ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005"

Transcript

1 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ιάρκεια: 17:00-20:00 Υποθέστε ότι σχεδιάζετε έναν µεταγλωττιστή για κάποια µηχανή µε έναν καταχωρητή και τις παρακάτω εντολές: # Εντολή Περιγραφή Κόστος εντολής 1 DOUBLE ιπλασιάζει το περιεχόµενο του καταχωρητή n 2 ADD Προσθέτει 1 στο περιεχόµενο του καταχωρητή 1 3 SUB Αφαιρεί ένα από το περιεχόµενο του καταχωρητή 1 Μας ενδιαφέρει το πρόβληµα της καταχώρησης συγκεκριµένων τιµών στον καταχωρητή. Θεωρείστε ότι αρχικά στον καταχωρητή βρίσκεται η τιµή 1, ενώ στόχος µας είναι να καταχωρήσουµε την τιµή 7. Θεωρείστε ως ευρετική συνάρτηση την h(n)= 7-n. α) Λύστε το πρόβληµα µε την αναζήτηση πρώτα στο καλύτερο. (1) Υπόδειξη: Συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x - 1 x 2 D y, 2 A z, 0 S w όπου οι δείκτες D, A κλπ δείχνουν το σύνολο των εντολών που εκτελέστηκαν (τα αρχικά τους γράµµατα) για να φθάσουµε από την αρχική στην τρέχουσα κατάσταση, ενώ οι εκθέτες είναι η βαθµολογία κάθε κατάστασης. β) Λύστε το ίδιο πρόβληµα µε την αναζήτηση Α*. Μεταξύ ισόβαθµων καταστάσεων (διανυθέν διάστηµα συν ευρετική τιµή), χρησιµοποιείστε ως δευτερεύον κριτήριο την ευρετική τιµή. (1) Υπόδειξη: Παρόµοια µε το ερώτηµα α), συµπληρώστε τον παρακάτω πίνακα για να παρουσιάσετε την εκτέλεση του αλγορίθµου: Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση 1 x-y - 1 x-y 2 D z-w, 2 A a-b, 0 S c-d όπου το πρώτο νούµερο στον εκθέτη είναι η συνολική βαθµολογία της κατάστασης, ενώ το δεύτερο είναι η ευρετική τιµή της απόστασης από το στόχο (για χρήση σε περίπτωση ισοβαθµίας). γ) Σχολιάστε συγκριτικά τα αποτελέσµατα που βρήκατε στα ερωτήµατα α) και β). (0.5) Απάντηση: α) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο πρώτα στο καλύτερο. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα κατάσταση Παιδιά

2 D 5, 2 A 5, 0 S 7 2 D 5, 2 A 5, 0 S D 5 4 DD 3, 3 DA 4, 1 DS 6, 4 DD 3, 3 DA 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5 4 DD 3 8 DDD 1, 5 DDA 2, 3 DDS 4 8 DDD 1, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7 1 6, 2 D 5, 4 DD 3 8 DDD 1 16 DDDD 9, 9 DDDA 2, 7 DDDS 0 7 DDDS 0, 9 DDDA 2, 5 DDA 2, 3 DDS 4, 2 A 5, 1 DS 6, 0 S 7, 16 DDDD , 2 D 12, 4 DD 10, 7 DDDS 0 Λύση! 8 DDD 1 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE-DOUBLE-DOUBLE- SUB, µε κόστος εκτέλεσης =8. β) Στον παρακάτω πίνακα φαίνεται η διαδικασία επίλυσης του προβλήµατος µε τον αλγόριθµο Α*. Για κάθε κατάσταση µέσα στις αγκύλες φαίνεται το τρέχον περιεχόµενο του καταχωρητή, ενώ σαν εκθέτης φαίνεται ο βαθµός της κατάστασης καθώς και η τιµή της ευρετικής συνάρτησης. Μέτωπο αναζήτησης Κλειστό σύνολο Τρέχουσα Παιδιά κατάσταση D 6-5, 2 A 6-5, 0 S D 6-5, 2 A 6-5, 0 S D DD 6-3, 3 DA 6-4, 1 DS DD 6-3, 3 DA 6-4, 2 A 6-5, 1 DS 8-6, 0 S , 2 D DD DDD 8-1, 5 DDA 6-2, 3 DDS DDA 6-2, 3 DA 6-4, 2 A 6-5, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S , 2 D 6-5, 4 DD DDA DDAD 12-3, 6 DDAA 6-1, 4 DDAS DDAA 6-1, 3 DA 6-4, 2 A 6-5, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD DDAAA 6-0, 3 DA 6-4, 2 A 6-5, 5 DDAAS 8-2, 4 DDAS 8-3, 3 DDS 8-4, 8 DDD 8-1, 1 DS 8-6, 0 S 8-7, 10 DDAD 12-3, 12 DDAAD , 2 D 6-5, 4 DD 6-3, 6 DDAA DDA , 2 D 6-5, 4 DD 6-3, 7 DDAAA 6-0 Λύση! 5 DDA 6-2, 6 DDAA DDAAD 16-5, 7 DDAAA 6-0, 5 DDAAS 8-2 Η λύση που βρέθηκε αντιστοιχεί στην ακολουθία εντολών: DOUBLE- DOUBLE- ADD-ADD- ADD, µε κόστος εκτέλεσης =6. γ) Παρατηρούµε ότι ο αλγόριθµος Α* βρήκε καλύτερη λύση από τον αλγόριθµο πρώτα-στοκαλύτερο. Αυτό ήταν αναµενόµενο µιας και η ευρετική συνάρτηση στο συγκεκριµένο πρόβληµα είναι παραδεκτή, οπότε είναι σίγουρο ότι ο αλγόριθµος Α* θα βρει την βέλτιστη, από πλευράς κόστους, λύση. Βέβαια, θα µπορούσε, εάν είχαµε διαφορετικό στόχο (π.χ. τον αριθµό 6 αντί τον αριθµό 7), να βρει την βέλτιστη λύση και ο αλγόριθµος πρώτα στο καλύτερο. Ωστόσο, µε δεδοµένο ότι η ευρετική συνάρτηση είναι παραδεκτή, δεν υπάρχει περίπτωση ο αλγόριθµος πρώτα στο καλύτερο να βρει καλύτερη λύση από τον αλγόριθµο Α*. ΘΕΜΑ 2 ο (2.5 µονάδες)

3 Το πρόβληµα της ζέβρας: Υπάρχουν πέντε σπίτια στη σειρά (αριθµούνται από το 1 στα αριστερά έως το 5 στα δεξιά), κάθε ένα µε διαφορετικό χρώµα (C1, C2, C3, C4, C5), που κατοικούνται από ιδιοκτήτες διαφορετικής εθνικότητας (N1, N2, N3, N4, N5). Κάθε ιδιοκτήτης έχει ένα διαφορετικό ζώο (P1, P2, P3, P4, P5), πίνει διαφορετικό ποτό (D1, D2, D3, D4, D5) και καπνίζει διαφορετικά τσιγάρα (S1, S2, S3, S4, S5) από τους υπόλοιπους ιδιοκτήτες Μας δίνονται οι παρακάτω πληροφορίες: 1. Ο Άγγλος µένει στο κόκκινο σπίτι. 2. Ο Ισπανός έχει έναν σκύλο. 3. Ο ιδιοκτήτης του πράσινου σπιτιού πίνει καφέ. 4. Ο Ουκρανός πίνει τσάι. 5. Το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ σπίτι. 6. Ο ιδιοκτήτης που καπνίζει Oldgold, έχει ένα σαλιγκάρι. 7. Ο ιδιοκτήτης του κίτρινου σπιτιού καπνίζει Kools. 8. Ο ιδιοκτήτης του µεσσαίου σπιτιού πίνει γάλα. 9. Ο Νορβηγός κατοικεί στο πρώτο σπίτι στα αριστερά. 10. Αυτός που καπνίζει Chesterfield µένει δίπλα στον κάτοχο της αλεπούς. 11. Το κίτρινο σπίτι είναι δίπλα στον ιδιοκτήτη του αλόγου. 12. Αυτός που καπνίζει Lucky Strike πίνει χυµό. 13. Ο Γιαπωνέζος καπνίζει Parliament. 14. Ο Νορβηγός µένει δίπλα στο µπλε σπίτι. Απαντήστε στις παρακάτω ερωτήσεις: α) Ποιος πίνει νερό; (1.5) β) Ποιος είναι ο ιδιοκτήτης της ζέβρας; (1) Υπόδειξη: Χρησιµοποιείστε έναν πίνακα σαν τον παρακάτω για να εκτελέσετε διάδοση των περιορισµών. C1 κόκκινο, C2 κόκκινο, C3 κόκκινο, C4 κόκκινο, C5 κόκκινο, πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε N1 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P1 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N2 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P2 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N3 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P3 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N4 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P4 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N5 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P5 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα D1 καφές, τσάι, D2 καφές, τσάι, D3 καφές, τσάι, D4 καφές, τσάι, D5 καφές, τσάι, γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός, νερό, νερό, νερό, νερό, νερό S1 Oldgold, Kools, S2 Oldgold, S3 Oldgold, Kools, S4 Oldgold, Kools, S5 Oldgold, Chesterfield, LuckyStrike, Kools, Chesterfield, Chesterfield, LuckyStrike, Chesterfield, LuckyStrike, Kools, Chesterfield,

4 Parliament LuckyStrike, Parliament Parliament Parliament LuckyStrike, Parliament Απάντηση: Συµβολίζουµε µε κεφαλαία γράµµατα τις µεταβλητές, όπως στην εκφώνηση. Έχουµε συνολικά 25 µεταβλητές, για το χρώµα, την εθνικότητα, το ζώο, το ποτό και τα τσιγάρα (προσοχή: εν είναι µεταβλητές τα ίδια τα σπίτια αλλά οι ιδιότητες των σπιτιών). Σχετικά µε τα πεδία αυτών των µεταβλητών παρατηρούµε τα εξής: Στην εκφώνηση αναφέρονται πέντε χρώµατα, τα {c1=κόκκινο, c2=πράσινο, c3=κρεµ, c4=κίτρινο, c5=µπλε}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών C1, C2, C3, C4, C5. Στην εκφώνηση αναφέρονται πέντε εθνικότητες, οι {n1=άγγλος, n2=ισπανός, n3=ουκρανός, n4=νορβηγός, n5=γιαπωνέζος}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών Ν1, Ν2, Ν3, Ν4, Ν5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ζώα, τα {p1=σκύλος, p2=σαλιγκάρι, p3=αλεπού, p4=άλογο, p5=ζέβρα}, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών P1, P2, P3, P4, P5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ποτά, τα {d1=καφές, d2=τσάι, d3=γάλα, d4=χυµός, d5=νερό }, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών D1, D2, D3, D4, D5. Στην εκφώνηση αναφέρονται πέντε µάρκες τσιγάρων, οι {s1=oldgold, s2=kools, s3=chesterfield, s4=luckystrike, s5=parliament}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών S1, S2, S3, S4, S5. Ο παρακάτω πίνακας έχει τα αρχικά πεδία ορισµού όλων των µεταβλητών. C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n1,n2,n3,n4,n5 N2 n1,n2,n3,n4,n5 N3 n1,n2,n3,n4,n5 N4 n1,n2,n3,n4,n5 N5 n1,n2,n3,n4,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Θεωρούµε δεδοµένο ότι το πρόβληµα έχει λύση. Θα εφαρµόσουµε τη γνωστή τεχνική διάδοσης περιορισµών, µε σκοπό να διαγράψουµε όσο το δυνατόν περισσότερες τιµές από τα πεδία των µεταβλητών, µέχρις να µην µπορεί να διαγραφεί καµία άλλη τιµή. Στο σηµείο αυτό ελπίζουµε ότι κάποιες µεταβλητές θα έχουν πάρει µοναδική τιµή, ώστε να είναι δυνατή η απάντηση των ερωτήσεων. Από την πρόταση 9 προκύπτει ότι Ν1=n4, άρα η τιµή n4 αφαιρείται από τις µεταβλητές N2, N3, N4, N5: C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Από την πρόταση 14 προκύπτει ότι το δεύτερο σπίτι είναι µπλε. Άρα C2=c5 και η τιµή c5 αφαιρείται από τα πεδία των µεταβλητών C1, C3, C4, C5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5

5 Από την πρόταση 8 προκύπτει ότι D3=D3 και η τιµή d3 αφαιρείται από τα πεδία των µεταβλητών D1, D2, D4, D5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Γνωρίζοντας ότι στο πρώτο σπίτι κατοικεί ο Νορβηγός, και λαµβάνοντας υπόψη διάφορες προτάσεις σχετικά µε ζώα, χρώµατα, ποτά και τσιγάρα διαφόρων άλλων ιδιοκτητών, αφαιρούµε τις αντίστοιχες τιµές από το πεδίο των µεταβλητών που αναφέρονται στο πρώτο σπίτι. Έτσι, λαµβάνοντας υπόψη τις προτάσεις 1, 2, 4 και 13, έχουµε: C1 c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Η πρόταση 5 µας λέει ότι το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ. Με δεδοµένο ότι το δεύτερο σπίτι είναι µπλε, το κρεµ σπίτι πρέπει να είναι είτε το τρίτο, είτε το τέταρτο, και αντίστοιχα το πράσινο σπίτι πρέπει να είναι είτε το τέταρτο είτε το πέµπτο. Άρα η τιµή c3=κρεµ αφαιρείται από τις µεταβλητές C1, C2 και C5, ενώ η τιµή c2=πράσινο αφαιρείται από τις µεταβλητές C1, C2 και C3. Επιπλέον, η µεταβλητή C4 µπορεί να έχει τιµή είτε c3=κρεµ είτε c2=πράσινο: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Βλέπουµε ήδη ότι το πρώτο σπίτι είναι c4=κίτρινο! Έτσι µπορούµε να βγάλουµε τα παρακάτω συµπεράσµατα: από την 1 προκύπτει ότι σε αυτό δεν µένει ο n1=άγγλος, από την 4 προκύπτει ότι ο ιδιοκτήτης του πρώτου σπιτιού δεν πίνει d1=καφέ, από την 7 προκύπτει ότι o ιδιοκτήτης του πρώτου σπιτιού καπνίζει s2=kools, οπότε η τιµή s2 αφαιρείται από τις S2, S3, S4 και S5, από την 11 προκύπτει ότι ο ιδιοκτήτης του δεύτερου σπιτιού έχει p4=άλογο, οπότε η τιµή p4 αφαιρείται από τις P1, P3, P4, P5. Έτσι τα πεδία των µεταβλητών γίνονται: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p5 P2 p4 P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s2 S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι ο Νορβηγός, που µένει στο πρώτο σπίτι, δεν πίνει d4=χυµό, άρα η τιµή d4 αφαιρείται από την D1 και αποµένει η τιµή d5=νερό, η οποία µε τη σειρά της αφαιρείται από τις D2, D3, D4, D5. Επίσης από την 6 προκύπτει ότι ο Νορβηγός δεν έχει p2=σαλιγκάρι: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d1,d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5

6 Έχουµε λοιπόν απαντήσει στο ερώτηµα α) σχετικά µε το ποιος πίνει νερό: Είναι ο Νορβηγός, ο οποίος µένει στο πρώτο σπίτι. Από την 3 και µε δεδοµένο ότι η τιµή c2=πράσινο εµφανίζεται µόνο στο 4 ο και το 5 ο σπίτι, προκύπτει ότι η τιµή d1=καφές µπορεί να εµφανίζεται µόνο σε αυτά τα σπίτια, οπότε αφαιρείται από την D2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 1 προκύπτει ότι η τιµή n1=άγγλος δεν µπορεί να είναι ιδιοκτήτης κανενός σπιτιού το οποίο δεν µπορεί να είναι c1=κόκκινο. Έτσι η τιµή n1 αφαιρείται από την Ν2 και από την Ν4. C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι ο Ουκρανός δεν µένει στο τρίτο σπίτι, µιας και αν έµενε εκεί θα έπινε γάλα. Άρα η τιµή n3=ουκρανός αφαιρείται από τη µεταβλητή N3: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 3 ο σπίτι δεν καπνίζει s4=luckystrike: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 2 προκύπτει ότι στο 2 ο σπίτι δεν κατοικεί n2=ισπανός, άρα αφαιρείται η τιµή n2 από τη µεταβλητή Ν2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 6 προκύπτει ότι στο 2 ο σπίτι δεν καπνίζουν s1=oldgold: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Στο σηµείο αυτό δεν µπορούµε να κόψουµε άλλες τιµές, οπότε επιλέγουµε να κάνουµε κάποια ανάθεση. Έστω ότι C4=c2=πράσινο. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C3=c3 και άρα C5=c1:

7 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n3,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 4 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 5 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Από την 4 προκύπτει ότι ο n3=ουκρανός µένει στο 2 ο σπίτι και πίνει d2=τσάι. Οι τιµές αυτές αφαιρούνται από τις υπόλοιπες µεταβλητές, µε αποτέλεσµα να προκύψει ότι ο Άγγλος πίνει χυµό : N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Πλέον, από την 12 προκύπτει ότι ο Άγγλος καπνίζει s4=luckystrike. Η τιµή αυτή διαγράφεται από τις υπόλοιπες µεταβλητές: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s4=luckystrike Από την 6 προκύπτει ότι ο Άγγλος δεν έχει p2=σαλιγκάρι και από την 2 προκύπτει ότι ο Άγγλος δεν έχει p1=σκύλο. Επίσης από την 13 προκύπτει ότι ο Ουκρανός δεν καπνίζει s5=parliament: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike

8 Παρατηρώντας τις τιµές των µεταβλητών P1, P3, P4, P5, οι οποίες πρέπει να είναι όλες διαφορετικές µεταξύ τους, βλέπουµε ότι δύο µεταβλητές, οι P1 και P5, µοιράζονται τις ίδιες δύο τιµές, p3 και p5. Άρα, αυτές οι δύο τιµές, p3 και p5, δεν µπορούν να εµφανίζονται στις µεταβλητές Ρ3 και Ρ4: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Από την 10 προκύπτει ότι δίπλα στο 2 ο σπίτι θα υπάρχει p3=αλεπού. Λαµβάνοντας υπόψη τα πεδία των µεταβλητών P1 και P3 φαίνεται ότι η αλεπού είναι στο πρώτο σπίτι, οπότε προκύπτει ότι στο 5 ο σπίτι είναι η p5=ζέβρα: N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3=αλεπού P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Στο σηµείο αυτό δεν έχουµε τελειώσει, πρέπει να δούµε εάν υπάρχουν τιµές και για τις υπόλοιπες µεταβλητές που δεν έχουν πάρει τιµή. υστυχώς φαίνεται ότι καταλήγουµε σε άτοπο: Πράγµατι, από τις 2 και 6 προκύπτει ότι ο Ισπανός δεν καπνίζει Oldgold, άρα καπνίζει Parliament, που όµως είναι η µάρκα που σύµφωνα µε την 13 καπνίζει ο Γιαπωνέζος. Στο σηµείο αυτό επιστρέφουµε στο σηµείο που κάναµε επιλογή σχετικά µε τα χρώµατα των σπιτιών, και κάνουµε την άλλη επιλογή. Έστω ότι C4=c3=κρεµ. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C5=c2=πράσινο και άρα C3=c1=κόκκινο: N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 5 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 3 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5

9 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 2 προκύπτει ότι στο 3 ο σπίτι, όπου κατοικεί ο Άγγλος, δεν µπορεί να έχουν p1=σκύλο: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Στο σηµείο αυτό δεν µπορεί να γίνει περαιτέρω διαγραφή τιµών, οπότε καταφεύγουµε και πάλι σε επιλογή. Έστω D2=d2=τσάι, οπότε D4=d4=χυµός : N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s5 S3 s1,s3 S4 s4=luckystrike S5 s1,s3,s5 Από την 13 προκύπτει ότι ο n5=γιαπωνέζος είναι στο 5 ο σπίτι, µιας και δεν θα µπορούσε να είναι πλέον στο 4 ο και καπνίζει s5=parliament. Άρα στο 2 ο σπίτι είναι ο Ισπανός, ενώ ο Ουκρανός καπνίζει s3=chesterfield και ο Άγγλος s1=oldgold: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament Πλέον, από τις 2, 6 και 10 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε σύµφωνα µε αυτή τη λύση τη ζέβρα την έχει ο Γιαπωνέζος. Πρέπει όµως να ελέγξουµε και την εναλλακτική περίπτωση στο τελευταίο σηµείο επιλογής. Έστω λοιπόν ότι D2=d4=χυµός και, οπότε D4= d2=τσάι: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές

10 S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n5=γιαπωνέζος N3 n1=άγγλος N4 n3=ουκρανός N5 n2=ισπανός P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές S1 s2=kools S2 s4=luckystrike S3 s1,s3 S4 s1,s3,s5 S5 s1,s3,s5 Στο σηµείο αυτό όµως έχουµε καταλήξει σε άτοπο, γιατί παραβιάζεται η πρόταση 13. Άρα δεν υπάρχει δεύτερη λύση, οπότε η µοναδική πλήρης λύση του προβλήµατος είναι η: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε τη ζέβρα την έχει ο Γιαπωνέζος! ΘΕΜΑ 3 ο (2.5 µονάδες) Έστω το παιχνίδι της τρίλιζας, στο οποίο ο παίκτης MAX, που παίζει πρώτος, έχει τα Χ, ενώ ο MIN τα O. Έστω ότι οι δύο παίκτες έχουν ήδη πραγµατοποιήσει από µια κίνηση ο καθένας, και η κατάσταση στην τρίλιζα έχει ως εξής: Ο X Τώρα είναι η σειρά του MΑΧ να κάνει τη δεύτερή του κίνηση. Βρείτε ποια θα είναι αυτή, κατασκευάζοντας το δένδρο του παιχνιδιού µέχρι βάθος δύο στρώσεων (δηλαδή µία κίνηση του MΑΧ και µια απάντηση του MΙΝ), ξεκινώντας από την παραπάνω κατάσταση. Χρησιµοποιείστε για ευρετική συνάρτηση την εξής: Για µια κατάσταση p, ο βαθµός h(p) ορίζεται ως: h(p) = +, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MAX. h(p) = -, εάν η κατάσταση p είναι τελική όπου κερδίζει ο MIN. h(p) = το πλήθος των γραµµών, στηλών, διαγωνίων στις οποίες ο MIN δεν κατέχει καµία θέση, µείον το πλήθος των γραµµών στηλών, διαγωνίων στις οποίες ο MAX δεν κατέχει καµία θέση, εφόσον η κατάσταση p δεν είναι τελική. Για παράδειγµα ο βαθµός της παρακάτω καταστάσης είναι h(p)=4-2=2. O X Ο X Υπόδειξη: Για να περιορίσετε το πλήθος των κλαδιών του δένδρου του παιχνιδιού, λάβετε υπόψη σας την συµµετρία για να κλαδέψετε καταστάσεις. Για παράδειγµα, οι παρακάτω δύο καταστάσεις, που αντιστοιχούν σε διαφορετικές δεύτερες κινήσεις του MΑΧ (µε δεδοµένες τις πρώτες κινήσεις και των δύο παικτών, όπως αυτές ορίστηκαν παραπάνω), είναι συµµετρικές, άρα χρειάζεται να συµπεριλάβετε στο δένδρο του παιχνιδιού µόνο µία από αυτές.

