ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone"

Transcript

1 ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς. Ο αριθµός των διαδροµών στις βασικές εφικτές λύσεις του προβλήµατος είναι ίσος (ή µικρότερος) από το άθροισµα του αριθµού των "πηγών προέλευσης" συν τον αριθµό των "προορισµών" µειωµένο κατά 1 Έλεγχος λύσης µε τη µέθοδο Stepping Stone Ηβασική αρχή της µεθόδου είναι ότι ελέγχει την πιθανή µείωση τουκόστους µιας συγκεκριµένης λύσης από τη χρήση διαδροµών που δεν έχουν επιλεγεί στην τρέχουσα λύση. Θεωρούµε, για παράδειγµα, την αρχική λύση που προέκυψε από τη µέθοδο της Β Γωνίας.

2 Σεκάθεβήµα της µεθόδου Stepping Stone, εξετάζεται η δυνατότητα εύρεσης µιας καλύτερης λύσης µε αλλαγή µίας εκ των διαδροµών που χρησιµοποιούνται µε µία από αυτές που δεν χρησιµοποιούνται Το ερώτηµα που τίθεται είναι το εξής: Αν χρησιµοποιηθεί µια διαδροµή που δεν συµπεριλαµβάνεται στη τρέχουσα λύση (όπως η διαδροµή Πάτρα-Αθήνα ή κάποια άλλη), ποια θα είναι η επίπτωση στο συνολικό κόστος µεταφοράς;

3 Υπολογισµός οριακών αλλαγών στο κόστος µεταφοράς Ουπολογισµός της επίπτωσης στο συνολικό κόστος µεταφοράςγια κάθε διαδροµή που δεν συµπεριλαµβάνεται στη τρέχουσα λύση, γίνεται µε τα εξής βήµατα: 1. Επιλέγουµε µια διαδροµή που δεν συµπεριλαµβάνεται στην τρέχουσα λύση 2. Ξεκινώντας από το κελί τη5 διαδροµής που επιλέχθηκε, δηµιουργούµε έναν κλειστό βρόγχο, ο οποίος διέρχεται από διαδροµές που ήδη χρησιµοποιούνται, ακολουθεί είτε οριζόντια ή κάθετη πορεία και επιστρέφει στο ίδιο κελί 3. Ξεκινώντας µε το σηµείο + στο κελί της διαδροµής που επιλέξαµε, τοποθετούµε εναλλάξ τα σηµεία -και + σε κάθε γωνία του βρόγχου. Ο αριθµός των + σε κάθε σειρά και σε κάθε στήλη του πίνακα πρέπει να είναι ίσος µε τον αντίστοιχο αριθµό των - 4. Υπολογίζουµε την οριακή µεταβολή του κόστους στη συγκεκριµένηδιαδροµή, προσθέτονταιτο κόστος όλων των διαδροµών στις οποίες έχει τοποθετηθεί το σηµείο +, και αφαιρώνταςτο κόστος όλων των διαδροµών στις οποίες έχει τοποθετηθεί το σηµείο - 5. Επαναλαµβάνουµε τα βήµατα 1 έως 4 για όλες τις διαδροµές που δεν συµπεριλαµβάνονται στη λύση, ώστε για καθεµία από αυτές να υπολογίσουµε την οριακή αλλαγή του κόστους, εφόσον συµπεριληφθούν στη λύση. Αν για όλες τις διαδροµές η οριακή αλλαγή του κόστους είναι θετική (αύξηση κόστους), τότε η τρέχουσα λύση είναι η βέλτιστη

4 Stepping Stone: 1 η επανάληψη Οιέξι µη χρησιµοποιούµενες διαδροµές είναι: Πάτρα-Αθήνα, Πάτρα-Ηράκλειο, Βόλος-Ιωάννινα, Βόλος Ηράκλειο, Θεσσαλονίκη-Ιωάννινα και Θεσσαλονίκη- Λάρισα Θεωρούµε την πρώτη µη επιλεχθείσα διαδροµή, Πάτρα-Αθήνα Ξεκινώντας από το κελί της διαδροµής αυτής, µπορούµε εύκολα να χαράξουµε έναν κλειστό βρόγχο που να διέρχεται από επιλεγείσες διαδροµές ως εξής: Πάτρα-Αθήνα - Βόλος-Αθήνα - Βόλος-Λάρισα - Πάτρα-Λάρισα

5 Ποιοείναι το νόηµα του κλειστού βρόγχου και της τοποθέτησης των σηµείων + και -στις γωνίες του βρόγχου; Καταρχήν πρέπει να θυµηθούµε ότι θέλουµε να ελέγξουµε τη µεταβολή που θα προκύψει στο κόστος µεταφοράς αν χρησιµοποιηθεί η διαδροµή Πάτρα-Αθήνα αντί µιας άλλης από αυτές που έχουν ήδη επιλεγεί. Εποµένως, αν εκχωρήσουµε φορτίο 1 µονάδος στη διαδροµή Πάτρα-Αθήνα, θα πρέπει αυτό να αφαιρεθείαπό κάποια άλλη διαδροµή που έχει σαν προορισµό την Αθήνα έτσι ώστε το συνολικό φορτίο που θα µεταφερθεί στην Αθήνα να παραµείνει στα 400 τεµάχια, όσο η συνολική ζήτηση Οι δύο άλλες διαδροµές µε προορισµό την Αθήνα είναι οι Βόλος-Αθήνα και Θεσσαλονίκη-Αθήνα Επιλέγουµε τη διαδροµή Βόλος-Αθήνα και τοποθετούµε το σηµείο -σε αυτή τη διαδροµή (εάν επιλέξουµε τη διαδροµή Θεσσαλονίκη-Αθήνα θα φθάναµε σε αδιέξοδο, όπως θα εξηγήσουµε στη συνέχεια) Εφόσον όµως θα µειώσουµε το φορτίο στη διαδροµή Βόλος-Αθήνα, θα πρέπει να αυξήσουµε αντίστοιχα το φορτίο στη διαδροµή Βόλος-Λάρισα, έτσι ώστε να µην µεταβληθεί η µεταφερόµενη από το Βόλο ποσότητα Τοποθετούµε το σηµείο + στη διαδροµή Βόλος-Λάρισα Αντίστοιχα, θα πρέπει να µειωθεί το αρχικά εκχωρηθέν φορτίο στη διαδροµή Πάτρα- Λάρισα, ώστε το συνολικό φορτίο µε προορισµό τη Λάρισα να παραµείνει το ίδιο Με αυτό τον τρόπο κλείνει ο βρόγχος και υπάρχει ισορροπία των + και -σε κάθε σειρά και σε κάθε στήλη του πίνακα

6 Τοποθέτησητων + / -στη µέθοδο Stepping Stone Υπάρχειπάντα ένα κλειστός βρόχος που ξεκινά και καταλήγει σε ένα κελί που δεν έχει επιλεγεί περνώντας µόνο από κελιά που έχουν επιλεγεί Η επιλογή κελιών γίνεται µε τέτοιο τρόπο ώστε να είναι δυνατή πάντα η αντιστάθµιση των + και -σε κάθε γραµµή και κάθε στήλη Αν για παράδειγµα, επιλέγαµε το κελί Θεσσαλονίκη-Αθήνα αντί του Βόλος-Αθήνα για να τοποθετήσουµε το σηµείο -, τότε αναγκαστικά θα επιλέγαµε το κελί Θεσσαλονίκη -Ηράκλειο για να τοποθετήσουµε το σηµείο + Στο σηµείο αυτό φτάνουµε σε αδιέξοδο, διότι στην τελευταία στήλη δεν υπάρχει άλλο κελί που έχει ήδη επιλεγεί στην τρέχουσα λύση για να τοποθετηθεί το -ώστε να αντισταθµιστούν όλα τα + µε Εποµένως, η επιλογή του κελιού Βόλος-Αθήνα ήταν η µοναδική δυνατή

7 Ουπολογισµός της µεταβολής που προκύπτει στο κόστος από τη χρησιµοποίηση της διαδροµής Πάτρα-Λάρισα: Αν µία µονάδα φορτίου µεταφερθεί στη διαδροµή Πάτρα-Λάρισα, τότε θα έχουµε σύµφωνα µε την προηγούµενη ανάλυση τις εξής αλλαγές φορτίων στιςδιαδροµές που χρησιµοποιούνται ήδη: Εποµένως, τυχόν επιλογή της διαδροµής Πάτρα-Αθήνα θα οδηγούσε σε οριακή µείωση του κόστους κατά 3 µονάδες για κάθε µονάδα µεταφερόµενα ποσότητας Η οριακή ανάλυση του κόστους πρέπει να εξεταστεί µε τον ίδιο τρόπο και για τις υπόλοιπες µη χρησιµοποιούµενες διαδροµές στην αρχική λύση της "Β Γωνίας Τα αποτελέσµατα έχουν ως εξής:

