zračenja valne duljine λ

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Preporuke za rješavanje ispita iz Matematike

Preporuke za rješavanje ispita iz Matematike Preporuke za rješavanje ispita iz Matematike Tijekom ocjenjivanja nacionalnih ispita i ispita državne mature, neovisno o razini, uvidjeli smo neke probleme pri rješavanju zadataka. Ovdje želimo navesti

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

TEMELJI MEHANIKE FLUIDA

TEMELJI MEHANIKE FLUIDA ŽELJKO ANDREIĆ TEMELJI MEHANIKE FLUIDA RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET ZAGREB 2014. SVEUČILIŠNI E-UDŽBENIK MANUALIA UNIVERSITATIS STUDIORUM ZAGRABIENSIS i ii Izdavač: Sveučilište u Zagrebu Rudarsko-geološko-naftni

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

Matematika 2 za kemičare Drugi kolokvij svibnja 2016.

Matematika 2 za kemičare Drugi kolokvij svibnja 2016. Napomene. Dozvoljena pomagala za rješavanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama i pribor za pisanje. Neće se bodovati nečitko pisani dijelovi testa. Napišite svoje ime,

Διαβάστε περισσότερα

1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m?

1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m? MATERIJALI ZA VJEŽBU IZ PREDMATA FIZIKA ZA 2. Razred ZADACI ZA VJEŽBU- PRVA PISMENA PROVJERA 1. Štap od platine dugačak je 998mm pri 20C. Pri kojoj će temperaturi biti dugačak 1m? 2. Ako se pri stalnom

Διαβάστε περισσότερα

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE

2. METODE RJEŠAVANJA STRUJNIH KRUGOVA ISTOSMJERNE STRUJE 2. METOE RJEŠVNJ STRUJNH KRUGOV STOSMJERNE STRUJE U svrhu lakšeg snalaženja u analizi složenih strujnih krugova i električnih mreža uvode se nazivi za pojedine dijelove mreže. Onaj dio električne mreže

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Mehanika, kinematika i elastičnost

Mehanika, kinematika i elastičnost Mehanika, kinematika i elastičnost Marko Petković Sreda, 9. Mart 006. god. 1 Osnovne relacije 1. Drugi Njutnov zakon: m v t = F ; m a = F + mω R + m( v ω). Priraštaj impulsa sistema: p p 1 = F t (ako je

Διαβάστε περισσότερα

Vježbe iz matematike 1

Vježbe iz matematike 1 Vježbe iz matematike B. Ivanković N. Kapetanović 8. rujna 005. Uvod Vježbe su tijekom dugog niza održavanja nadopunjavane. Osnovu vježbi napravila je Nataša Kapetanović, ing. matematike, a podebljao ih

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20.

ispod 20, što joj daje odlike izvrsne antene za DX rad na 80 m opsegu gdje je optimalni elevacijski kut od 15 do 20. Piše: Mladen Petrović, 9A4ZZ GP antena EVA-DX 80 Ground plane antenna EVA-DX 80 Uobičajeno je da se vertikalne antene visine reda λ/4 i više, za donje opsege 40 m, 80 m i 160 m postavljaju neposredno iznad

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

MATEMATIKA 7. razred osnovne škole

MATEMATIKA 7. razred osnovne škole Matematika 7. razred osnovne škole 1 MATEMATIKA 7. razred osnovne škole KOORDINATNI SUSTAV 1. Koordinatni sustav na pravcu Koordinatni sustav na pravcu, ishodište, jedinična dužina koordinata točke. Pridruživanje

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcije 9 i 10 Elementarne funkcije. Funkcije važne u primjenama Lekcije iz Matematike 1. 9. i 10. Elementarne funkcije. Funkcije vaºne u primjenama I. Naslov i obja²njenje

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Matematika 1 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić.

Matematika 1 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić. Ivan Slapničar Marko Matić Matematika 1 PODSJETNIK ZA UČENJE http://www.fesb.hr/mat1 Fakultet elektrotehnike, strojarstva i brodogradnje Split, 2001. Sadržaj 1 Osnove matematike 3 2 Linearna algebra 4

Διαβάστε περισσότερα

RIJEŠENI ZADACI IZ MATEMATIKE

RIJEŠENI ZADACI IZ MATEMATIKE RIJEŠENI ZADACI IZ MATEMATIKE Ovi zadaci namijenjeni su studentima prve godine za pripremu ispitnog gradiva za kolokvije i ispite iz matematike. Pripremljeni su u suradnji i po uputama predmetnog nastavnika

Διαβάστε περισσότερα

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE Sadržaj DVOSTRUKI INTEGRALI TROSTRUKI INTEGRALI 3 VEKTORSKA ANALIZA 4 KRIVULJNI INTEGRALI 34 5 PLOŠNI

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto?

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Franka Miriam Brückler Igor Pažanin Zagreb, 2012. Sadržaj 1 Uvod 7 1.1 Varijable i konstante............................

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

PREDMECI ZA TVORBU DECIMALNIH JEDINICA

PREDMECI ZA TVORBU DECIMALNIH JEDINICA OSNOVNE S. I. JEDINICE Naziv jedinice Znak jedinice Fizikalna veličina i znak metar m duljina s, d, l kilogram kg masa m sekunda s vrijeme t amper A jakost električne struje I, i kelvin K termodinamička

Διαβάστε περισσότερα

Elektromagnetska indukcija

Elektromagnetska indukcija Elektromagnetska indukcija Povijesni pregled -1831. Michael Faraday (Engleska) i Joseph Henry (SAD) promjena magnetskog polja može inducirati ems. Faradayev zakon indukcije: promjena magnetskog toka inducira

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα