ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005"

Transcript

1 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ιάρκεια: 17:00-20:00 Υποθέστε ότι σχεδιάζετε έναν µεταγλωττιστή για κάποια µηχανή µε έναν καταχωρητή και τις παρακάτω εντολές: # Εντολή Περιγραφή Κόστος εντολής 1 DOUBLE ιπλασιάζει το περιεχόµενο του καταχωρητή n 2 ADD Προσθέτει 1 στο περιεχόµενο του καταχωρητή 1 3 SUB Αφαιρεί ένα από το περιεχόµενο του καταχωρητή 1 Μας ενδιαφέρει το πρόβληµα της καταχώρησης συγκεκριµένων τιµών στον καταχωρητή. Θεωρείστε ότι αρχικά στον καταχωρητή βρίσκεται η τιµή 1, ενώ στόχος µας είναι να καταχωρήσουµε την τιµή 7. Θεωρείστε ως ευρετική συνάρτηση την h(n)= 7-n. α) Λύστε το πρόβληµα µε την αναζήτηση πρώτα στο καλύτερο. (1) Υπόδειξη: Συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x - 1 x 2 D y, 2 A z, 0 S w όπου οι δείκτες D, A κλπ δείχνουν το σύνολο των εντολών που εκτελέστηκαν (τα αρχικά τους γράµµατα) για να φθάσουµε από την αρχική στην τρέχουσα κατάσταση, ενώ οι εκθέτες είναι η βαθµολογία κάθε κατάστασης. β) Λύστε το ίδιο πρόβληµα µε την αναζήτηση Α*. Μεταξύ ισόβαθµων καταστάσεων (διανυθέν διάστηµα συν ευρετική τιµή), χρησιµοποιείστε ως δευτερεύον κριτήριο την ευρετική τιµή. (1) Υπόδειξη: Παρόµοια µε το ερώτηµα α), συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x-y - 1 x-y 2 D z-w, 2 A a-b, 0 S c-d όπου το πρώτο νούµερο στον εκθέτη είναι η συνολική βαθµολογία της κατάστασης, ενώ το δεύτερο είναι η ευρετική τιµή της απόστασης από το στόχο (για χρήση σε περίπτωση ισοβαθµίας). γ) Σχολιάστε συγκριτικά τα αποτελέσµατα που βρήκατε στα ερωτήµατα α) και β). (0.5) Απάντηση: α) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο πρώτα στο καλύτερο. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα κατάσταση Παιδιά

2 D 5, 2 A 5, 0 S 7 2 D 5, 2 A 5, 0 S D 5 4 DD 3, 3 DA 4, 1 DS 6, 4 DD 3, 3 DA 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5 4 DD 3 8 DDD 1, 5 DDA 2, 3 DDS 4 8 DDD 1, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5, 4 DD 3 8 DDD 1 16 DDDD 9, 9 DDDA 2, 7 DDDS 0 7 DDDS 0, 9 DDDA 2, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7, 16 DDDD , 2 D 12, 4 DD 10, 7 DDDS 0 Λύση! 8 DDD 1 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE-DOUBLE-DOUBLE- SUB, µε κόστος εκτέλεσης =8. β) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο Α*. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται ο βαθµός της κατάστασης καθώς και η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση D 6-5, 2 A 6-5, 0 S D 6-5, 2 A 6-5, 0 S D DD 6-3, 3 DA 6-4, 1 DS DD 6-3, 3 DA 6-4, 2 A 6-5, 1 DS 8-6, 0 S , 2 D DD DDD 8-1, 5 DDA 6-2, 3 DDS DDA 6-2, 3 DA 6-4, 2 A 6-5, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S , 2 D 6-5, 4 DD DDA DDAD 12-3, 6 DDAA 6-1, 4 DDAS DDAA 6-1, 3 DA 6-4, 2 A 6-5, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD DDAAA 6-0, 3 DA 6-4, 2 A 6-5, 5 DDAAS 8-2, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD 12-3, 12 DDAAD , 2 D 6-5, 4 DD 6-3, 6 DDAA DDA , 2 D 6-5, 4 DD 6-3, 7 DDAAA 6-0 Λύση! 5 DDA 6-2, 6 DDAA DDAAD 16-5, 7 DDAAA 6-0, 5 DDAAS 8-2 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE- DOUBLE- ADD-ADD- ADD, µε κόστος εκτέλεσης =6. γ) Παρατηρούµε ότι ο αλγόριθµος Α* βρήκε καλύτερη λύση από τον αλγόριθµο πρώτα-στοκαλύτερο. Αυτό ήταν αναµενόµενο µιας και η ευρετική συνάρτηση στο συγκεκριµένο πρόβληµα είναι παραδεκτή, οπότε είναι σίγουρο ότι ο αλγόριθµος Α* θα βρει την βέλτιστη, από πλευράς κόστους, λύση. Βέβαια, θα µπορούσε, εάν είχαµε διαφορετικό στόχο (π.χ. τον αριθµό 6 αντί τον αριθµό 7), να βρει την βέλτιστη λύση και ο αλγόριθµος πρώτα στο καλύτερο. Ωστόσο, µε δεδοµένο ότι η ευρετική συνάρτηση είναι παραδεκτή, δεν υπάρχει περίπτωση ο αλγόριθµος πρώτα στο καλύτερο να βρει καλύτερη λύση από τον αλγόριθµο Α*. ΘΕΜΑ 2 ο (2.5 µονάδες)

3 Το πρόβληµα της ζέβρας: Υπάρχουν πέντε σπίτια στη σειρά (αριθµούνται από το 1 στα αριστερά έως το 5 στα δεξιά), κάθε ένα µε διαφορετικό χρώµα (C1, C2, C3, C4, C5), που κατοικούνται από ιδιοκτήτες διαφορετικής εθνικότητας (N1, N2, N3, N4, N5). Κάθε ιδιοκτήτης έχει ένα διαφορετικό ζώο (P1, P2, P3, P4, P5), πίνει διαφορετικό ποτό (D1, D2, D3, D4, D5) και καπνίζει διαφορετικά τσιγάρα (S1, S2, S3, S4, S5) από τους υπόλοιπους ιδιοκτήτες Μας δίνονται οι παρακάτω πληροφορίες: 1. Ο Άγγλος µένει στο κόκκινο σπίτι. 2. Ο Ισπανός έχει έναν σκύλο. 3. Ο ιδιοκτήτης του πράσινου σπιτιού πίνει καφέ. 4. Ο Ουκρανός πίνει τσάι. 5. Το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ σπίτι. 6. Ο ιδιοκτήτης που καπνίζει Oldgold, έχει ένα σαλιγκάρι. 7. Ο ιδιοκτήτης του κίτρινου σπιτιού καπνίζει Kools. 8. Ο ιδιοκτήτης του µεσσαίου σπιτιού πίνει γάλα. 9. Ο Νορβηγός κατοικεί στο πρώτο σπίτι στα αριστερά. 10. Αυτός που καπνίζει Chesterfield µένει δίπλα στον κάτοχο της αλεπούς. 11. Το κίτρινο σπίτι είναι δίπλα στον ιδιοκτήτη του αλόγου. 12. Αυτός που καπνίζει Lucky Strike πίνει χυµό. 13. Ο Γιαπωνέζος καπνίζει Parliament. 14. Ο Νορβηγός µένει δίπλα στο µπλε σπίτι. Απαντήστε στις παρακάτω ερωτήσεις: α) Ποιος πίνει νερό; (1.5) β) Ποιος είναι ο ιδιοκτήτης της ζέβρας; (1) Υπόδειξη: Χρησιµοποιείστε έναν πίνακα σαν τον παρακάτω για να εκτελέσετε διάδοση των περιορισµών. C1 κόκκινο, C2 κόκκινο, C3 κόκκινο, C4 κόκκινο, C5 κόκκινο, πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε N1 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P1 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N2 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P2 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N3 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P3 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N4 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P4 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N5 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P5 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα D1 καφές, τσάι, D2 καφές, τσάι, D3 καφές, τσάι, D4 καφές, τσάι, D5 καφές, τσάι, γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός, νερό, νερό, νερό, νερό, νερό S1 Oldgold, Kools, S2 Oldgold, S3 Oldgold, Kools, S4 Oldgold, Kools, S5 Oldgold, Chesterfield, LuckyStrike, Kools, Chesterfield, Chesterfield, LuckyStrike, Chesterfield, LuckyStrike, Kools, Chesterfield,

4 Parliament LuckyStrike, Parliament Parliament Parliament LuckyStrike, Parliament Απάντηση: Συµβολίζουµε µε κεφαλαία γράµµατα τις µεταβλητές, όπως στην εκφώνηση. Έχουµε συνολικά 25 µεταβλητές, για το χρώµα, την εθνικότητα, το ζώο, το ποτό και τα τσιγάρα (προσοχή: εν είναι µεταβλητές τα ίδια τα σπίτια αλλά οι ιδιότητες των σπιτιών). Σχετικά µε τα πεδία αυτών των µεταβλητών παρατηρούµε τα εξής: Στην εκφώνηση αναφέρονται πέντε χρώµατα, τα {c1=κόκκινο, c2=πράσινο, c3=κρεµ, c4=κίτρινο, c5=µπλε}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών C1, C2, C3, C4, C5. Στην εκφώνηση αναφέρονται πέντε εθνικότητες, οι {n1=άγγλος, n2=ισπανός, n3=ουκρανός, n4=νορβηγός, n5=γιαπωνέζος}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών Ν1, Ν2, Ν3, Ν4, Ν5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ζώα, τα {p1=σκύλος, p2=σαλιγκάρι, p3=αλεπού, p4=άλογο, p5=ζέβρα}, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών P1, P2, P3, P4, P5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ποτά, τα {d1=καφές, d2=τσάι, d3=γάλα, d4=χυµός, d5=νερό }, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών D1, D2, D3, D4, D5. Στην εκφώνηση αναφέρονται πέντε µάρκες τσιγάρων, οι {s1=oldgold, s2=kools, s3=chesterfield, s4=luckystrike, s5=parliament}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών S1, S2, S3, S4, S5. Ο παρακάτω πίνακας έχει τα αρχικά πεδία ορισµού όλων των µεταβλητών. C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n1,n2,n3,n4,n5 N2 n1,n2,n3,n4,n5 N3 n1,n2,n3,n4,n5 N4 n1,n2,n3,n4,n5 N5 n1,n2,n3,n4,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Θεωρούµε δεδοµένο ότι το πρόβληµα έχει λύση. Θα εφαρµόσουµε τη γνωστή τεχνική διάδοσης περιορισµών, µε σκοπό να διαγράψουµε όσο το δυνατόν περισσότερες τιµές από τα πεδία των µεταβλητών, µέχρις να µην µπορεί να διαγραφεί καµία άλλη τιµή. Στο σηµείο αυτό ελπίζουµε ότι κάποιες µεταβλητές θα έχουν πάρει µοναδική τιµή, ώστε να είναι δυνατή η απάντηση των ερωτήσεων. Από την πρόταση 9 προκύπτει ότι Ν1=n4, άρα η τιµή n4 αφαιρείται από τις µεταβλητές N2, N3, N4, N5: C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Από την πρόταση 14 προκύπτει ότι το δεύτερο σπίτι είναι µπλε. Άρα C2=c5 και η τιµή c5 αφαιρείται από τα πεδία των µεταβλητών C1, C3, C4, C5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5

5 Από την πρόταση 8 προκύπτει ότι D3=D3 και η τιµή d3 αφαιρείται από τα πεδία των µεταβλητών D1, D2, D4, D5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Γνωρίζοντας ότι στο πρώτο σπίτι κατοικεί ο Νορβηγός, και λαµβάνοντας υπόψη διάφορες προτάσεις σχετικά µε ζώα, χρώµατα, ποτά και τσιγάρα διαφόρων άλλων ιδιοκτητών, αφαιρούµε τις αντίστοιχες τιµές από το πεδίο των µεταβλητών που αναφέρονται στο πρώτο σπίτι. Έτσι, λαµβάνοντας υπόψη τις προτάσεις 1, 2, 4 και 13, έχουµε: C1 c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Η πρόταση 5 µας λέει ότι το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ. Με δεδοµένο ότι το δεύτερο σπίτι είναι µπλε, το κρεµ σπίτι πρέπει να είναι είτε το τρίτο, είτε το τέταρτο, και αντίστοιχα το πράσινο σπίτι πρέπει να είναι είτε το τέταρτο είτε το πέµπτο. Άρα η τιµή c3=κρεµ αφαιρείται από τις µεταβλητές C1, C2 και C5, ενώ η τιµή c2=πράσινο αφαιρείται από τις µεταβλητές C1, C2 και C3. Επιπλέον, η µεταβλητή C4 µπορεί να έχει τιµή είτε c3=κρεµ είτε c2=πράσινο: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Βλέπουµε ήδη ότι το πρώτο σπίτι είναι c4=κίτρινο! Έτσι µπορούµε να βγάλουµε τα παρακάτω συµπεράσµατα: από την 1 προκύπτει ότι σε αυτό δεν µένει ο n1=άγγλος, από την 4 προκύπτει ότι ο ιδιοκτήτης του πρώτου σπιτιού δεν πίνει d1=καφέ, από την 7 προκύπτει ότι o ιδιοκτήτης του πρώτου σπιτιού καπνίζει s2=kools, οπότε η τιµή s2 αφαιρείται από τις S2, S3, S4 και S5, από την 11 προκύπτει ότι ο ιδιοκτήτης του δεύτερου σπιτιού έχει p4=άλογο, οπότε η τιµή p4 αφαιρείται από τις P1, P3, P4, P5. Έτσι τα πεδία των µεταβλητών γίνονται: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p5 P2 p4 P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s2 S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι ο Νορβηγός, που µένει στο πρώτο σπίτι, δεν πίνει d4=χυµό, άρα η τιµή d4 αφαιρείται από την D1 και αποµένει η τιµή d5=νερό, η οποία µε τη σειρά της αφαιρείται από τις D2, D3, D4, D5. Επίσης από την 6 προκύπτει ότι ο Νορβηγός δεν έχει p2=σαλιγκάρι: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d1,d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5

6 Έχουµε λοιπόν απαντήσει στο ερώτηµα α) σχετικά µε το ποιος πίνει νερό: Είναι ο Νορβηγός, ο οποίος µένει στο πρώτο σπίτι. Από την 3 και µε δεδοµένο ότι η τιµή c2=πράσινο εµφανίζεται µόνο στο 4 ο και το 5 ο σπίτι, προκύπτει ότι η τιµή d1=καφές µπορεί να εµφανίζεται µόνο σε αυτά τα σπίτια, οπότε αφαιρείται από την D2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 1 προκύπτει ότι η τιµή n1=άγγλος δεν µπορεί να είναι ιδιοκτήτης κανενός σπιτιού το οποίο δεν µπορεί να είναι c1=κόκκινο. Έτσι η τιµή n1 αφαιρείται από την Ν2 και από την Ν4. C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι ο Ουκρανός δεν µένει στο τρίτο σπίτι, µιας και αν έµενε εκεί θα έπινε γάλα. Άρα η τιµή n3=ουκρανός αφαιρείται από τη µεταβλητή N3: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 3 ο σπίτι δεν καπνίζει s4=luckystrike: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 2 προκύπτει ότι στο 2 ο σπίτι δεν κατοικεί n2=ισπανός, άρα αφαιρείται η τιµή n2 από τη µεταβλητή Ν2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 6 προκύπτει ότι στο 2 ο σπίτι δεν καπνίζουν s1=oldgold: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Στο σηµείο αυτό δεν µπορούµε να κόψουµε άλλες τιµές, οπότε επιλέγουµε να κάνουµε κάποια ανάθεση. Έστω ότι C4=c2=πράσινο. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C3=c3 και άρα C5=c1:

7 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n3,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 4 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 5 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Από την 4 προκύπτει ότι ο n3=ουκρανός µένει στο 2 ο σπίτι και πίνει d2=τσάι. Οι τιµές αυτές αφαιρούνται από τις υπόλοιπες µεταβλητές, µε αποτέλεσµα να προκύψει ότι ο Άγγλος πίνει χυµό : N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Πλέον, από την 12 προκύπτει ότι ο Άγγλος καπνίζει s4=luckystrike. Η τιµή αυτή διαγράφεται από τις υπόλοιπες µεταβλητές: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s4=luckystrike Από την 6 προκύπτει ότι ο Άγγλος δεν έχει p2=σαλιγκάρι και από την 2 προκύπτει ότι ο Άγγλος δεν έχει p1=σκύλο. Επίσης από την 13 προκύπτει ότι ο Ουκρανός δεν καπνίζει s5=parliament: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike

8 Παρατηρώντας τις τιµές των µεταβλητών P1, P3, P4, P5, οι οποίες πρέπει να είναι όλες διαφορετικές µεταξύ τους, βλέπουµε ότι δύο µεταβλητές, οι P1 και P5, µοιράζονται τις ίδιες δύο τιµές, p3 και p5. Άρα, αυτές οι δύο τιµές, p3 και p5, δεν µπορούν να εµφανίζονται στις µεταβλητές Ρ3 και Ρ4: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Από την 10 προκύπτει ότι δίπλα στο 2 ο σπίτι θα υπάρχει p3=αλεπού. Λαµβάνοντας υπόψη τα πεδία των µεταβλητών P1 και P3 φαίνεται ότι η αλεπού είναι στο πρώτο σπίτι, οπότε προκύπτει ότι στο 5 ο σπίτι είναι η p5=ζέβρα: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3=αλεπού P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Στο σηµείο αυτό δεν έχουµε τελειώσει, πρέπει να δούµε εάν υπάρχουν τιµές και για τις υπόλοιπες µεταβλητές που δεν έχουν πάρει τιµή. υστυχώς φαίνεται ότι καταλήγουµε σε άτοπο: Πράγµατι, από τις 2 και 6 προκύπτει ότι ο Ισπανός δεν καπνίζει Oldgold, άρα καπνίζει Parliament, που όµως είναι η µάρκα που σύµφωνα µε την 13 καπνίζει ο Γιαπωνέζος. Στο σηµείο αυτό επιστρέφουµε στο σηµείο που κάναµε επιλογή σχετικά µε τα χρώµατα των σπιτιών, και κάνουµε την άλλη επιλογή. Έστω ότι C4=c3=κρεµ. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C5=c2=πράσινο και άρα C3=c1=κόκκινο: N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 5 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 3 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5

9 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 2 προκύπτει ότι στο 3 ο σπίτι, όπου κατοικεί ο Άγγλος, δεν µπορεί να έχουν p1=σκύλο: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Στο σηµείο αυτό δεν µπορεί να γίνει περαιτέρω διαγραφή τιµών, οπότε καταφεύγουµε και πάλι σε επιλογή. Έστω D2=d2=τσάι, οπότε D4=d4=χυµός : N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s5 S3 s1,s3 S4 s4=luckystrike S5 s1,s3,s5 Από την 13 προκύπτει ότι ο n5=γιαπωνέζος είναι στο 5 ο σπίτι, µιας και δεν θα µπορούσε να είναι πλέον στο 4 ο και καπνίζει s5=parliament. Άρα στο 2 ο σπίτι είναι ο Ισπανός, ενώ ο Ουκρανός καπνίζει s3=chesterfield και ο Άγγλος s1=oldgold: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament Πλέον, από τις 2, 6 και 10 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε σύµφωνα µε αυτή τη λύση τη ζέβρα την έχει ο Γιαπωνέζος. Πρέπει όµως να ελέγξουµε και την εναλλακτική περίπτωση στο τελευταίο σηµείο επιλογής. Έστω λοιπόν ότι D2=d4=χυµός και, οπότε D4= d2=τσάι: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές

10 S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n5=γιαπωνέζος N3 n1=άγγλος N4 n3=ουκρανός N5 n2=ισπανός P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές S1 s2=kools S2 s4=luckystrike S3 s1,s3 S4 s1,s3,s5 S5 s1,s3,s5 Στο σηµείο αυτό όµως έχουµε καταλήξει σε άτοπο, γιατί παραβιάζεται η πρόταση 13. Άρα δεν υπάρχει δεύτερη λύση, οπότε η µοναδική πλήρης λύση του προβλήµατος είναι η: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε τη ζέβρα την έχει ο Γιαπωνέζος! ΘΕΜΑ 3 ο (2.5 µονάδες) Έστω το παιχνίδι της τρίλιζας, στο οποίο ο παίκτης MAX, που παίζει πρώτος, έχει τα Χ, ενώ ο MIN τα O. Έστω ότι οι δύο παίκτες έχουν ήδη πραγµατοποιήσει από µια κίνηση ο καθένας, και η κατάσταση στην τρίλιζα έχει ως εξής: Ο X Τώρα είναι η σειρά του MΑΧ να κάνει τη δεύτερή του κίνηση. Βρείτε ποια θα είναι αυτή, κατασκευάζοντας το δένδρο του παιχνιδιού µέχρι βάθος δύο στρώσεων (δηλαδή µία κίνηση του MΑΧ και µια απάντηση του MΙΝ), ξεκινώντας από την παραπάνω κατάσταση. Χρησιµοποιείστε για ευρετική συνάρτηση την εξής: Για µια κατάσταση p, ο βαθµός h(p) ορίζεται ως: h(p) = +, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MAX. h(p) = -, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MIN. h(p) = το πλήθος των γραµµών, στηλών, διαγωνίων στις οποίες ο MIN δεν κατέχει καµία θέση, µείον το πλήθος των γραµµών στηλών, διαγωνίων στις οποίες ο MAX δεν κατέχει καµία θέση, εφόσον η κατάσταση p δεν είναι τελική. Για παράδειγµα ο βαθµός της παρακάτω καταστάσης είναι h(p)=4-2=2. O X Ο X Υπόδειξη: Για να περιορίσετε το πλήθος των κλαδιών του δένδρου του παιχνιδιού, λάβετε υπόψη σας την συµµετρία για να κλαδέψετε καταστάσεις. Για παράδειγµα, οι παρακάτω δύο καταστάσεις, που αντιστοιχούν σε διαφορετικές δεύτερες κινήσεις του MΑΧ (µε δεδοµένες τις πρώτες κινήσεις και των δύο παικτών, όπως αυτές ορίστηκαν παραπάνω), είναι συµµετρικές, άρα χρειάζεται να συµπεριλάβετε στο δένδρο του παιχνιδιού µόνο µία από αυτές.

11 Ο Χ Ο Χ Χ Χ Απάντηση: Ο παίκτης MΑΧ έχει στην διάθεσή του δύο τέσσερις µη συµµετρικές κινήσεις, οι οποίες φαίνονται παρακάτω: Ο Χ Ο Χ Ο Ο Χ Χ Χ Χ Χ Α Β C D Χ Εάν ο ΜΑΧ επιλέξει την κίνηση Α, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Χ Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Χ Ο Χ Χ Χ Ο Χ Ο Ο Ο Ε F G H I J Εάν ο ΜΑΧ επιλέξει την κίνηση Β, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Ο Χ Χ Χ Χ Χ Ο Ο Ο Ο K L M N O P Εάν ο ΜΑΧ επιλέξει την κίνηση Γ, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Ο Ο Ο Ο Ο Ο Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Ο Χ Χ Ο Ο Ο Q R S T U V Τέλος, εάν ο ΜΑΧ επιλέξει την κίνηση, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 3 και είναι οι εξής: Ο Ο Ο Ο Ο Χ Χ Χ Ο Χ Χ Χ W X Y Παρακάτω φαίνεται το δένδρο του παιχνιδιού, από την τρέχουσα κατάσταση και για βάθος 2. Τα φύλλα του δένδρου έχουν βαθµολογηθεί και οι τιµές έχουν µεταφερθεί µέχρι τη ρίζα µε τον αλγόριθµο minimax. Από το δένδρο είναι φανερό ότι η κίνηση που πρέπει να επιλέξει ο παίκτης MΙΝ είναι η Α.

12 MAX ΜIN Α=0 Β=1 C=-1 D=1 K=2 M=1 O=1 W=2 X=1 Y=1 L=2 N=1 P=1 E=0 G=0 I=0 Q=1 S=0 U=0 F=0 H=0 J=1 R=0 T=-1 V=0 Παρατηρούµε ότι υπάρχει ισοβαθµία µεταξύ των κινήσεων Β και D. Ο παίκτης MAX πρέπει να επιλέξει µια από τις δύο αυτές κινήσεις τυχαία, ή να επεκτείνει το δένδρο σε µεγαλύτερο βάθος, ώστε να βγάλει πιο ακριβή συµπεράσµατα. ΘΕΜΑ 4 ο (2.5 µονάδες) Αναπαραστήστε τις παρακάτω προτάσεις σε λογική πρώτης τάξης: α) Μερικοί φοιτητές εγγράφηκαν στο µάθηµα των Γαλλικών την άνοιξη του (0.7) β) Κάθε φοιτητής που εγγράφεται στο µάθηµα των Γαλλικών το περνά (δηλαδή ο βαθµός του είναι µεγαλύτερος ή ίσος του 5). (0.7) γ) Μόνο ένας φοιτητής εγγράφηκε στο µάθηµα των Ελληνικών την άνοιξη του (0.7) δ) Ο καλύτερος βαθµός στα Ελληνικά είναι πάντα µεγαλύτερος από τον καλύτερο βαθµό στα Γαλλικά. (0.4) Υπόδειξη: Χρησιµοποιείστε τα παρακάτω κατηγορήµατα: Φοιτητής(x): Ο x είναι φοιτητής Εγγραφή(x,y,z,w): Ο x εγγράφηκε στο µάθηµα y κατά το εξάµηνο z της χρονιάς w. Βαθµός(x,y,z,w,v): Ο βαθµός του x στο µάθηµα y κατά το εξάµηνο z της χρονιάς w είναι ίσος µε v. Απάντηση: α) x, Φοιτητής(x) Εγγραφή(x, Γαλλικά, Άνοιξη, 2001). β) x, z, w, Φοιτητής(x) Εγγραφή(x, Γαλλικά, z, w) Βαθµός(x, Γαλλικά, z, w, v) v 5. γ) x, Φοιτητής(x) Εγγραφή(x, Ελληνικά, Άνοιξη, 2001) y, x y Φοιτητής(y) Εγγραφή(y, Ελληνικά, Άνοιξη, 2001). δ) x1, x2, v1, v2, z, w, Φοιτητής(x1) Φοιτητής(x2) Βαθµός(x1,Ελληνικά,z,w,v1) Βαθµός(x2,Γαλλικά,z,w,v2) ( x10, v10, Φοιτητής(x10) Βαθµός(x10,Ελληνικά,z,w,v10) v1 v10) ( x20, v20, Φοιτητής(x20) Βαθµός(x20,Γαλλικά,z,w,v20) v2 v20) v1>v2.