11 Ο Χ Ο Χ Χ Χ Απάντηση: Ο παίκτης MΑΧ έχει στην διάθεσή του δύο τέσσερις µη συµµετρικές κινήσεις, οι οποίες φαίνονται παρακάτω: Ο Χ Ο Χ Ο Ο Χ Χ Χ Χ Χ Α Β C D Χ Εάν ο ΜΑΧ επιλέξει την κίνηση Α, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Χ Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Χ Ο Χ Χ Χ Ο Χ Ο Ο Ο Ε F G H I J Εάν ο ΜΑΧ επιλέξει την κίνηση Β, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Ο Χ Χ Ο Χ Χ Χ Χ Χ Ο Ο Ο Ο K L M N O P Εάν ο ΜΑΧ επιλέξει την κίνηση Γ, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 6 και είναι οι εξής: Ο Ο Ο Ο Ο Ο Ο Ο Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Ο Χ Χ Ο Ο Ο Q R S T U V Τέλος, εάν ο ΜΑΧ επιλέξει την κίνηση, τότε οι διαθέσιµες µη-συµµετρικές απαντήσεις του MIN είναι 3 και είναι οι εξής: Ο Ο Ο Ο Ο Χ Χ Χ Ο Χ Χ Χ W X Y Παρακάτω φαίνεται το δένδρο του παιχνιδιού, από την τρέχουσα κατάσταση και για βάθος 2. Τα φύλλα του δένδρου έχουν βαθµολογηθεί και οι τιµές έχουν µεταφερθεί µέχρι τη ρίζα µε τον αλγόριθµο minimax. Από το δένδρο είναι φανερό ότι η κίνηση που πρέπει να επιλέξει ο παίκτης MΙΝ είναι η Α.

12 MAX ΜIN Α=0 Β=1 C=-1 D=1 K=2 M=1 O=1 W=2 X=1 Y=1 L=2 N=1 P=1 E=0 G=0 I=0 Q=1 S=0 U=0 F=0 H=0 J=1 R=0 T=-1 V=0 Παρατηρούµε ότι υπάρχει ισοβαθµία µεταξύ των κινήσεων Β και D. Ο παίκτης MAX πρέπει να επιλέξει µια από τις δύο αυτές κινήσεις τυχαία, ή να επεκτείνει το δένδρο σε µεγαλύτερο βάθος, ώστε να βγάλει πιο ακριβή συµπεράσµατα. ΘΕΜΑ 4 ο (2.5 µονάδες) Αναπαραστήστε τις παρακάτω προτάσεις σε λογική πρώτης τάξης: α) Μερικοί φοιτητές εγγράφηκαν στο µάθηµα των Γαλλικών την άνοιξη του (0.7) β) Κάθε φοιτητής που εγγράφεται στο µάθηµα των Γαλλικών το περνά (δηλαδή ο βαθµός του είναι µεγαλύτερος ή ίσος του 5). (0.7) γ) Μόνο ένας φοιτητής εγγράφηκε στο µάθηµα των Ελληνικών την άνοιξη του (0.7) δ) Ο καλύτερος βαθµός στα Ελληνικά είναι πάντα µεγαλύτερος από τον καλύτερο βαθµό στα Γαλλικά. (0.4) Υπόδειξη: Χρησιµοποιείστε τα παρακάτω κατηγορήµατα: Φοιτητής(x): Ο x είναι φοιτητής Εγγραφή(x,y,z,w): Ο x εγγράφηκε στο µάθηµα y κατά το εξάµηνο z της χρονιάς w. Βαθµός(x,y,z,w,v): Ο βαθµός του x στο µάθηµα y κατά το εξάµηνο z της χρονιάς w είναι ίσος µε v. Απάντηση: α) x, Φοιτητής(x) Εγγραφή(x, Γαλλικά, Άνοιξη, 2001). β) x, z, w, Φοιτητής(x) Εγγραφή(x, Γαλλικά, z, w) Βαθµός(x, Γαλλικά, z, w, v) v 5. γ) x, Φοιτητής(x) Εγγραφή(x, Ελληνικά, Άνοιξη, 2001) y, x y Φοιτητής(y) Εγγραφή(y, Ελληνικά, Άνοιξη, 2001). δ) x1, x2, v1, v2, z, w, Φοιτητής(x1) Φοιτητής(x2) Βαθµός(x1,Ελληνικά,z,w,v1) Βαθµός(x2,Γαλλικά,z,w,v2) ( x10, v10, Φοιτητής(x10) Βαθµός(x10,Ελληνικά,z,w,v10) v1 v10) ( x20, v20, Φοιτητής(x20) Βαθµός(x20,Γαλλικά,z,w,v20) v2 v20) v1>v2.

13 ΘΕΜΑ 5 ο (2.5 µονάδες) Έστω ένα απλοποιηµένο πρόβληµα συναρµολόγησης της µηχανής ενός αυτοκινήτου, το οποίο απαιτεί πρώτα να µπει η µηχανή, µετά οι τροχοί και τέλος να γίνει η επιθεώρηση. Έχουµε τρεις ενέργειες: Action(ΠροσθήκηΜηχανής(e, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: Μηχανή(e, c, d ) Σασί(c) ΜηχανήΕντός(c), ΕΠΙ ΡΑΣΕΙΣ: ΜηχανήΕντός( c ) ιάρκεια( d )) Action(ΠροσθήκηΤροχών(w, c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) Τροχοί(w, c, d) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: ΤροχοίΕπί(c) ιάρκεια(d)) Action(Επιθεώρηση(c), ΠΡΟΫΠΟΘΕΣΕΙΣ: ΜηχανήΕντός(c) ΤροχοίΕπί(c) Σασί(c), ΕΠΙ ΡΑΣΕΙΣ: Έτοιµο(c) ιάρκεια(10)) Η αρχική κατάσταση και οι στόχοι είναι οι εξής: Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W 2, C 2, 15)) Goal(Έτοιµο(C 1 ) Έτοιµο(C 2 )) Τα κατηγορήµατα των παραπάνω δηλώσεων έχουν την εξής σηµασία: Μηχανή(e,c,d): Η µηχανή e µπορεί να τοποθετηθεί στο σασί c σε χρόνο d. Σασί(c): Υπάρχει το σασί c. ΜηχανήΕντός(c): Έχει ήδη τοποθετηθεί µηχανή στο σασί c. Τροχοί(w, c, d): Οι τροχοί w µπορούν να τοποθετηθούν στο σασί c σε χρόνο d. ΤροχοίΕπί(c): Έχουν ήδη τοποθετηθεί τροχοί στο σασί c. Έτοιµο(c): Έχει ολοκληρωθεί ο έλεγχος στο σασί c. α) Καταστρώστε ένα πλάνο που να λύνει το πρόβληµα, χωρίς να λάβετε υπόψη σας τις διάρκειες των ενεργειών. εν είναι απαραίτητο να δείξετε τα βήµατα που ακολουθήσατε για να βρείτε το πλάνο. (0.5) β) Βρείτε το κρίσιµο µονοπάτι σε αυτό το πλάνο. Με βάση το µήκος του κρίσιµου µονοπατιού, υπολογείστε τον νωρίτερο και τον αργότερο χρόνο έναρξης όλων των ενεργειών στο πλάνο που βρήκατε. (1) γ) Θεωρείστε ότι υπάρχει ένα µόνο βαρούλκο για την ανύψωση της µηχανής, ένας σταθµός τοποθέτησης τροχών και δύο επιθεωρητές. Πώς τροποποιείται το πλάνο που βρήκατε στο ερώτηµα (β); Ποιος είναι τώρα ο ελάχιστος χρόνος εκτέλεσης του πλάνου; (διερευνείστε όλες τις περιπτώσεις) (1) Απάντηση: α, β)

14 γ) Ο συνολικός χρόνος εκτέλεσης θα ήταν µεγαλύτερος, εάν επιλέγαµε να τοποθετήσουµε τη µηχανή πρώτα στο δεύτερο όχηµα. ΑΠΑΝΤΗΣΤΕ 4 ΑΠΟ ΤΑ ΠΑΡΑΠΑΝΩ 5 ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΘΕΜΑ 1 ο Έστω το πρόβληµα της τοποθέτησης τεσσάρων (4) βασιλισσών πάνω σε µια σκακιέρα 4x4, έτσι ώστε να µην απειλεί η µία την άλλη. Προσπαθήστε

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 ΘΕΜΑ 1 ο (2 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις Παρασκευή 4 Ιουλίου 2014, 18:00-21:00 Δίνεται ο παρακάτω χάρτης πόλεων της Ρουμανίας με τις μεταξύ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων

Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων Ηµεροµηνία παράδοσης : Πέµπτη 11 Φεβρουαρίου 2010 Ασκηση 1 ίνονται τα ακόλουθα κατηγορήµατα και οι σηµασίες τους : nat(x): ισχύει αν και µόνο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006 Ώρες: 17:0020:00 ίνεται το παρακάτω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Τρίτη 15 Ιανουαρίου 2008 ιάρκεια εξέτασης: 3 ώρες (13:00-16:00) ΘΕΜΑ 1 ο (2,5

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ/ΜΕΣΟΛΟΓΓΙ ΔΙΟΙΚΗΣΗ ΕΡΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-2015 29/12/2014 Παράδοση Εργασίας: 31/01/2015 Γενικά: ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΠΑΡΑΔΟΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις 8 Σεπτεµβρίου 005 ιάρκεια εξέτασης: 3 ώρες (:00-4:00 ΘΕΜΑ ο (.5 Το παράδοξο

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro

Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro Το «Φύλλο Εργασίας» για τους µαθητές Το παρακάτω φύλλο εργασίας µπορεί να χρησιµοποιηθεί ως εισαγωγικό

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Συνδυαστικής

Διαβάστε περισσότερα

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ

ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΗΜΙΟΥΡΓΙΑ ΠΑΙΧΝΙ ΙΟΥ ΣΤΟ SCRATCH ΒΗΜΑ ΠΡΟΣ ΒΗΜΑ ΣΕΝΑΡΙΟ ΠΑΙΧΝΙ ΙΟΥ Το παιχνίδι θα αποτελείται από δυο παίκτες, οι οποίοι θα βρίσκονται αντικριστά στις άκρες ενός γηπέδου δεξιά και αριστερά, και µια µπάλα.

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop.

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop. Η δοµή «Shift register» 1. Η δοµή «Shift register» εισάγεται στο βρόγχο for-loop αλλά και σε άλλους βρόγχους που θα δούµε στη συνέχεια, όπως ο βρόγχος «While loop». Ο τρόπος εισαγωγής και λειτουργίας της

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος

Αυτόνομοι Πράκτορες. Εργασία εξαμήνου. Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος Αυτόνομοι Πράκτορες Εργασία εξαμήνου Μάθηση του παιχνιδιού British square με χρήση Temporal Difference(TD) Κωνσταντάκης Γιώργος 2010030090 Περιγραφή του παιχνιδιού Το British square είναι ένα επιτραπέζιο

Διαβάστε περισσότερα

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 )

Κεφάλαιο 7ο. max(p 1 c)(α bp 1 +dp 2 ) Κεφάλαιο 7ο Μιλήσαµε στο προηγούµενο κεφάλαιο για το τι θα συµβεί αν οι επιχειρήσεις ανταγωνίζονται σε τιµές. Επιπλέον µιλήσαµε για το πως αποδεικνύεται το παράδοξο του Bertrand και καθώς επίσης και για

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ώστε επιλογή: Στη συνέχεια θα διαβάζει την επιλογή του χρήστη και την ακτίνα ενός κύκλου και θα εκτυπώνει το αντίστοιχο αποτέλεσµα.

ώστε επιλογή: Στη συνέχεια θα διαβάζει την επιλογή του χρήστη και την ακτίνα ενός κύκλου και θα εκτυπώνει το αντίστοιχο αποτέλεσµα. ΠΙΝΑΚΕΣ 1. Να γραφούν οι εντολές µε τις οποίες από το περιεχόµενο κάθε θέσης του πίνακα αφαιρούµε το τετράγωνο του δείκτη της αντίστοιχης θέσης. 2. Να γραφούν οι εντολές µε τις οποίες αντιγράφουµε τα στοιχεία

Διαβάστε περισσότερα

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ

ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ ΟΙ ΚΑΡΤΕΣ ΕΠΙΣΗΜΟΙ ΚΑΝΟΝΕΣ ΤΟΥ Το SLEUTH είναι ένα φανταστικό παιχνίδι έρευνας για 3 έως 7 παίκτες. Μέσα από έξυπνες ερωτήσεις προς τους αντιπάλους του, κάθε παίκτης συλλέγει στοιχεία και έπειτα, χρησιμοποιώντας

Διαβάστε περισσότερα

1. ΓΕΝΙΚΑ 2. ΠΡΟΚΡΙΜΑΤΙΚΑ 3. ΤΕΛΙΚΟΙ. Για το 2013 το πρωτάθληµα θα έχει την εξής µορφή:

1. ΓΕΝΙΚΑ 2. ΠΡΟΚΡΙΜΑΤΙΚΑ 3. ΤΕΛΙΚΟΙ. Για το 2013 το πρωτάθληµα θα έχει την εξής µορφή: ΚΑΝΟΝΙΣΜΟΙ ΙΕΞΑΓΩΓΗΣ ΑΓΩΝΩΝ 1/8 IC OFF ROAD ΕΛ.Μ.Ε. 2013 Υπεύθυνος Κλάδου ΣΤΑΘΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ (τηλ. 6944648548) bd@el-me.gr 1 Κλάδος 1/8 Off Rad 2013 ΜΟΡΦΗ ΑΓΩΝΩΝ 1. ΓΕΝΙΚΑ Για το 2013 το πρωτάθληµα θα

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Σχεδιασµός και δράση στον πραγµατικό κόσµο

Σχεδιασµός και δράση στον πραγµατικό κόσµο Σχεδιασµός και δράση στον πραγµατικό κόσµο Planning and Acting in the Real World Ενέργειες µε διάρκεια Init(Σασί(C 1 ) Σασί(C 2 ) Μηχανή(E 1, C 1, 30) Μηχανή(E 2, C 2, 60) Τροχοί(W 1, C 1, 30) Τροχοί(W

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

Εγχειρίδιο Φοιτητών. 1. Εισαγωγή

Εγχειρίδιο Φοιτητών. 1. Εισαγωγή Εγχειρίδιο Φοιτητών 1. Εισαγωγή Η ηλεκτρονική πλατφόρµα «e-class», αποτελεί ένα ολοκληρωµένο σύστηµα Ασύγχρονης Τηλεκπαίδευσης. Στόχος της είναι παροχή υποδοµών εκπαίδευσης και κατάρτισης ανεξάρτητα από

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η Ουγγρική Μέθοδος ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος" Τοπλήθος των εφικτών λύσεων σε ένα πρόβληµα ανάθεσης µε m δραστηριότητες και mπόρους είναι ίσο µε m! 6 Αυτό σηµαίνει ότι ο αριθµός των εφικτών λύσεων

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΙΑΝΟΥΑΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Εγχειρίδιο Χρήστη - Μαθητή

Εγχειρίδιο Χρήστη - Μαθητή Εγχειρίδιο Χρήστη - Μαθητή 1. Εισαγωγή Η ηλεκτρονική πλατφόρµα «e-class», αποτελεί ένα ολοκληρωµένο σύστηµα Ασύγχρονης Τηλεκπαίδευσης. Στόχος της είναι παροχή υποδοµών εκπαίδευσης και κατάρτισης ανεξάρτητα

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΑΓΩΓΟΙ & ΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΣΥΓΚΡΟΥΣΕΙΣ ΣΕ ΑΓΩΓΟΥΣ & ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Διαβάστε περισσότερα

Εγχειρίδιο Φοιτητών. 1. Εισαγωγή

Εγχειρίδιο Φοιτητών. 1. Εισαγωγή Εγχειρίδιο Φοιτητών 1. Εισαγωγή Η ηλεκτρονική πλατφόρµα «e-class», αποτελεί ένα ολοκληρωµένο σύστηµα Ασύγχρονης Τηλεκπαίδευσης. Στόχος της είναι παροχή υποδοµών εκπαίδευσης και κατάρτισης ανεξάρτητα από

Διαβάστε περισσότερα

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου Για την ενότητα αυτή απαιτούνται τα εξής: Εργαλεία Υλικά Κόφτης Στραυροκατσάβιδο Κατσαβίδι Μυτερή πένσα Δράπανο Κολλητήρι Τρυπάνι 6mm Μέγγενη

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

Το άθροισµα των εισερχόµενων σηµάτων είναι:

Το άθροισµα των εισερχόµενων σηµάτων είναι: 7. ίκτυα Hopfeld Σε µία πολύ γνωστή εργασία το 982 ο Hopfeld παρουσίασε µια νέα κατηγορία δικτύων, τα οποία έχουν µεγάλες υπολογιστικές ικανότητες και είναι χρήσιµα σε δύο κατηγορίες προβληµάτων. Πρώτα,

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Ασκήσεις στους Πίνακες. Μονοδιάστατοι Πίνακες. ιάβασµα Εµφάνιση Στοιχείων Υπολογισµός Αθροίσµατος, Μέσου Όρου, Πλήθους

Ασκήσεις στους Πίνακες. Μονοδιάστατοι Πίνακες. ιάβασµα Εµφάνιση Στοιχείων Υπολογισµός Αθροίσµατος, Μέσου Όρου, Πλήθους Ασκήσεις στους Πίνακες Μονοδιάστατοι Πίνακες ιάβασµα Εµφάνιση Στοιχείων Υπολογισµός Αθροίσµατος, Μέσου Όρου, Πλήθους Άσκηση 1 Να γραφεί αλγόριθµος που θα διαβάζει τα ονόµατα 50 πόλεων της Ελλάδας και το

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΗ 1 (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Παράδειγμα_1 Διάβασε α Αν α < 0 τότε α α * 5 Τέλος_αν

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

P (A B) = P (A) + P (B) P (A B)

P (A B) = P (A) + P (B) P (A B) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 1 Επιµέλεια : Σοφία Σαββάκη Ασκηση 1. Ο εκφωνητής του δελτίου καιρού δίνει

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες]

Άρα, Τ ser = (A 0 +B 0 +B 0 +A 0 ) επίπεδο 0 + (A 1 +B 1 +A 1 ) επίπεδο 1 + +(B 5 ) επίπεδο 5 = 25[χρονικές µονάδες] Α. Στο παρακάτω διάγραµµα εµφανίζεται η εκτέλεση ενός παράλληλου αλγόριθµου που λύνει το ίδιο πρόβληµα µε έναν ακολουθιακό αλγόριθµο χωρίς πλεονασµό. Τα Α i και B i αντιστοιχούν σε ακολουθιακά υποέργα

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Α.α) ίνεται η συνάρτηση F() f() + g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F () f () + g

Διαβάστε περισσότερα

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1) 1 ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης (1) όπου οι συντελεστές είναι δοσµένες συνεχείς συναρτήσεις ορισµένες σ ένα ανοικτό διάστηµα. Ορισµός 1. Ορίζουµε τον διαφορικό τελεστή µέσω της

Διαβάστε περισσότερα

Edward de Bono s. Six Thinking Hats. Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων)

Edward de Bono s. Six Thinking Hats. Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων) Edward de Bono s Six Thinking Hats Εργαλείο Αξιολόγησης Ποιότητας & Αποτελεσµατικότητας (λήψης αποφάσεων και επίλυσης προβληµάτων) ρ. Αικατερίνη Πουστουρλή, για το ΛΑΪΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΕΡΡΩΝ 19-01- Dr.

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007

Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιχειρησιακή Έρευνα - Επαναληπτική Εξέταση Οκτώβριος 2007 Επιτρέπεται µια σελίδα Α4 σηµειώσεων. Γράψτε ΜΟΝΟ τέσσερα θέµατα (αν υπάρχει 5 ο ΕΝ λαµβάνεται υπόψη) άριστα 3,5 θέµατα. Κάθε θέµα έχει ίδια αξία,

Διαβάστε περισσότερα

1 Κλάδος 1/8 Off Road ΓΕΝΙΚΑ. Για το 2014 το πρωτάθληµα θα έχει την εξής µορφή:

1 Κλάδος 1/8 Off Road ΓΕΝΙΚΑ. Για το 2014 το πρωτάθληµα θα έχει την εξής µορφή: 1 Κλάδος 1/8 Off Road 2014 ΜΟΡΦΗ ΑΓΩΝΩΝ 1. ΓΕΝΙΚΑ Για το 2014 το πρωτάθληµα θα έχει την εξής µορφή: 3 αγώνες Πανελληνίου Πρωταθλήµατος ΕΛ.Μ.Ε. µονοήµεροι. 1 αγώνας Πανελληνίου Κυπέλλου µονοήµερος. ( Ισχύει

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΥΠΟΛΟΓΙΣΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέρος Β (Οργάνωση Υπολογιστών)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα