ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone
|
|
- Γερβάσιος Αλεξίου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς. Ο αριθµός των διαδροµών στις βασικές εφικτές λύσεις του προβλήµατος είναι ίσος (ή µικρότερος) από το άθροισµα του αριθµού των "πηγών προέλευσης" συν τον αριθµό των "προορισµών" µειωµένο κατά 1 Έλεγχος λύσης µε τη µέθοδο Stepping Stone Ηβασική αρχή της µεθόδου είναι ότι ελέγχει την πιθανή µείωση τουκόστους µιας συγκεκριµένης λύσης από τη χρήση διαδροµών που δεν έχουν επιλεγεί στην τρέχουσα λύση. Θεωρούµε, για παράδειγµα, την αρχική λύση που προέκυψε από τη µέθοδο της Β Γωνίας.
2 Σεκάθεβήµα της µεθόδου Stepping Stone, εξετάζεται η δυνατότητα εύρεσης µιας καλύτερης λύσης µε αλλαγή µίας εκ των διαδροµών που χρησιµοποιούνται µε µία από αυτές που δεν χρησιµοποιούνται Το ερώτηµα που τίθεται είναι το εξής: Αν χρησιµοποιηθεί µια διαδροµή που δεν συµπεριλαµβάνεται στη τρέχουσα λύση (όπως η διαδροµή Πάτρα-Αθήνα ή κάποια άλλη), ποια θα είναι η επίπτωση στο συνολικό κόστος µεταφοράς;
3 Υπολογισµός οριακών αλλαγών στο κόστος µεταφοράς Ουπολογισµός της επίπτωσης στο συνολικό κόστος µεταφοράςγια κάθε διαδροµή που δεν συµπεριλαµβάνεται στη τρέχουσα λύση, γίνεται µε τα εξής βήµατα: 1. Επιλέγουµε µια διαδροµή που δεν συµπεριλαµβάνεται στην τρέχουσα λύση 2. Ξεκινώντας από το κελί τη5 διαδροµής που επιλέχθηκε, δηµιουργούµε έναν κλειστό βρόγχο, ο οποίος διέρχεται από διαδροµές που ήδη χρησιµοποιούνται, ακολουθεί είτε οριζόντια ή κάθετη πορεία και επιστρέφει στο ίδιο κελί 3. Ξεκινώντας µε το σηµείο + στο κελί της διαδροµής που επιλέξαµε, τοποθετούµε εναλλάξ τα σηµεία -και + σε κάθε γωνία του βρόγχου. Ο αριθµός των + σε κάθε σειρά και σε κάθε στήλη του πίνακα πρέπει να είναι ίσος µε τον αντίστοιχο αριθµό των - 4. Υπολογίζουµε την οριακή µεταβολή του κόστους στη συγκεκριµένηδιαδροµή, προσθέτονταιτο κόστος όλων των διαδροµών στις οποίες έχει τοποθετηθεί το σηµείο +, και αφαιρώνταςτο κόστος όλων των διαδροµών στις οποίες έχει τοποθετηθεί το σηµείο - 5. Επαναλαµβάνουµε τα βήµατα 1 έως 4 για όλες τις διαδροµές που δεν συµπεριλαµβάνονται στη λύση, ώστε για καθεµία από αυτές να υπολογίσουµε την οριακή αλλαγή του κόστους, εφόσον συµπεριληφθούν στη λύση. Αν για όλες τις διαδροµές η οριακή αλλαγή του κόστους είναι θετική (αύξηση κόστους), τότε η τρέχουσα λύση είναι η βέλτιστη
4 Stepping Stone: 1 η επανάληψη Οιέξι µη χρησιµοποιούµενες διαδροµές είναι: Πάτρα-Αθήνα, Πάτρα-Ηράκλειο, Βόλος-Ιωάννινα, Βόλος Ηράκλειο, Θεσσαλονίκη-Ιωάννινα και Θεσσαλονίκη- Λάρισα Θεωρούµε την πρώτη µη επιλεχθείσα διαδροµή, Πάτρα-Αθήνα Ξεκινώντας από το κελί της διαδροµής αυτής, µπορούµε εύκολα να χαράξουµε έναν κλειστό βρόγχο που να διέρχεται από επιλεγείσες διαδροµές ως εξής: Πάτρα-Αθήνα - Βόλος-Αθήνα - Βόλος-Λάρισα - Πάτρα-Λάρισα
5 Ποιοείναι το νόηµα του κλειστού βρόγχου και της τοποθέτησης των σηµείων + και -στις γωνίες του βρόγχου; Καταρχήν πρέπει να θυµηθούµε ότι θέλουµε να ελέγξουµε τη µεταβολή που θα προκύψει στο κόστος µεταφοράς αν χρησιµοποιηθεί η διαδροµή Πάτρα-Αθήνα αντί µιας άλλης από αυτές που έχουν ήδη επιλεγεί. Εποµένως, αν εκχωρήσουµε φορτίο 1 µονάδος στη διαδροµή Πάτρα-Αθήνα, θα πρέπει αυτό να αφαιρεθείαπό κάποια άλλη διαδροµή που έχει σαν προορισµό την Αθήνα έτσι ώστε το συνολικό φορτίο που θα µεταφερθεί στην Αθήνα να παραµείνει στα 400 τεµάχια, όσο η συνολική ζήτηση Οι δύο άλλες διαδροµές µε προορισµό την Αθήνα είναι οι Βόλος-Αθήνα και Θεσσαλονίκη-Αθήνα Επιλέγουµε τη διαδροµή Βόλος-Αθήνα και τοποθετούµε το σηµείο -σε αυτή τη διαδροµή (εάν επιλέξουµε τη διαδροµή Θεσσαλονίκη-Αθήνα θα φθάναµε σε αδιέξοδο, όπως θα εξηγήσουµε στη συνέχεια) Εφόσον όµως θα µειώσουµε το φορτίο στη διαδροµή Βόλος-Αθήνα, θα πρέπει να αυξήσουµε αντίστοιχα το φορτίο στη διαδροµή Βόλος-Λάρισα, έτσι ώστε να µην µεταβληθεί η µεταφερόµενη από το Βόλο ποσότητα Τοποθετούµε το σηµείο + στη διαδροµή Βόλος-Λάρισα Αντίστοιχα, θα πρέπει να µειωθεί το αρχικά εκχωρηθέν φορτίο στη διαδροµή Πάτρα- Λάρισα, ώστε το συνολικό φορτίο µε προορισµό τη Λάρισα να παραµείνει το ίδιο Με αυτό τον τρόπο κλείνει ο βρόγχος και υπάρχει ισορροπία των + και -σε κάθε σειρά και σε κάθε στήλη του πίνακα
6 Τοποθέτησητων + / -στη µέθοδο Stepping Stone Υπάρχειπάντα ένα κλειστός βρόχος που ξεκινά και καταλήγει σε ένα κελί που δεν έχει επιλεγεί περνώντας µόνο από κελιά που έχουν επιλεγεί Η επιλογή κελιών γίνεται µε τέτοιο τρόπο ώστε να είναι δυνατή πάντα η αντιστάθµιση των + και -σε κάθε γραµµή και κάθε στήλη Αν για παράδειγµα, επιλέγαµε το κελί Θεσσαλονίκη-Αθήνα αντί του Βόλος-Αθήνα για να τοποθετήσουµε το σηµείο -, τότε αναγκαστικά θα επιλέγαµε το κελί Θεσσαλονίκη -Ηράκλειο για να τοποθετήσουµε το σηµείο + Στο σηµείο αυτό φτάνουµε σε αδιέξοδο, διότι στην τελευταία στήλη δεν υπάρχει άλλο κελί που έχει ήδη επιλεγεί στην τρέχουσα λύση για να τοποθετηθεί το -ώστε να αντισταθµιστούν όλα τα + µε Εποµένως, η επιλογή του κελιού Βόλος-Αθήνα ήταν η µοναδική δυνατή
7 Ουπολογισµός της µεταβολής που προκύπτει στο κόστος από τη χρησιµοποίηση της διαδροµής Πάτρα-Λάρισα: Αν µία µονάδα φορτίου µεταφερθεί στη διαδροµή Πάτρα-Λάρισα, τότε θα έχουµε σύµφωνα µε την προηγούµενη ανάλυση τις εξής αλλαγές φορτίων στιςδιαδροµές που χρησιµοποιούνται ήδη: Εποµένως, τυχόν επιλογή της διαδροµής Πάτρα-Αθήνα θα οδηγούσε σε οριακή µείωση του κόστους κατά 3 µονάδες για κάθε µονάδα µεταφερόµενα ποσότητας Η οριακή ανάλυση του κόστους πρέπει να εξεταστεί µε τον ίδιο τρόπο και για τις υπόλοιπες µη χρησιµοποιούµενες διαδροµές στην αρχική λύση της "Β Γωνίας Τα αποτελέσµατα έχουν ως εξής:
8
9
10
11 Με βάση τα παραπάνω αποτελέσµατα, οι επιλογές των διαδροµών Πάτρα- Αθήνα ή Θεσσαλονίκη-Λάρισα µπορεί να οδηγήσουν σε µείωση του κόστους µεταφοράς Η τρέχουσα λύση επιδέχεται βελτίωση Από τις δύο διαδροµές που η χρήση τους µπορεί να µειώσει το συνολικό κόστος µεταφοράς, επιλέγουµε αυτή µε το µικρότερο αρνητικό συντελεστή, δηλαδή τη διαδροµή Πάτρα-Αθήνα, η επιλογή της οποίας θα επιφέρει τη µεγαλύτερη µείωση κόστους ανά µονάδα µεταφερόµενα ποσότητας Οισυντελεστές οριακής µεταβολής του κόστους στη µέθοδο Stepping Stone Ταβήµατα της επαναληπτικής µεθόδου Stepping Stoneείναι αντίστοιχα µε τα βήµατα της µεθόδου Simplex Οι συντελεστές της οριακής µεταβολής του κόστους µεταφοράς για κάθε διαδροµή που δεν έχει χρησιµοποιηθεί στην τρέχουσα λύση, που υπολογίστηκαν παραπάνω, αντιστοιχούν στις τιµές της γραµµής C j -Z j αν το πρόβληµα λυθεί µε τη µέθοδο Simplex Kαι η οικονοµική τους ερµηνεία είναι αντίστοιχη
12 Βελτίωση της Λύσης Καταλήξαµεστο ότι η επιλογή και χρησιµοποίηση τηwδιαδροµής Πάτρα-Αθήνα θα οδηγήσει σε µείωση του κόστους και µάλιστα γνωρίζουµε ότι γιακάθε µονάδα φορτίου που θα µεταφερθεί στη διαδροµή αυτή το κόστος θα µειωθείκατά 3 µονάδες Τρία άλλα σηµεία τα οποία πρέπει να λάβουµε υπ' όψη είναι τα εξής: 1. Ο αριθµός των διαδροµών που θα χρησιµοποιηθούν δεν πρέπει να ξεπερνά τις 6 (4+3-1), όπως εξηγήσαµε και προηγουµένως Εποµένως, χρησιµοποιώντας τη διαδροµή Πάτρα-Αθήνα θα πρέπει να αποκλειστεί µια από τις ήδη χρησιµοποιούµενες διαδροµές 2. Εφόσον το συνολικό κόστος µεταφοράς µειώνεται κατά 3 µονάδεςγια κάθε µονάδα φορτίου που θα εκχωρηθεί στη διαδροµή Πάτρα-Αθήνα, θα πρέπει να επιδιώξουµε την εκχώρηση όσο το δυνατόν µεγαλύτερης ποσότητας φορτίου στη διαδροµή αυτή 3. Σύµφωνα µε τον κλειστό βρόγχο του πίνακα που χρησιµοποιήθηκε προηγουµένως για τον υπολογισµό των οριακών µεταβολών του κόστους µεταφοράς για κάθε νέα-µη χρησιµοποιούµενη διαδροµή, κάθε ανάθεση φορτίου στη διαδροµή Πάτρα-Αθήνα, οδηγεί σε µεταβολές των µεταφερόµενων ποσοτήτων στις άλλες διαδροµές. Συγκεκριµένα για κάθε ποσότητα φορτίου που θα εκχωρηθεί στη διαδροµή Πάτρα-Αθήνα, η ίδια ποσότητα φορτίου θα αφαιρεθείαπό τις διαδροµές Πάτρα-Λάρισα και Βόλος-Αθήνα (σηµείο -) ενώ αντίθετα το ίδιο φορτίο θα προστεθεί στη διαδροµή Βόλος-Λάρισα (σηµείο +).
13 Εκχώρηση φορτίου στη νέα διαδροµή Το πρόβληµα εντοπίζεται στις διαδροµές από τις οποίες θα αφαιρεθεί φορτίο Από τη διαδροµή Πάτρα-Λάρισα η µεγαλύτερη ποσότητα φορτίου που µπορεί να αφαιρεθείείναι 150 µονάδες, ενώ από τη διαδροµή Βόλος-Αθήνα µπορούν να αφαιρεθούν επίσης έως 150 µονάδες Εποµένως, η µεγαλύτερη ποσότητα που µπορεί να εκχωρηθεί στη νέα διαδροµή Πάτρα-Αθήνα είναι 150 µονάδες και οι αλλαγές στα φορτία των διαδροµών έχουν ως εξής:
14
15 Οαλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του κόστους λόγω της επιλογής της διαδροµής Πάτρα-Αθήνα Είχαµε βρει ότι για κάθε µεταφερόµενη µονάδα το κόστος µειώνεταικατά 3 µονάδες, εποµένως η συνολική µείωση για εκχωρούµενο φορτίο 150 µονάδων είναι 450 µονάδες µικρότερο από το κόστος της προηγούµενα λύσης που ανέρχονταν σε 5900 Stepping Stone και Simplex Η αντιστοιχία των βηµάτων της επαναληπτικής µεθόδου Stepping Stone και της µεθόδου Simplex συνεχίζεται: Σε κάθε βήµα η λύση βελτιώνεται µε την αλλαγή κάποιας εκ των χρησιµοποιούµενων διαδροµών µε µία από τις µη-χρησιµοποιούµενες Οι χρησιµοποιούµενες διαδροµές αντιστοιχούν στις βασικές µεταβλητές του πίνακα Simplex, ενώ οι µη-χρησιµοποιούµενες στις µη-βασικές Οι υπολογισµοί στη µέθοδο Stepping Stoneείναι πιο απλοί, λόγω του ότι οι συντελεστές των µεταβλητών στους περιορισµούς (τεχνολογικοί συντελεστές) είναι όλοι είτε µοναδιαίοι είτε µηδενικοί
16 Stepping Stone: 2η επανάληψη Ηπρώτη επανάληψη της µεθόδου Stepping Stoneέδωσε τη λύση της προηγούµενης παραγράφου Στη λύση αυτή χρησιµοποιούνται µόνο 5 διαδροµές, ενώ 7 διαδροµές δεν χρησιµοποιούνται Η περίπτωση που χρησιµοποιούνται λιγότερες από m+n-1 διαδροµές Στηνπερίπτωση που οι διαδροµές στη λύση είναι λιγότερες από m+n-1 (δηλαδή 6 στη συγκεκριµένη περίπτωση), µία από τις διαδροµές µε µηδενικό φορτίο, από αυτές που µηδενίστηκαν ταυτόχρονα σε κάποια συγκεκριµένη εκχώρηση, θεωρείται για την δηµιουργία των κλειστών βρόγχων ως διαδροµή που έχει επιλεγεί µε φορτίο 0 Στην περίπτωση του παραδείγµατος µπορούµε να θεωρήσουµε τη διαδροµή Βόλος- Αθήνα ως επιλεγείσα. Εξετάζουµετώρα τις οριακές µεταβολές του κόστους για τις διαδροµές που δεν έχουν επιλεγεί µε τον ίδιο τρόπο, όπως και στην πρώτη επανάληψη της µεθόδου Stepping Stone
17 Οι κλειστοί βρόγχοι για κάθε διαδροµή φαίνονται στον παραπάνω πίνακα µεταφοράς Στα κελιά που αντιστοιχούν σε µη χρησιµοποιούµενες διαδροµές έχει τοποθετηθεί το σηµείο + Ακολουθώντας τον κάθε βρόγχο µπορούµε να τοποθετήσουµε εναλλάξ τα σηµεία -και +, ώστε σε κάθε περίπτωση να υπάρχει αντιστάθµιση των + και -σε κάθε γραµµή και στήλη
18 Τααποτελέσµατα µε τους υπολογισµούς της οριακής µεταβολής του συνολικού κόστους µεταφοράς έχουν ως εξής:
19 Παρατηρούµεότι η επιλογή της διαδροµής Θεσσαλονίκη-Λάρισα, όπως και της διαδροµής Θεσσαλονίκη-Ιωάννινα, θα µειώσει το συνολικό κόστος µεταφοράς κατά 1 µονάδα ανά µονάδα µεταφερόµενης ποσότητας Εφόσον η οριακή µεταβολή του κόστους είναι ίδια, επιλέγουµε µίαεκ των δυο τυχαία, έστω τη διαδροµή Θεσσαλονίκη-Λάρισα Για να αποφασίσουµε ποια διαδροµή θα αντικατασταθείαπό την προσθήκη της διαδροµής Θεσσαλονίκη-Λάρισα στις διαδροµές που θα χρησιµοποιηθούν, εξετάζουµε τις αντίστοιχες µεταβολές στον πίνακα του προβλήµατος µεταφοράς
20 Το µέγιστο φορτίο που µπορεί να εκχωρηθεί στη διαδροµή Θεσσαλονίκη- Λάρισα, περιορίζεται από τις διαδροµές µε πρόσηµο Η µικρότερη τιµή στα κελιά µε το σηµείο -καθορίζει το φορτίο που θα εκχωρηθεί στη νέα διαδροµή που έχει επιλεγεί, στην προκειµένη περίπτωση τη διαδροµή Θεσσαλονίκη-Λάρισα Από τις δύο διαδροµές του πίνακα µε πρόσηµο -, τις Βόλος-Λάρισα και Θεσσαλονίκη-Αθήνα το µικρότερο φορτίο βρίσκεται στη δεύτερη Εποµένως, εκχωρούµε 250 µονάδες στη διαδροµή Θεσσαλονίκη-Λάρισα, το οποίο αφαιρείταιαπό τις διαδροµές Βόλος-Λάρισα και Θεσσαλονίκη-Αθήνα, και προστίθεται στη διαδροµή Βόλος-Αθήνα Ονέος πίνακας µεταφοράς:
21 Όπωςκαι στο προηγούµενο βήµα, ο αλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του συνολικού κόστους λόγω της επιλογής της διαδροµής Θεσσαλονίκη-Λάρισα Εφόσον για κάθε µεταφερόµενη µονάδα στη διαδροµή αυτή, το συνολικό κόστος µειώνεται κατά 1 µονάδα, η συνολική µείωση για εκχωρούµενο φορτίο 250 µονάδων είναι 250 µονάδες, µειώνοντας το κόστος από σε 5.200
22 Stepping Stone: 3η επανάληψη Ηλύση που προέκυψε µε το τέλος του 2ου επαναληπτικού βήµατος της µεθόδου Stepping Stone, δίνεται στον πίνακα µεταφοράς που ακολουθεί: Ουπολογισµός των οριακών µεταβολών του κόστους για τις διαδροµέςπου δεν έχουν επιλεγεί γίνεται µε τον ίδιο τρόπο όπως και στις προηγούµενες επαναλήψείς της µεθόδου Stepping Stone. Οι κλειστοί βρόγχοι για κάθε διαδροµή δίνονται στον παρακάτω πίνακα µε φορά σύµφωνα µε την κίνηση των δεικτών του ρολογιού:
23 Παρατηρούµεότι υπάρχει µία µόνο διαδροµή µε αρνητικό συντελεστή οριακού κόστους, αυτή της Θεσ/νίκης-Ιωάννινα, η οποία πρέπει να επιλεγεί Για να αποφασίσουµε ποια διαδροµή θα αντικατασταθείαπό τη διαδροµή Θεσσαλονίκη-Ιωάννινα, εξετάζουµε τι$ αντιστοιχεί µεταβολές στον πίνακα του προβλήµατος µεταφοράς
24 Γιανα προσδιορίσουµε το φορτίο που θα εκχωρηθεί στη διαδροµή Θεσσαλονίκη-Ιωάννινα εξετάζουµε τις διαδροµές που χαρακτηρίζονται µε πρόσηµο Η µικρότερη ποσότητα βρίσκεται στη διαδροµή Πάτρα-Ιωάννινα Εποµένως, εκχωρούµε 200 µονάδες στη διαδροµή Θεσσαλονίκη-Ιωάννινα, το οποίο αφαιρείταιαπό τις διαδροµές Πάτρα-Ιωάννινα, Βόλος-Αθήνα και Θεσσαλονίκη-Λάρισα (πρόσηµο -) και προστίθεται στις διαδροµές Πάτρα- Αθήνα και Βόλος-Λάρισα (πρόσηµο +)
25 Ο νέος πίνακας µεταφοράς:
26 Όπωςκαι µε στο προηγούµενο βήµα, ο αλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του κόστους λόγω της επιλογής της διαδροµής Θεσσαλονίκη-Ιωάννινα Εφόσον για κάθε µεταφερόµενη µονάδα το κόστος µειώνεται κατά 2 µονάδες, η συνολική µείωση για εκχωρούµενο φορτίο 200 µονάδων είναι 400 µονάδες από το κόστος της προηγούµενης λύσης που ήταν 5200
27 Stepping Stone: 4η επανάληψη Εξετάζουµετώρα τις οριακές µεταβολές του κόστους για τις διαδροµές που δεν έχουν επιλεγεί µε τον ίδιο τρόπο όπως και στις προηγούµενες επαναλήψείς της µεθόδου Stepping Stone :
28 Οικλειστοί βρόγχοι για κάθε διαδροµή δίνονται στον παρακάτω πίνακα µε φορά της κίνησης των δεικτών του ρολογιού µε τα αποτελέσµατα των υπολογισµών της οριακής µεταβολής του συνολικού κόστους µεταφοράς: Παρατηρούµεότι σε όλες τις µη επιλεγείσες διαδροµές της τελευταίας λύσης, ο συντελεστής οριακού κόστους είναι θετικός, εποµένως οποιαδήποτε αλλαγή της λύσης µε αντικατάσταση µιας εκ των διαδροµών που έχουν επιλεγεί από µία άλλη, θα είχε ως αποτέλεσµα την αύξηση του κόστους
29 Κριτήριο βέλτιστης λύσης στα προβλήµατα µεταφοράς Όταν οι συντελεστές οριακού κόστους για όλες τις διαδροµέςπου δεν έχουν επιλεγεί στην τρέχουσα λύση είναι µη αρνητικοί, τότε η τρέχουσα λύση είναι βέλτιστη
Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι
Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά
ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ
ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,
ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ
ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των
Τμήμα Μηχανικών Πληροφορικής ΤΕ Πρόβλημα Μεταφοράς. Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Πρόβλημα Μεταφοράς Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς Μαθηματική Διατύπωση Εύρεση Αρχικής Λύσης Προσδιορισμός Βέλτιστης Λύσης
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)
Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ
ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει
Προσφορά Τροποποιηµένος πίνακας, όπου προσφορά ίση µε τη ζήτηση µε την προσθήκη εικονικού προορισµού *
ΚΕΦ.8 ΕΙ ΙΚΑ ΠΡΟΒΛΗΜΑΤΑ Ιδιαίτερη κατηγορία των προβληµάτων ΓΠ είναι τα προβλήµατα δικτυακής ροής. Σε αυτά ανήκουν τα προβλήµατα µεταφοράς και εκχώρησης. 8. Πρόβληµα µεταφοράς Σε m πηγές (κέντρα προσφοράς)
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1
KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους
Προβλήµατα Μεταφορών (Transportation)
Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια
Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα
Πρόβληµα Μεταφοράς Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Μοντέλο Προβλήµατος Μεταφοράς 2. Εύρεση Μιας Αρχικής Βασικής
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει
ιοίκηση Παραγωγής και Υπηρεσιών
ιοίκηση Παραγωγής και Υπηρεσιών Το Πρόβληµα Μεταφοράς Άλλες µέθοδοι επιλογής τοποθεσίας Γιώργος Ιωάννου, Ph.D. Αναπληρωτής Καθηγητής Σύνοψη διάλεξης Ορισµός του προβλήµατος µεταφοράς συσχέτιση µε πρόβληµα
Γραμμικός Προγραμματισμός
Γραμμικός Προγραμματισμός Εφαρμογή σε Άλλα Προβλήματα Διαχείρισης Έργων Π. Γ. Υψηλάντης ΓΠ στη Διοίκηση Έργων Προβλήματα μεταφοράς και δρομολόγησης Αναθέσεις προσωπικού Επιλογή προμηθευτών Καθορισμός τοποθεσίας
Βασική Εφικτή Λύση. Βασική Εφικτή Λύση
Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n µεταβλητών και m περιορισµών Εστω πραγµατικοί αριθµοί a ij, b j, c i R µε 1 i m, 1 j n Αλγεβρική Μορφή Γενική Μορφή Γραµµικού Προγραµµατισµού n
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα
ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή
Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήμη των Αποφάσεων, Διοικητική Επιστήμη 5 ο Εξάμηνο 4 ο ΜΑΘΗΜΑ Δημήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τμήμα Στατιστικής & Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών
ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ
(Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Το Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"
ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος" Τοπλήθος των εφικτών λύσεων σε ένα πρόβληµα ανάθεσης µε m δραστηριότητες και mπόρους είναι ίσο µε m! 6 Αυτό σηµαίνει ότι ο αριθµός των εφικτών λύσεων
Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού
Μεταπτυχιακό Πρόγραμμα Σπουδών Διοίκηση και Διαχείριση Έργων και Προγραμμάτων Ποσοτικές Μέθοδοι στη Διοίκηση Έργων (Y100) Διάλεξη #2 Παραδείγματα Μοντελοποίησης Γραμμικού Προγραμματισμού Ερμηνεία Λύσεων
ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM)
ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) Η διαµόρφωση και το µοντέλο του προβλήµατος ανάθεσης (π.χ. εργασιών σε µηχανές ή δραστηριοτήτων σε άτοµα) περιγράφεται στις
Θεωρία Αποφάσεων και Βελτιστοποίηση
Θεωρία Αποφάσεων και Βελτιστοποίηση http://www.di.uoa.gr/ telelis/opt.html Ορέστης Τελέλης telelis@di.uoa.gr Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Θεωρία Αποφάσεων και Βελτιστοποίηση
Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις
Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα
ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού
Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.
ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200
ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.
Τμήμα Μηχανικών Πληροφορικής ΤΕ Η μέθοδος Simplex. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 19/01/2017
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Η μέθοδος Simplex Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος Simplex είναι μια
Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)
Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο
Επαναληπτικές ερωτήσεις πολλαπλής επιλογής: Κεφάλαιο 1 ο 1. Σε γραµµική ΚΠ της µορφής Y = a+ β X : α. Η µέγιστη ποσότητα για το αγαθό Υ παράγεται όταν Y = β β. Η µέγιστη ποσότητα για το αγαθό Χ παράγεται
Σηµειώσεις στις σειρές
. ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά
Η μέθοδος Simplex. Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2017-2018 Η μέθοδος Simplex Γεωργία Φουτσιτζή-Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 19/01/2017 1 Πλεονεκτήματα Η μέθοδος Simplex Η μέθοδος
Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.
Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή
Ταακραία σηµεία της περιοχής των εφικτών λύσεων
Ταακραία σηµεία της περιοχής των εφικτών λύσεων Απότη γραφική επίλυση του µοντέλου του ΓΠ, η αντικειµενική συνάρτηση λαµβάνει τη µεγαλύτερη τιµή της (βέλτιστη λύση του προβλήµατος) στην κορυφή Γ της περιοχής
Η μέθοδος Simplex. Χρήστος Γκόγκος. Χειμερινό Εξάμηνο ΤΕΙ Ηπείρου
Η μέθοδος Simplex Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 1 / 17 Η μέθοδος Simplex Simplex Είναι μια καθορισμένη σειρά επαναλαμβανόμενων υπολογισμών μέσω των οποίων ξεκινώντας από ένα αρχικό
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Παραλλαγές του Προβλήματος Μεταφοράς Το Πρόβλημα Μεταφόρτωσης και το Πρόβλημα Αναθέσεων Γεωργία Φουτσιτζή ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα To Πρόβλημα Μεταφοράς
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.
Μάθηµα 1 Κεφάλαιο 1o: Συστήµατα Θεµατικές Ενότητες: A. Συστήµατα Γραµµικών Εξισώσεων B. Συστήµατα 3x3 Α. ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Ορισµοί Κάθε εξίσωση της µορφής α x+β =γ, µε α, β, γ R παριστάνει
Εισαγωγή στον Προγραµµατισµό. Σύντοµες Σηµειώσεις. Γιώργος Μανής
Εισαγωγή στον Προγραµµατισµό Σύντοµες Σηµειώσεις Γιώργος Μανής Νοέµβριος 2012 Αλγόριθµοι και Λογικά ιαγράµµατα Αλγόριθµος λέγεται µία πεπερασµένη διαδικασία καλά ορισµένων ϐηµάτων µου ακολουθείται για
ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε
Προβλήματα Μεταφορών (Transportation)
Προβλήματα Μεταφορών (Transportation) Παραδείγματα Διατύπωση Γραμμικού Προγραμματισμού Δικτυακή Διατύπωση Λύση Γενική Μέθοδος Simplex Μέθοδος Simplex για Προβλήματα Μεταφοράς Παράδειγμα: P&T Co ΗεταιρείαP&T
ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Θεσσαλονίκη 2012 2 Περιεχόµενα 1 υναµικός
Μάθημα 1 ο : Εντολές κίνησης
Μάθημα 1 ο : Εντολές κίνησης Στο πρώτο µάθηµα θα εξοικειωθείς µε τις βασικές εντολές του Scratch που βρίσκονται στην παλέτα κίνηση. Θα µάθεις να µετακινείς ένα αντικείµενο, να το περιστρέφεις και να το
Επίλυση Γραµµικών Συστηµάτων
Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n
Γραμμικός Προγραμματισμός Μέθοδος Simplex
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Κεφάλαιο Η2. Ο νόµος του Gauss
Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική
5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΕΣ
ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΛΟΓΙΕΣ Άρτιοι - Περιττοί ΔΙΑΒΑΣΕ Χ ΑΝ Χ MOD 2 = 0 ΤΟΤΕ ΓΡΑΨΕ 'ο Χ είναι άρτιος' ΑΛΛΙΩΣ ΓΡΑΨΕ 'ο Χ είναι περιττός' Πολλαπλάσια του Ν ΔΙΑΒΑΣΕ Χ ΑΝ Χ MOD Ν = 0 ΤΟΤΕ ΓΡΑΨΕ 'ο Χ είναι πολλαπλάσιο
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο 5 ο ΜΑΘΗΜΑ ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών
Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.
Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α
Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός
Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ ΜέθοδοιΜ& ΔύοΦάσεων
ΤΜΗΜΑΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ2014-2015 ΜέθοδοιΜ& ΔύοΦάσεων ΟΙΚΟΝΟΜΙΚΗ ΣΗΜΑΣΙΑ (1) Όπως είδαµε και στα προηγούµενα µαθήµατα η ποσότητα z = cj z j j εκφράζει τον ρυθµό µεταβολή της
Επιχειρησιακή έρευνα (ασκήσεις)
Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ
ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν
(µονάδες 25) ΟΜΑ Α Β Να περιγράψετε, χρησιµοποιώντας και το κατάλληλο σχεδιάγραµµα, το οικονοµικό κύκλωµα.
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 5 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής: Α1. Σηµαντικό ρόλο στη µεγιστοποίηση
ΟΜΑΔΑ Β Σχολικό βιβλίο σελ ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. TC Συνολικό κόστος. VC Μεταβλητό κόστος
ΛΥΣΕΙΣ ΑΟΘ 1 ΓΙΑ ΑΡΙΣΤΑ ΔΙΑΒΑΣΜΕΝΟΥΣ ΟΜΑΔΑ Α Α1 γ Α2 β Α3 δ Α4 Σ Α5 Σ Α6 Σ Α7 Σ Α8 Λ ΟΜΑΔΑ Β Σχολικό βιβλίο σελ. 57-59 ως «μεταβλητούς συντελεστές μαζί με το αντίστοιχο διάγραμμα. ΟΜΑΔΑ Γ Γ1. Είναι γνωστό
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
Τμήμα Μηχανικών Πληροφορικής ΤΕ Ανάλυση ευαισθησίας. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016
Τμήμα Μηχανικών Πληροφορικής ΤΕ 2016-2017 Ανάλυση ευαισθησίας Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 1/12/2016 1 Παράδειγμα TOYCO Η επιχείρηση TOYCO χρησιμοποιεί τρεις διαδικασίες
Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
Μηχανική ΙI. Λογισµός των µεταβολών. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 2/2000
Τµήµα Π Ιωάννου & Θ Αποστολάτου 2/2000 Μηχανική ΙI Λογισµός των µεταβολών Προκειµένου να αντιµετωπίσουµε προβλήµατα µεγιστοποίησης (ελαχιστοποίησης) όπως τα παραπάνω, όπου η ποσότητα που θέλουµε να µεγιστοποιήσουµε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ
ΣΥΝΘΕΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α. Με ολοκληρωμένη λύση ΘΕΜΑ 1 ο Επιχείρηση χρησιμοποιεί την εργασία ως μοναδικό μεταβλητό παραγωγικό συντελεστή. Τα στοιχεία κόστους της επιχείρησης δίνονται στον επόμενο πίνακα:
Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε
Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Κωστής Μαμάσης Παρασκευή 09:00 12:00 Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα 1. Εισαγωγή 2. Γραμμικός Προγραμματισμός 1. Μοντελοποίηση 2. Μέθοδος Simplex (C) Copyright Α.
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΟΜαθηµατικός Προγραµµατισµός είναι κλάδος των εφαρµοσµένων µαθηµατικών που ασχολείται µε την εύρεση άριστης λύσης. ιαφέρει από την κλασική αριστοποίηση στο ότι προσπαθεί να
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999
Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΤΡΙΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΠΛΗΡΟΦΟΡΙΚΗ (ΘΕ ΠΛΗ ) ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ TEΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουνίου 8 Θέµα ο ( µονάδες) α) ( µονάδες) yz yz του διανυσµατικού
Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.
Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή
11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο
Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου
Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)
Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν
ε = 5 / 4. Αν η τιµή του αγαθού αυξηθεί κατά 10% ποια ποσοστιαία µεταβολή της
ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 3 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής Α1. Σε δύο σηµεία της ίδιας ζήτησης
Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)
Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες
3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )
3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)
Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω
4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.
4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό
Επιχειρησιακή Έρευνα I
Επιχειρησιακή Έρευνα I Operations/Operational Research (OR) Κωστής Μαμάσης Παρασκευή 9: : Σημειώσεις των Α. Platis, K. Mamasis Περιεχόμενα EE & Εισαγωγή Μαθηματικός Προγραμματισμός - Γραμμικός Προγραμματισμός
ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ
ΛΥΜΕΝΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ 1. Έστω συνάρτηση ζήτησης με τύπο Q = 200 4P. Να βρείτε: α) Την ελαστικότητα ως προς την τιμή όταν η τιμή αυξάνεται από 10 σε 12. 1ος τρόπος Αν P 0 10 τότε Q 0 200 410
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Στροβιλισµός πεδίου δυνάµεων
Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
3.3 ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ
. ΑΛΓΕΒΡΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΘΕΩΡΙΑ. Μέθοδοι επίλυσης : Οι βασικές µέθοδοι αλγεβρικής επίλυσης ενός γραµµικού συστήµατος δύο εξισώσεων µε δύο αγνώστους είναι δύο η µέθοδος της αντικατάστασης
f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------
----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς
Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss
Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και