13 ΘΕΜΑ 5 ο (2.5 µονάδες) Έστω ένα απλοποιηµένο πρόβληµα συναρµολόγησης της µηχανής ενός αυτοκινήτου, το οποίο απαιτεί πρώτα να µπει η µηχανή, µετά οι τροχοί και τέλος να γίνει η επιθεώρηση. Έχουµε τρεις ενέργειες: Action(ΠροσθήκηΜηχανής(e, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: Μηχανή(e, c, d ) Σασί(c) ΜηχανήΕντός(c), ΕΠΙ ΡΑΣΕΙΣ: ΜηχανήΕντός( c ) ιάρκεια( d )) Action(ΠροσθήκηΤροχών(w, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: ΤροχοίΕπί(c) ιάρκεια(d)) Action(Επιθεώρηση(c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) ΤροχοίΕπί(c) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: Έτοιµο(c) ιάρκεια(10)) Η αρχική κατάσταση και οι στόχοι είναι οι εξής: Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15)) Goal(Έτοιµο(C 1 ) Έτοιµο(C 2 )) Τα κατηγορήµατα των παραπάνω δηλώσεων έχουν την εξής σηµασία: Μηχανή(e,c,d): Η µηχανή e µπορεί να τοποθετηθεί στο σασί c σε χρόνο d. Σασί(c): Υπάρχει το σασί c. ΜηχανήΕντός(c): Έχει ήδη τοποθετηθεί µηχανή στο σασί c. Τροχοί(w, c, d): Οι τροχοί w µπορούν να τοποθετηθούν στο σασί c σε χρόνο d. ΤροχοίΕπί(c): Έχουν ήδη τοποθετηθεί τροχοί στο σασί c. Έτοιµο(c): Έχει ολοκληρωθεί ο έλεγχος στο σασί c. α) Καταστρώστε ένα πλάνο που να λύνει το πρόβληµα, χωρίς να λάβετε υπόψη σας τις διάρκειες των ενεργειών. εν είναι απαραίτητο να δείξετε τα βήµατα που ακολουθήσατε για να βρείτε το πλάνο. (0.5) β) Βρείτε το κρίσιµο µονοπάτι σε αυτό το πλάνο. Με βάση το µήκος του κρίσιµου µονοπατιού, υπολογείστε τον νωρίτερο και τον αργότερο χρόνο έναρξης όλων των ενεργειών στο πλάνο που βρήκατε. (1) γ) Θεωρείστε ότι υπάρχει ένα µόνο βαρούλκο για την ανύψωση της µηχανής, ένας σταθµός τοποθέτησης τροχών και δύο επιθεωρητές. Πώς τροποποιείται το πλάνο που βρήκατε στο ερώτηµα (β); Ποιος είναι τώρα ο ελάχιστος χρόνος εκτέλεσης του πλάνου; (διερευνείστε όλες τις περιπτώσεις) (1) Απάντηση: α, β)

14 γ) Ο συνολικός χρόνος εκτέλεσης θα ήταν µεγαλύτερος, εάν επιλέγαµε να τοποθετήσουµε τη µηχανή πρώτα στο δεύτερο όχηµα. ΑΠΑΝΤΗΣΤΕ 4 ΑΠΟ ΤΑ ΠΑΡΑΠΑΝΩ 5 ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΘΕΜΑ 1 ο Έστω το πρόβληµα της τοποθέτησης τεσσάρων (4) βασιλισσών πάνω σε µια σκακιέρα 4x4, έτσι ώστε να µην απειλεί η µία την άλλη. Προσπαθήστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ/ΜΕΣΟΛΟΓΓΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015 29/12/2014 Παράδοση Εργασίας: 31/01/2015 Γενικά: ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΠΑΡΑΔΟΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Συνδυαστικής

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

1. ΓΕΝΙΚΑ 2. ΠΡΟΚΡΙΜΑΤΙΚΑ 3. ΤΕΛΙΚΟΙ. Για το 2013 το πρωτάθληµα θα έχει την εξής µορφή:

1. ΓΕΝΙΚΑ 2. ΠΡΟΚΡΙΜΑΤΙΚΑ 3. ΤΕΛΙΚΟΙ. Για το 2013 το πρωτάθληµα θα έχει την εξής µορφή: ΚΑΝΟΝΙΣΜΟΙ ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1/8 IC OFF ROAD ΕΛ.Μ.Ε. 2013 Υπεύθυνος Κλάδου ΣΤΑΘΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ (τηλ. 6944648548) bd@el-me.gr 1 Κλάδος 1/8 Off Rad 2013 ΜΟΡΦΗ ΑΓΩΝΩΝ 1. ΓΕΝΙΚΑ Για το 2013 το πρωτάθληµα θα

Διαβάστε περισσότερα

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ Το SLEUTH είναι ένα φανταστικό παιχνίδι έρευνας για 3 έως 7 παίκτες. Μέσα από έξυπνες ερωτήσεις προς τους αντιπάλους του, κάθε παίκτης συλλέγει στοιχεία και έπειτα, χρησιμοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B)

P (A B) = P (A) + P (B) P (A B) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 1 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Ο εκφωνητής του δελτίου καιρού δίνει

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Σχεδιασµός και δράση στον πραγµατικό κόσµο

Σχεδιασµός και δράση στον πραγµατικό κόσµο Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W

Διαβάστε περισσότερα

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου Για την ενότητα αυτή απαιτούνται τα εξής: Εργαλεία Υλικά Κόφτης Στραυροκατσάβιδο Κατσαβίδι Μυτερή πένσα Δράπανο Κολλητήρι Τρυπάνι 6mm Μέγγενη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) 2004

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) 2004 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) 2004 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Οδηγίες εγκατάστασης εφαρµογής διαβίβασης εντολών Χ.Α.Α. µέσω της EUROCORP Χρηµατιστηριακής Σελίδα 1 από 11

Οδηγίες εγκατάστασης εφαρµογής διαβίβασης εντολών Χ.Α.Α. µέσω της EUROCORP Χρηµατιστηριακής Σελίδα 1 από 11 Οδηγίες εγκατάστασης εφαρµογής διαβίβασης εντολών Χ.Α.Α. µέσω της EUROCORP Χρηµατιστηριακής Σελίδα 1 από 11 Οδηγίες εγκατάστασης - σύνδεσης προγράµµατος Σε έναν browser (π.χ. Internet Explorer) πληκτρολογείστε

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

Οδοραµα mobile ΑΠΟΘΗΚΗ

Οδοραµα mobile ΑΠΟΘΗΚΗ Οδοραµα mobile ΑΠΟΘΗΚΗ Όπως βλέπετε, η αρχική οθόνη της εφαρµογής διαθέτει 9 κουµπιά τα οποία σας επιτρέπουν να πλοηγηθείτε σε αυτό. Αρχίζοντας από πάνω αριστερά βλέπετε τα εξής: 1. Τιµολόγηση: Προβολή

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Edward de Bono s. Six Thinking Hats. Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων)

Edward de Bono s. Six Thinking Hats. Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων) Edward de Bono s Six Thinking Hats Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων) ρ. Αικατερίνη Πουστουρλή, για το ΛΑΪΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΕΡΡΩΝ 19-01- Dr.

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

ΠΡΟΕΤΟΙΜΑΣΙΑ ΠΑΡΑΔΕΙΓΜΑ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ 4 ΠΑΙΚΤΕΣ: 1. ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΩΝ ΝΗΣΙΩΝ

ΠΡΟΕΤΟΙΜΑΣΙΑ ΠΑΡΑΔΕΙΓΜΑ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ 4 ΠΑΙΚΤΕΣ: 1. ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΩΝ ΝΗΣΙΩΝ ΠΡΟΕΤΟΙΜΑΣΙΑ Προετοιμασία νησιών για 2 παίκτες: Προετοιμασία νησιών για 3 παίκτες: Η περιοχή των νησιών αποτελείται από 9 πλακίδια νησιών (επιλεγμένα τυχαία) και 4 κομμάτια πλαισίου. Η περιοχή των νησιών

Διαβάστε περισσότερα

Σχόλιο: Ο γνωστός αυτός γρίφος πρωτοεµφανίστηκε σ ένα βιβλίο του Alcuin τον 8 ο αιώνα.

Σχόλιο: Ο γνωστός αυτός γρίφος πρωτοεµφανίστηκε σ ένα βιβλίο του Alcuin τον 8 ο αιώνα. Από ένα δοχείο που περιέχει 12 κιλά λάδι θέλουµε να αφαιρέσουµε το µισό. ιαθέτουµε δύο άδεια δοχεία των 7 κιλών και 5 κιλών. Πως µπορούµε να κάνουµε την αφαίρεση των 6 κιλών από το δοχείο των 12; Σχόλιο:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΝΑΡΚΩΤΙΚΩΝ. 5.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 5 ο ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΝΑΡΚΩΤΙΚΩΝ. 5.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 5 ο ΤΟ ΠΡΟΒΛΗΜΑ ΤΩΝ ΝΑΡΚΩΤΙΚΩΝ 5.1 Εισαγωγή Στην ενότητα αυτήν θα παρουσιάσουµε µία αναλυτική περιγραφή της γνώµης των Ευρωπαίων πολιτών σχετικά µε τα ναρκωτικά. Καθώς είναι γνωστό, στις µέρες

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

Ισοζυγισµένο έντρο (AVL Tree)

Ισοζυγισµένο έντρο (AVL Tree) Εργαστήριο 7 Ισοζυγισµένο έντρο (AVL Tree) Εισαγωγή Εκτός από τα δυαδικά δέντρα αναζήτησης (inry serh trees) που εξετάσαµε σε προηγούµενο εργαστήριο, υπάρχουν αρκετά είδη δέντρων αναζήτησης µε ξεχωριστό

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

ΙΑΤΡΙΚΟ ΕΞΙΤΗΡΙΟ. Σημείωση : Ο ασθενής φεύγει πραγματικά από το κρεβάτι, μόνο όταν το Ιατρικό Εξιτήριο γίνει Διοικητικό από το Γραφείο Κίνησης.

ΙΑΤΡΙΚΟ ΕΞΙΤΗΡΙΟ. Σημείωση : Ο ασθενής φεύγει πραγματικά από το κρεβάτι, μόνο όταν το Ιατρικό Εξιτήριο γίνει Διοικητικό από το Γραφείο Κίνησης. ΙΑΤΡΙΚΟ ΕΞΙΤΗΡΙΟ Το Ιατρικό Εξιτήριο ουσιαστικά είναι εντολή ιατρού για έξοδο του ασθενή από το τμήμα νοσηλείας, σε μια συγκεκριμένη ημερομηνία. Οι πληροφορίες που περιλαμβάνει είναι : Ημερομηνία εξόδου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

περισσότερα από ένα παραδείγµατα εντολών της Στήλης Β).

περισσότερα από ένα παραδείγµατα εντολών της Στήλης Β). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Κ. Τζιρώνης, Θ. Τζουβάρας ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Συµπλήρωµα στις λύσεις των ασκήσεων του βιβλίου Περιλαµβάνει λύσεις ή υποδείξεις για ασκήσεις του βιβλίου που αφορούν κυρίως προβλήµατα των οποίων η επίλυση

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Το περιβάλλον προγραμματισμού MicroWorlds Pro

Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Το περιβάλλον προγραμματισμού MicroWorlds Pro Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Εικόνα 2.1: Το περιβάλλον της MicroWorlds Pro. Καρτέλες Οι πρώτες εντολές

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης

Chess Academy Free Lessons Ακαδημία Σκάκι Δωρεάν Μαθήματα. Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Οι κινήσεις των κομματιών Σκοπός της παρτίδας, το Ματ Πατ Επιμέλεια: Γιάννης Κατσίρης Παρατήρηση: Μόνο σε αυτό το μάθημα όταν λέμε κομμάτι εννοούμε κομμάτι ή πιόνι και όταν λέμε κομμάτια εννοούμε κομμάτια

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 31 5 2007 Γ Τάξη Ηµερήσιου Γενικού Λυκείου Θέµα 1 ο ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ - ΣΧΟΛΙΑ Α) 1) Σωστό 2) Λάθος 3) Σωστό 4) Λάθος 5) Λάθος Β) 1) i) σελ 127 σχολικού (πλεονεκτήµατα

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions

1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΟΜΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 ΕΡΩΤΗΣΕΙΣ... 5 ΕΡΕΥΝΕΣ... 8

ΟΜΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 ΕΡΩΤΗΣΕΙΣ... 5 ΕΡΕΥΝΕΣ... 8 Εγχειρίδιο Χρήσης Συστήµατος Έρευνες Στατιστικών Στοιχείων ΠΕΡΙΕΧΟΜΕΝΑ ΟΜΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 Λογική Ανάλυση Χρήσης Εφαρµογής... 3 ΕΡΩΤΗΣΕΙΣ... 5 ΠΡΟΣΘΗΚΗ ΕΡΩΤΗΣΗΣ... 6 Επεξεργασία Ερώτησης... 7 ιαγραφή

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς

ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 2007 ιδάσκων : Ηλίας Κουτσουπιάς ΑΛΓΟΡΙΘΜΙΚΗ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Πανεπιστήµιο Αθηνών Εαρινό Εξάµηνο 007 ιδάσκων : Ηλίας Κουτσουπιάς Μάθηµα : Overview Of The Algorithmic Game Theory Ηµεροµηνία : 007/04/19 Σηµειώσεις : Ελενα Χατζηγιωργάκη,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ζωγραφίζοντας µε τον υπολογιστή

ζωγραφίζοντας µε τον υπολογιστή ζωγραφίζοντας µε τον υπολογιστή Μια από τις εργασίες που µπορούµε να κάνουµε µε τον υπολογιστή είναι και η ζωγραφική. Για να γίνει όµως αυτό πρέπει ο υπολογιστής να είναι εφοδιασµένος µε το κατάλληλο πρόγραµµα.

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Από την Α Λυκείου µέχρι το Πανεπιστήµιο

Από την Α Λυκείου µέχρι το Πανεπιστήµιο Από την Α Λυκείου µέχρι το Πανεπιστήµιο Α ΛΥΚΕΙΟΥ Β ΛΥΚΕΙΟΥ 1 η οµάδα προσανατολισµού ανθρωπιστικών σπουδών η οµάδα προσανατολισµού θετικών σπουδών 1 η οµάδα προσανατολισµού ανθρωπιστικών σπουδών 3 η οµάδα

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α Ερώτηµα. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών που ορίζονται

Διαβάστε περισσότερα

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ

ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΞΕΡΕΥΝΗΣΤΕ ΤΗ ΜΥΣΤΗΡΙΩΔΗ ΝΗΣΟ ΕΙΣΑΓΩΓΗ Εξερευνήστε τη μυστηριώδη νήσο La Isla, και κυνηγήστε ζώα που μέχρι πρότινος θεωρούνταν εξαφανισμένα. Το ευγενές Ντόντο, το προσεκτικό Γιγάντιο Φόσα, τον άπιαστο

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Πάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής

Διαβάστε περισσότερα