8

9

10

11 Με βάση τα παραπάνω αποτελέσµατα, οι επιλογές των διαδροµών Πάτρα- Αθήνα ή Θεσσαλονίκη-Λάρισα µπορεί να οδηγήσουν σε µείωση του κόστους µεταφοράς Η τρέχουσα λύση επιδέχεται βελτίωση Από τις δύο διαδροµές που η χρήση τους µπορεί να µειώσει το συνολικό κόστος µεταφοράς, επιλέγουµε αυτή µε το µικρότερο αρνητικό συντελεστή, δηλαδή τη διαδροµή Πάτρα-Αθήνα, η επιλογή της οποίας θα επιφέρει τη µεγαλύτερη µείωση κόστους ανά µονάδα µεταφερόµενα ποσότητας Οισυντελεστές οριακής µεταβολής του κόστους στη µέθοδο Stepping Stone Ταβήµατα της επαναληπτικής µεθόδου Stepping Stoneείναι αντίστοιχα µε τα βήµατα της µεθόδου Simplex Οι συντελεστές της οριακής µεταβολής του κόστους µεταφοράς για κάθε διαδροµή που δεν έχει χρησιµοποιηθεί στην τρέχουσα λύση, που υπολογίστηκαν παραπάνω, αντιστοιχούν στις τιµές της γραµµής C j -Z j αν το πρόβληµα λυθεί µε τη µέθοδο Simplex Kαι η οικονοµική τους ερµηνεία είναι αντίστοιχη

12 Βελτίωση της Λύσης Καταλήξαµεστο ότι η επιλογή και χρησιµοποίηση τηwδιαδροµής Πάτρα-Αθήνα θα οδηγήσει σε µείωση του κόστους και µάλιστα γνωρίζουµε ότι γιακάθε µονάδα φορτίου που θα µεταφερθεί στη διαδροµή αυτή το κόστος θα µειωθείκατά 3 µονάδες Τρία άλλα σηµεία τα οποία πρέπει να λάβουµε υπ' όψη είναι τα εξής: 1. Ο αριθµός των διαδροµών που θα χρησιµοποιηθούν δεν πρέπει να ξεπερνά τις 6 (4+3-1), όπως εξηγήσαµε και προηγουµένως Εποµένως, χρησιµοποιώντας τη διαδροµή Πάτρα-Αθήνα θα πρέπει να αποκλειστεί µια από τις ήδη χρησιµοποιούµενες διαδροµές 2. Εφόσον το συνολικό κόστος µεταφοράς µειώνεται κατά 3 µονάδεςγια κάθε µονάδα φορτίου που θα εκχωρηθεί στη διαδροµή Πάτρα-Αθήνα, θα πρέπει να επιδιώξουµε την εκχώρηση όσο το δυνατόν µεγαλύτερης ποσότητας φορτίου στη διαδροµή αυτή 3. Σύµφωνα µε τον κλειστό βρόγχο του πίνακα που χρησιµοποιήθηκε προηγουµένως για τον υπολογισµό των οριακών µεταβολών του κόστους µεταφοράς για κάθε νέα-µη χρησιµοποιούµενη διαδροµή, κάθε ανάθεση φορτίου στη διαδροµή Πάτρα-Αθήνα, οδηγεί σε µεταβολές των µεταφερόµενων ποσοτήτων στις άλλες διαδροµές. Συγκεκριµένα για κάθε ποσότητα φορτίου που θα εκχωρηθεί στη διαδροµή Πάτρα-Αθήνα, η ίδια ποσότητα φορτίου θα αφαιρεθείαπό τις διαδροµές Πάτρα-Λάρισα και Βόλος-Αθήνα (σηµείο -) ενώ αντίθετα το ίδιο φορτίο θα προστεθεί στη διαδροµή Βόλος-Λάρισα (σηµείο +).

13 Εκχώρηση φορτίου στη νέα διαδροµή Το πρόβληµα εντοπίζεται στις διαδροµές από τις οποίες θα αφαιρεθεί φορτίο Από τη διαδροµή Πάτρα-Λάρισα η µεγαλύτερη ποσότητα φορτίου που µπορεί να αφαιρεθείείναι 150 µονάδες, ενώ από τη διαδροµή Βόλος-Αθήνα µπορούν να αφαιρεθούν επίσης έως 150 µονάδες Εποµένως, η µεγαλύτερη ποσότητα που µπορεί να εκχωρηθεί στη νέα διαδροµή Πάτρα-Αθήνα είναι 150 µονάδες και οι αλλαγές στα φορτία των διαδροµών έχουν ως εξής:

14

15 Οαλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του κόστους λόγω της επιλογής της διαδροµής Πάτρα-Αθήνα Είχαµε βρει ότι για κάθε µεταφερόµενη µονάδα το κόστος µειώνεταικατά 3 µονάδες, εποµένως η συνολική µείωση για εκχωρούµενο φορτίο 150 µονάδων είναι 450 µονάδες µικρότερο από το κόστος της προηγούµενα λύσης που ανέρχονταν σε 5900 Stepping Stone και Simplex Η αντιστοιχία των βηµάτων της επαναληπτικής µεθόδου Stepping Stone και της µεθόδου Simplex συνεχίζεται: Σε κάθε βήµα η λύση βελτιώνεται µε την αλλαγή κάποιας εκ των χρησιµοποιούµενων διαδροµών µε µία από τις µη-χρησιµοποιούµενες Οι χρησιµοποιούµενες διαδροµές αντιστοιχούν στις βασικές µεταβλητές του πίνακα Simplex, ενώ οι µη-χρησιµοποιούµενες στις µη-βασικές Οι υπολογισµοί στη µέθοδο Stepping Stoneείναι πιο απλοί, λόγω του ότι οι συντελεστές των µεταβλητών στους περιορισµούς (τεχνολογικοί συντελεστές) είναι όλοι είτε µοναδιαίοι είτε µηδενικοί

16 Stepping Stone: 2η επανάληψη Ηπρώτη επανάληψη της µεθόδου Stepping Stoneέδωσε τη λύση της προηγούµενης παραγράφου Στη λύση αυτή χρησιµοποιούνται µόνο 5 διαδροµές, ενώ 7 διαδροµές δεν χρησιµοποιούνται Η περίπτωση που χρησιµοποιούνται λιγότερες από m+n-1 διαδροµές Στηνπερίπτωση που οι διαδροµές στη λύση είναι λιγότερες από m+n-1 (δηλαδή 6 στη συγκεκριµένη περίπτωση), µία από τις διαδροµές µε µηδενικό φορτίο, από αυτές που µηδενίστηκαν ταυτόχρονα σε κάποια συγκεκριµένη εκχώρηση, θεωρείται για την δηµιουργία των κλειστών βρόγχων ως διαδροµή που έχει επιλεγεί µε φορτίο 0 Στην περίπτωση του παραδείγµατος µπορούµε να θεωρήσουµε τη διαδροµή Βόλος- Αθήνα ως επιλεγείσα. Εξετάζουµετώρα τις οριακές µεταβολές του κόστους για τις διαδροµές που δεν έχουν επιλεγεί µε τον ίδιο τρόπο, όπως και στην πρώτη επανάληψη της µεθόδου Stepping Stone

17 Οι κλειστοί βρόγχοι για κάθε διαδροµή φαίνονται στον παραπάνω πίνακα µεταφοράς Στα κελιά που αντιστοιχούν σε µη χρησιµοποιούµενες διαδροµές έχει τοποθετηθεί το σηµείο + Ακολουθώντας τον κάθε βρόγχο µπορούµε να τοποθετήσουµε εναλλάξ τα σηµεία -και +, ώστε σε κάθε περίπτωση να υπάρχει αντιστάθµιση των + και -σε κάθε γραµµή και στήλη

18 Τααποτελέσµατα µε τους υπολογισµούς της οριακής µεταβολής του συνολικού κόστους µεταφοράς έχουν ως εξής:

19 Παρατηρούµεότι η επιλογή της διαδροµής Θεσσαλονίκη-Λάρισα, όπως και της διαδροµής Θεσσαλονίκη-Ιωάννινα, θα µειώσει το συνολικό κόστος µεταφοράς κατά 1 µονάδα ανά µονάδα µεταφερόµενης ποσότητας Εφόσον η οριακή µεταβολή του κόστους είναι ίδια, επιλέγουµε µίαεκ των δυο τυχαία, έστω τη διαδροµή Θεσσαλονίκη-Λάρισα Για να αποφασίσουµε ποια διαδροµή θα αντικατασταθείαπό την προσθήκη της διαδροµής Θεσσαλονίκη-Λάρισα στις διαδροµές που θα χρησιµοποιηθούν, εξετάζουµε τις αντίστοιχες µεταβολές στον πίνακα του προβλήµατος µεταφοράς

20 Το µέγιστο φορτίο που µπορεί να εκχωρηθεί στη διαδροµή Θεσσαλονίκη- Λάρισα, περιορίζεται από τις διαδροµές µε πρόσηµο Η µικρότερη τιµή στα κελιά µε το σηµείο -καθορίζει το φορτίο που θα εκχωρηθεί στη νέα διαδροµή που έχει επιλεγεί, στην προκειµένη περίπτωση τη διαδροµή Θεσσαλονίκη-Λάρισα Από τις δύο διαδροµές του πίνακα µε πρόσηµο -, τις Βόλος-Λάρισα και Θεσσαλονίκη-Αθήνα το µικρότερο φορτίο βρίσκεται στη δεύτερη Εποµένως, εκχωρούµε 250 µονάδες στη διαδροµή Θεσσαλονίκη-Λάρισα, το οποίο αφαιρείταιαπό τις διαδροµές Βόλος-Λάρισα και Θεσσαλονίκη-Αθήνα, και προστίθεται στη διαδροµή Βόλος-Αθήνα Ονέος πίνακας µεταφοράς:

21 Όπωςκαι στο προηγούµενο βήµα, ο αλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του συνολικού κόστους λόγω της επιλογής της διαδροµής Θεσσαλονίκη-Λάρισα Εφόσον για κάθε µεταφερόµενη µονάδα στη διαδροµή αυτή, το συνολικό κόστος µειώνεται κατά 1 µονάδα, η συνολική µείωση για εκχωρούµενο φορτίο 250 µονάδων είναι 250 µονάδες, µειώνοντας το κόστος από σε 5.200

22 Stepping Stone: 3η επανάληψη Ηλύση που προέκυψε µε το τέλος του 2ου επαναληπτικού βήµατος της µεθόδου Stepping Stone, δίνεται στον πίνακα µεταφοράς που ακολουθεί: Ουπολογισµός των οριακών µεταβολών του κόστους για τις διαδροµέςπου δεν έχουν επιλεγεί γίνεται µε τον ίδιο τρόπο όπως και στις προηγούµενες επαναλήψείς της µεθόδου Stepping Stone. Οι κλειστοί βρόγχοι για κάθε διαδροµή δίνονται στον παρακάτω πίνακα µε φορά σύµφωνα µε την κίνηση των δεικτών του ρολογιού:

23 Παρατηρούµεότι υπάρχει µία µόνο διαδροµή µε αρνητικό συντελεστή οριακού κόστους, αυτή της Θεσ/νίκης-Ιωάννινα, η οποία πρέπει να επιλεγεί Για να αποφασίσουµε ποια διαδροµή θα αντικατασταθείαπό τη διαδροµή Θεσσαλονίκη-Ιωάννινα, εξετάζουµε τι$ αντιστοιχεί µεταβολές στον πίνακα του προβλήµατος µεταφοράς

24 Γιανα προσδιορίσουµε το φορτίο που θα εκχωρηθεί στη διαδροµή Θεσσαλονίκη-Ιωάννινα εξετάζουµε τις διαδροµές που χαρακτηρίζονται µε πρόσηµο Η µικρότερη ποσότητα βρίσκεται στη διαδροµή Πάτρα-Ιωάννινα Εποµένως, εκχωρούµε 200 µονάδες στη διαδροµή Θεσσαλονίκη-Ιωάννινα, το οποίο αφαιρείταιαπό τις διαδροµές Πάτρα-Ιωάννινα, Βόλος-Αθήνα και Θεσσαλονίκη-Λάρισα (πρόσηµο -) και προστίθεται στις διαδροµές Πάτρα- Αθήνα και Βόλος-Λάρισα (πρόσηµο +)

25 Ο νέος πίνακας µεταφοράς:

26 Όπωςκαι µε στο προηγούµενο βήµα, ο αλγεβρικός υπολογισµός του κόστους επαληθεύεται και από την οριακή µείωση του κόστους λόγω της επιλογής της διαδροµής Θεσσαλονίκη-Ιωάννινα Εφόσον για κάθε µεταφερόµενη µονάδα το κόστος µειώνεται κατά 2 µονάδες, η συνολική µείωση για εκχωρούµενο φορτίο 200 µονάδων είναι 400 µονάδες από το κόστος της προηγούµενης λύσης που ήταν 5200

27 Stepping Stone: 4η επανάληψη Εξετάζουµετώρα τις οριακές µεταβολές του κόστους για τις διαδροµές που δεν έχουν επιλεγεί µε τον ίδιο τρόπο όπως και στις προηγούµενες επαναλήψείς της µεθόδου Stepping Stone :

28 Οικλειστοί βρόγχοι για κάθε διαδροµή δίνονται στον παρακάτω πίνακα µε φορά της κίνησης των δεικτών του ρολογιού µε τα αποτελέσµατα των υπολογισµών της οριακής µεταβολής του συνολικού κόστους µεταφοράς: Παρατηρούµεότι σε όλες τις µη επιλεγείσες διαδροµές της τελευταίας λύσης, ο συντελεστής οριακού κόστους είναι θετικός, εποµένως οποιαδήποτε αλλαγή της λύσης µε αντικατάσταση µιας εκ των διαδροµών που έχουν επιλεγεί από µία άλλη, θα είχε ως αποτέλεσµα την αύξηση του κόστους

29 Κριτήριο βέλτιστης λύσης στα προβλήµατα µεταφοράς Όταν οι συντελεστές οριακού κόστους για όλες τις διαδροµέςπου δεν έχουν επιλεγεί στην τρέχουσα λύση είναι µη αρνητικοί, τότε η τρέχουσα λύση είναι βέλτιστη

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου 1. Κεφάλαιο 6 Εκτίµηση και Οµόλογα 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου Είναι καµιά φορά δύσκολο να εξηγήσει κανείς τι σηµαίνει παρούσα αξία σε κάποιον που δεν το έχει µελετήσει. Αλλά, όπως έχει

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος

Κίνηση σε φθηνότερη διαδροµή µε µη γραµµικό κόστος υποδο?ών?εταφράζεταισε?ίαγενικότερηεξοικονό?ησηπαραγωγικώνπόρωνγιατηκοινωνία. τεχνικέςυποδο?ές,όπωςείναιαυτοκινητόδρο?οι,γέφυρεςκ.λ.π.ηκατασκευήτέτοιων Μιααπ τιςβασικέςλειτουργίεςτουκράτουςείναιοεφοδιασ?όςτηςκοινωνίας?εβασικές

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 26 Συνεχή Ρεύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 26 Συνεχή Ρεύµατα Περιεχόµενα Κεφαλαίου 26 Ηλεκτρεγερτική Δύναµη (ΗΕΔ) Αντιστάσεις σε σειρά και Παράλληλες Νόµοι του Kirchhoff Σειριακά και Παράλληλα EMF-Φόρτιση Μπαταρίας Κυκλώµατα RC Μέτρηση

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις εδοµένων και την Access

Εισαγωγή στις Βάσεις εδοµένων και την Access Μάθηµα 1 Εισαγωγή στις Βάσεις εδοµένων και την Access Τι είναι οι βάσεις δεδοµένων Μία βάση δεδοµένων (Β..) είναι µία οργανωµένη συλλογή πληροφοριών, οι οποίες είναι αποθηκευµένες σε κάποιο αποθηκευτικό

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ, E.M.Π ΕΡΓΑΣΤΗΡΙΟ ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΩΝ ΕΡΓΩΝ ΚΑΙ ΙΑΧΕΙΡΙΣΗΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ: Υ ΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΑΜΗΝΟ: 8 ο Άσκηση Οικισµός ΑΒΓ Α υδροδοτείται από δεξαµενή µέσω

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος

Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής. Δημήτρης Μπάλιος Διοικητική Λογιστική Κοστολόγηση συνεχούς παραγωγής Δημήτρης Μπάλιος ΘΕΩΡΙΑ Κοστολόγηση συνεχούς παραγωγής Η επιχείρηση παράγει πολλά τεμάχια ενός μοναδικού προϊόντος (τυποποιημένο προϊόν) για μεγάλο χρονικό

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου.

Ας δούµε τώρα πως το εν λόγω υπόδειγµα µεταχειρίζεται τη συσσώρευση κεφαλαίου. Το υπόδειγµα οικονοµικής µεγέθυνσης του Solow σχεδιάστηκε προκειµένου να δείξει πως η µεγέθυνση του κεφαλαίου, του εργατικού δυναµικού αλλά και οι µεταβολές στην τεχνολογία αλληλεπιδρούν σε µια οικονοµία,

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΣΥΝ ΕΣΗ ΣΤΟ ΗΛΕΚΤΡΟΝΙΚΟ ΚΑΤΑΣΤΗΜΑ:

ΣΥΝ ΕΣΗ ΣΤΟ ΗΛΕΚΤΡΟΝΙΚΟ ΚΑΤΑΣΤΗΜΑ: www.memonet.gr Αγαπητοί συνεργάτες Παρακάτω θα βρείτε χρήσιµες πληροφορίες που θα σας βοηθήσουν στο ηλεκτρονικό µας κατάστηµα, παρόλα αυτά παραµένουµε στην διάθεση σας για να σας εξυπηρετήσουµε. ΣΥΝ ΕΣΗ

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο

Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο χρήστη µέσω υπολογιστή άνετα γρήγορα και φτηνά. Για να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Εισαγωγή στην οικονοµία των µεταφορών

Εισαγωγή στην οικονοµία των µεταφορών 1 Εισαγωγή στην οικονοµία των µεταφορών Βασικές συνιστώσες της οικονοµικής ανάλυσης στις µεταφορές Ζήτηση, Προσφορά και αλληλεπίδραση προσφοράς και ζήτησης Εξωτερικές αλληλεπιδράσεις, κοινωνικό κόστος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ "KOSTOLOGOS " Σταυριανίδης Κωνσταντίνος Μηχανικός Παραγωγής & ιοίκησης. Εισαγωγή

ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ KOSTOLOGOS  Σταυριανίδης Κωνσταντίνος Μηχανικός Παραγωγής & ιοίκησης. Εισαγωγή Εισαγωγή Η προσέγγιση του κοστολογικού προβλήµατος µίας µεταποιητικής επιχείρησης από το Λογισµικό «Κοστολόγος» στηρίζεται στην παρακάτω ανάλυση ΤΕΛΙΚΟ ΚΟΣΤΟΣ ΠΡΟΙΟΝΤΟΣ ΚΟΣΤΟΣ ΠΑΡΑΓΩΓΗΣ ΚΟΣΤΟΣ ΙΟΙΚΗΣΗΣ

Διαβάστε περισσότερα

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης,

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά

ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Y = C + I + G + NX. απάνες Κατανάλωσης από τα νοικοκυριά ΤΙ ΠΡΟΣ ΙΟΡΙΖΕΙ ΤΗ ΖΗΤΗΣΗ ΓΙΑ ΑΓΑΘΑ ΚΑΙ ΥΠΗΡΕΣΙΕΣ; Συνολική Ζήτηση για εγχώριο προϊόν (ΑΕΠ/GDP) απαρτίζεται από Y = C + I + G + NX απάνες Κατανάλωσης από τα νοικοκυριά Επενδυτικές απάνες από τα νοικοκυριά

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

7.8 Σύστηµα ονοµάτων περιοχών (Domain Name System, DNS)

7.8 Σύστηµα ονοµάτων περιοχών (Domain Name System, DNS) 7.8 ύστηµα ονοµάτων περιοχών (Domain Name System, DNS) Ερωτήσεις 1. Γιατί χρησιµοποιούµε συµβολικά ονόµατα αντί για τις διευθύνσεις; 2. ε τι αναφέρονται το όνοµα και η διεύθυνση ενός υπολογιστή; Πώς και

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων.

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Βήµα 1 ο ηµιουργία Εταιρείας Από την Οργάνωση\Γενικές Παράµετροι\ ιαχείριση εταιρειών θα δηµιουργήσετε την νέα σας εταιρεία, επιλέγοντας µέσω των βηµάτων

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Νίκος Μαζαράκης Αθήνα 2010

Νίκος Μαζαράκης Αθήνα 2010 Νίκος Μαζαράκης Αθήνα 2010 Οι χάρτες των 850 Hpa είναι ένα από τα βασικά προγνωστικά επίπεδα για τη παράµετρο της θερµοκρασίας. Την πίεση των 850 Hpa τη συναντάµε στην ατµόσφαιρα σε ένα µέσο ύψος περί

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα