ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ"

Transcript

1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΘΕΜΑ 1 ο Έστω το πρόβληµα της τοποθέτησης τεσσάρων (4) βασιλισσών πάνω σε µια σκακιέρα 4x4, έτσι ώστε να µην απειλεί η µία την άλλη. Προσπαθήστε να λύσετε το πρόβληµα χρησιµοποιώντας τον αλγόριθµο αναρρίχησης λόφων. Χρησιµοποιείστε ευριστική συνάρτηση της επιλογής σας. Τερµατίστε την αναζήτηση όταν βρείτε τη λύση ή όταν συναντήσετε για δεύτερη φορά την ίδια κατάσταση. Υπόδειξη 1: Για την αναπαράσταση των καταστάσεων θεωρείστε ότι κάθε βασίλισσα βρίσκεται και κινείται στη «δική της» στήλη. Έτσι, ένα διάνυσµα της µορφής [x, y, z, w], µε x, y, z, w {1, 2, 3, 4}, όπου οι αριθµοί x, y, z, w δηλώνουν τη γραµµή στην οποία βρίσκεται κάθε βασίλισσα, αρκεί για την αναπαράσταση των καταστάσεων. Επιλέξτε τυχαία αρχική κατάσταση. Απάντηση: Η λογική επίλυσης της άσκησης είναι η εξής: Ξεκινώντας από µια τυχαία τοποθέτηση των βασιλισσών πάνω στη σκακιέρα, σε κάθε βήµα µετακινούµε µια από αυτές σε µια άλλη θέση στη στήλη της, µέχρι να βρούµε µια διάταξή τους όπου να µην υπάρχουν απειλές. Με δεδοµένο ότι κάθε βασίλισσα µπορεί να πάει σε τρεις θέσεις, οι δυνατές «κινήσεις» σε κάθε βήµα είναι 3x4=12. Κάθε µια από τις ενδεχόµενες επόµενες καταστάσεις βαθµολογείται βάσει της ευριστικής συνάρτησης και επιλέγεται αυτή µε τον µικρότερο βαθµό ως η νέα κατάσταση του αλγορίθµου αναζήτησης. Ως ευριστική συνάρτηση επιλέγουµε το πλήθος των απειλών που υπάρχουν µεταξύ των βασιλισσών. Επειδή κάθε απειλή είναι «διπλή», δηλαδή αν η βασίλισσα Α απειλεί την βασίλισσα Β τότε και η Β θα απειλεί την Α, «συµφωνούµε» να µην τις µετράµε τις απειλές διπλά. Ως αρχική κατάσταση επιλέγουµε την [1,1,1,1]. Στην κατάσταση αυτή υπάρχουν 6 απειλές. Αρχική κατάσταση: [1,1,1,1] = 6 υνατές κινήσεις: [2,1,1,1]=4 [1,2,1,1]=5 [1,1,2,1]=5 [1,1,1,2]=4 [3,1,1,1]=4 [1,3,1,1]=4 [1,1,3,1]=4 [1,1,1,3]=4 [4,1,1,1]=4 [1,4,1,1]=3 [1,1,4,1]=3 [1,1,1,4]=4 Επιλέγουµε την µετάβαση [1,4,1,1] υνατές επόµενες κινήσεις: [2,4,1,1]=1 [1,1,1,1]=6 [1,4,2,1]=2 [1,4,1,2]=2 [3,4,1,1]=3 [1,2,1,1]=5 [1,4,3,1]=2 [1,4,1,3]=1 [4,4,1,1]=3 [1,3,1,1]=4 [1,4,4,1]=2 [1,4,1,4]=2 Επιλέγουµε τη µετάβαση [2,4,1,1] υνατές επόµενες κινήσεις: [1,4,1,1]=3 [2,1,1,1]=4 [2,4,2,1]=2 [2,4,1,2]=3 [3,4,1,1]=3 [2,2,1,1]=3 [2,4,3,1]=1 [2,4,1,3]=0 [4,4,1,1]=3 [2,3,1,1]=3 [2,4,4,1]=2 [2,4,1,4]=1 Επιλέγουµε τη µετάβαση [2,4,1,3], η οποία αποτελεί και τη λύση του προβλήµατος, µιας και δεν υπάρχει καµία απειλή σε αυτή τη διάταξη των βασιλισσών.

2 ΘΕΜΑ 2 ο Έστω το πρόβληµα του χρωµατισµού του χάρτη της Αυστραλίας µε τα τρία χρώµατα {κόκκινο, πράσινο, µπλε}, έτσι ώστε να µην υπάρχουν γειτονικές περιοχές µε ίδιο χρώµα. ιατυπώστε το πρόβληµα ως πρόβληµα ικανοποίησης περιορισµών, δηλαδή ορίστε τις µεταβλητές του προβλήµατος, τα πεδία τιµών τους και σχεδιάστε τον γράφο περιορισµών. Στη συνέχεια λύστε το πρόβληµα χρησιµοποιώντας αλγόριθµους ελέγχου συνέπειας. Υπόδειξη: Για γρηγορότερη επίλυση «υιοθετείστε» το ευριστικό µηχανισµό LCV (Least Constraint Variable), σύµφωνα µε τον οποίο, κάθε φορά που χρειάζεται να αποδώσουµε τιµή σε µια µεταβλητή, επιλέγουµε αυτή που συµµετέχει σε περισσότερους περιορισµούς. Απάντηση: Χρειαζόµαστε 7 µεταβλητές, όπου κάθε µια αντιστοιχεί σε µια περιοχή της Αυστραλίας. Έστω WA, NT, SA, Q, NSW, V και T τα ονόµατά τους, από τα αρχικά γράµµατα των αντίστοιχων περιοχών. Όλες οι µεταβλητές έχουν το ίδιο πεδίο τιµών, δηλαδή τα τρία χρώµατα {κόκκινο, πράσινο, µπλε}. Οι περιορισµοί του προβλήµατος είναι οι παρακάτω: WA NT NT Q SA NSW WA SA SA Q SA V NT SA Q NSW NSW V Ο γράφος περιορισµών φαίνεται παρακάτω: NT Q WA SA NSW V T Από τους υπάρχοντες περιορισµούς δεν προκύπτει καµία µεταβολή στα αρχικά πεδία τιµών των µεταβλητών. Επιλέγουµε λοιπόν να αναθέσουµε τιµή στη µεταβλητή SA, η οποία συµµετέχει σε 5

3 περιορισµούς. Έστω SA=κόκκινο. Αυτό έχει ως αποτέλεσµα τα πεδία τιµών των υπολοίπων µεταβλητών να τροποποιηθούν λόγω των περιορισµών ως εξής: SA=κόκκινο WA {πράσινο, µπλε} ΝΤ {πράσινο, µπλε} Q {πράσινο, µπλε} NSW {πράσινο, µπλε} V {πράσινο, µπλε} T {κόκκινο, πράσινο, µπλε} Να σηµειωθεί ότι η συρρίκνωση των πεδίων τιµών των µεταβλητών δεν είχε ως αποτέλεσµα την περαιτέρω συρρίκνωση των πεδίων τιµών άλλων µεταβλητών Στη συνέχεια επιλέγουµε τη µεταβλητή NT, η οποία συµµετέχει σε τρεις περιορισµούς. Έστω NT=πράσινο. Αυτό έχει ως αποτέλεσµα τα πεδία των υπολοίπων µεταβλητών να τροποποιηθούν ως εξής: SA=κόκκινο WA = µπλε ΝΤ = πράσινο Q = µπλε NSW {πράσινο, µπλε} V {πράσινο, µπλε} T {κόκκινο, πράσινο, µπλε} Το γεγονός ότι η µεταβλητή WA πήρε επαγωγικά την τιµή «µπλε» δεν επηρρεάζει καµία άλλη µεταβλητή. Ωστόσο, το γεγονός ότι η µεταβλητή Q πήρε επίσης την τιµή «µπλε» επηρεάζει τη µεταβλητή NSW, η οποία πλέον παίρνει την τιµή «πράσινο». Αυτό µε τη σειρά του επηρρεάζει τη µεταβλητή V, η οποία τελικά παίρνει την τιµή «µπλε». Άρα, τα νέα πεδία τιµών των µεταβλητών διαµορφώνονται ως εξής: SA=κόκκινο WA = µπλε ΝΤ = πράσινο Q = µπλε NSW=πράσινο V= µπλε T {κόκκινο, πράσινο, µπλε} Βλέπουµε ότι όλες οι µεταβλητές έχουν πάρει συγκεκριµένη τιµή, εκτός από τη µεταβλητή Τ. Με δεδοµένο ότι η µεταβλητή Τ δεν συµµετέχει σε κανέναν περιορισµό, µπορούµε για τη µεταβλητή αυτή να επιλέξουµε τυχαία µια τιµή από το πεδίο τιµών της. Έτσι λοιπόν µια ανάθεση χρωµάτων στις διάφορες περιοχές της Αυστραλίας είναι η εξής: SA=κόκκινο WA = µπλε ΝΤ = πράσινο Q = µπλε NSW=πράσινο V= µπλε T=κόκκινο Φυσικά υπάρχουν και πολλές άλλες εναλλακτικές αναθέσεις χρωµάτων στις περιοχές. Το γεγονός ότι καταλήξαµε στη συγκεκριµένη ανάθεση έχει να κάνει µε τις «αποφάσεις» που πήραµε όταν αυθαίρετα επιλέξαµε χρώµατα για τις περιοχές SA, NT και T.

4 ΘΕΜΑ 3 ο Έστω ότι πρέπει να ορισθεί η σειρά µε την οποία θα εκτελεστούν τέσσερις εργασίες Α, Β, Γ και, µε τους εξής περιορισµούς: Η Α πρέπει να εκτελεστεί µετά από την, η Γ πριν από τη Β και η Β πριν από την Α. α) Ορίστε το πρόβληµα ως πρόβληµα ικανοποίησης περιορισµών, δηλαδή ορίστε τις µεταβλητές, τα πεδία τιµών τους και τους περιορισµούς µεταξύ τους. (1.25) β) Λύστε το πρόβληµα χρησιµοποιώντας αλγορίθµους ελέγχου συνέπειας. (1.25) Απάντηση α) Μεταβλητές: Α, Β, Γ, Πεδία τιµών: D A =D B =D Γ =D ={1,2,3,4} Περιορισµοί: Α Β, Α Γ, Α, Β Γ, Β, Γ Α> Γ<Β Β<Α β) Τα αρχικά πεδία τιµών των µεταβλητών: Α {1,2,3,4} Β {1,2,3,4} Γ {1,2,3,4} {1,2,3,4} Λόγω Β<Α, η µεταβλητή Β δε µπορεί σε καµιά περίπτωση να πάρει την τιµή 4, αλλά ούτε και η Α να πάρει την τιµή 1: Α {2,3,4} Β {1,2,3} Γ {1,2,3,4} {1,2,3,4} Λόγω Γ<Β, η Γ δεν µπορεί να πάρει την τιµή 3 ούτε και την τιµή 4, ενώ η Β δε µπορεί να πάρει την τιµή 1: Α {2,3,4} Β {2,3} Γ {1,2} {1,2,3,4} Λόγω Α> η δεν µπορεί να πάρει την τιµή 4: Α {2,3,4} Β {2,3} Γ {1,2} {1,2,3} Το πεδίο της Β έχει µεταβληθεί, οπότε ο περιορισµός Β<Α πρέπει να επανεξεταστεί. Λόγω λοιπόν του Β<Α δεν µπορεί να υπάρχει η τιµή 2 στο πεδίο της Α: Α {3,4} Β {2,3} Γ {1,2} {1,2,3} Τώρα οι πιθανοί συνδυασµοί γίνονται =24, σε σχέση µε τους 256 που υπήρχαν αρχικά.

5 Επιλέγεται για τη µεταβλητή Α η τιµή 3. Λόγω του περιορισµού Β<Α από το πεδίο της Β αφαιρείται η τιµή 3, από το πεδίο της Γ η τιµή 2 καθώς πρέπει να ισχύει Γ<Β και από το πεδίο της Α η τιµή 3 λόγω του Α>. Άρα τα πεδία γίνονται: Α {3} Β {2} Γ {1} {1,2} Όµως λόγω των περιορισµών Β και Γ από το πεδίο της αφαιρούνται επίσης οι τιµές 1 και 2 οπότε µένει κενό, που σηµαίνει ότι δεν υπάρχει δυνατή ανάθεση τιµών που να ικανοποιεί τους περιορισµούς. Η επόµενη δυνατή ανάθεση είναι να δοθεί στην Α η τιµή 4. Εφαρµόζοντας τους περιορισµούς δεν υπάρχει καµία αλλαγή στα πεδία των τιµών. Η διαδικασία προχωρά στο επόµενο βήµα αναζήτησης και ανατίθεται στη µεταβλητή Β η τιµή 2. Λόγω του περιορισµού Γ<Β, από το πεδίο της µεταβλητής Γ αφαιρείται η τιµή 2, και καθώς Β και Γ, από το πεδίο της αφαιρούνται οι τιµές 1 και 2. Οπότε τα πεδία τιµών γίνονται: Α {4} Β {2} Γ {1} {3} Αφού όλα τα πεδία έχουν µία µόνο τιµή και δεν παραβιάζεται κανένας περιορισµός, έχουµε βρει µια λύση στο πρόβληµα. ΘΕΜΑ 4 ο Έστω οι µεταβλητές A, B, C, D και E, οι οποίες είναι ακέραιες και το αρχικό πεδίο ορισµού τους είναι το {1,2,3,4} για κάθε µία από αυτές. Οι περιορισµοί που ισχύουν µεταξύ τους είναι οι: C D (1) C>E (2) C A (3) B>D (4) D>E (5) B>C (6) E+A mod 2 =0 (7) α) Σχεδιάστε το γράφο περιορισµών του προβλήµατος. (0.5) β) Εφαρµόστε τον αλγόριθµο ελέγχου συνέπειας τόξου, µέχρι να µην µπορούν να αφαιρεθούν άλλες τιµές από τα πεδία των µεταβλητών. (1) γ) Βρείτε µια λύση του προβλήµατος. (1) Υπόδειξη: Για να βρείτε µια λύση (µετά την απάντηση του ερωτήµατος (β)), επιλέξτε να αναθέσετε τιµή στην µεταβλητή που συµµετέχει στους περισσότερους περιορισµούς). Παρατήρηση: Ο περιορισµός (7) έχει το νόηµα ότι το άθροισµα των τιµών της Ε και της Α είναι άρτιος αριθµός. Έτσι εάν όλες οι τιµές της Ε είναι άρτιες τότε πρέπει και όλες οι τιµές της Α να είναι άρτιες και αντίστροφα. Παρόµοια, εάν όλες οι τιµές της Ε είναι περιττές, τότε πρέπει και όλες οι τιµές της Α να είναι περιττές και αντίστροφα. Τέλος, εάν η µία µεταβλητή περιλαµβάνει τόσο άρτιες, όσο και περιττές τιµές στο πεδίο της, το ίδιο πρέπει να συµβαίνει και µε την άλλη. Απάντηση: α) Ο γράφος περιορισµών του προβλήµατος φαίνεται παρακάτω:

6 B B>C C A C A B>D C D E+A mod 2 =0 C>E D E D>E β) Έχουµε καταρχήν να ελέγξουµε όλες τις µεταβλητές, για τις σχέσεις τους µε άλλες µεταβλητές. Κάθε φορά που το πεδίο µιας µεταβλητής συρρικνώνεται, θα πρέπει να γίνεται επανέλεγχος για όλες τις υπόλοιπες µεταβλητές που συνδέονται µαζί της στο γράφο περιορισµών. Τα αρχικά πεδία τιµών των µεταβλητών είναι τα: Α={1,2,3,4} Β={1,2,3,4} C={1,2,3,4} D={1,2,3,4} E={1,2,3,4} Έχουµε να ελέξουµε τις µεταβλητές Α, Β, C, D και E. Ελέγχουµε πρώτα την µεταβλητή Α. Για όλες τις τιµές του πεδίου της υπάρχουν αντίστοιχες τιµές στα πεδία των σχετιζόµενων µεταβλητών που ικανοποιούν τους περιορισµούς. Έτσι δεν αφαιρούµε καµία τιµή από το πεδίο της Α. Ελέγχουµε στη συνέχεια τη Β. Λόγω των περιορισµών B>C και B>D, αφαιρούνται οι τιµές 1 από την Β και 4 από τις C και D. Τα νέα πεδία τιµών γίνονται: Α={1,2,3,4} Β={2,3,4} C={1,2,3} D={1,2,3} E={1,2,3,4} Με δεδοµένο ότι άλλαξε το πεδίο της C, πρέπει να επαναελεγχθεί η Α. Ξαναελέγχουµε την Α, αλλά δεν προκύπτει αλλαγή στο πεδίο της. Ελέγχουµε στη συνέχεια την C. Λόγω του περιορισµού C>E, αφαιρείται η τιµή 1 από την C και οι τιµές 3,4 από την Ε. Τα πεδία τιµών γίνονται: Α={1,2,3,4} Β={2,3,4} C={2,3} D={1,2,3} E={1,2} Λόγω των αλλαγών στις C και E πρέπει να ξαναελεγχθούν όλες οι υπόλοιπες µεταβλητές. Ελέγχουµε την Β και λόγω του περιορισµού B>C αφαιρούµε την τιµή 2 από το πεδίο της Β. Τα πεδία τιµών γίνονται: Α={1,2,3,4} Β={3,4}

7 C={2,3} D={1,2,3} E={1,2} Ελέγχουµε την D, η οποία λόγω του περιορισµού D>E χάνει την τιµή 1 από το πεδίο της. Τα πεδία γίνονται: Α={1,2,3,4} Β={3,4} C={2,3} D={2,3} E={1,2} Στο σηµείο αυτό δεν µπορούµε να αφαιρέσουµε καµία τιµή από τα πεδία των µεταβλητών. γ) Στο σηµείο που φθάσαµε δεν µπορούµε να αφαιρέσουµε άλλες τιµές. Πρέπει λοιπόν να κάνουµε µια αυθαίρετη ανάθεση τιµής και να συνεχίσουµε µε τον αλγόριθµο ελέγχου συνέπειας τόξου. Επιλέγουµε να αναθέσουµε τιµή στη µεταβλητή C, η οποία συµµετέχει στους περισσότερους περιορισµούς (τέσσερις) και έστω ότι της αναθέτουµε την τιµή 3. Έτσι τα πεδία τιµών των µεταβλητών γίνονται: Α={1,2,3,4} Β={3,4} C={3} D={2,3} E={1,2} Λόγω του περιορισµού B>C, η τιµή 3 αφαιρείται από το πεδίο της Β. Λόγω των περιορισµών C D και C A, η τιµή 3 αφαιρείται και από τα πεδία της D και της Α. Έτσι τα πεδία των µεταβλητών γίνονται: Α={1,2,4} Β={4} C={3} D={2} E={1,2} Λόγω του D>E αφαιρείται η τιµή 2 από το Ε. Εφόσον λοιπόν στο Ε έχει µείνει µόνο η τιµή 1, η οποία είναι περιττός αριθµός, τότε από το Α αφαιρούνται οι τιµές 2 και 4 (λόγω του περιορισµού E+A mod 2 =0), γιατί το άθροισµά τους µε το 1 δίνει περιττό αριθµό. Τα πεδία λοιπόν γίνονται: Α={1} Β={4} C={3} D={2} E={1} Στο σηµείο αυτό όλες οι µεταβλητές έχουν µία µόνο τιµή. Επιπλέον, όλοι οι περιορισµοί ικανοποιούνται. Άρα η παραπάνω ανάθεση τιµών αποτελεί λύση του προβλήµατος. ΘΕΜΑ 5 ο Έστω ένα πρόβληµα χρονοπρογραµµατισµού πέντε εργασιών, A, B, C, D και E, κάθε µία από τις οποίες έχει διάρκεια µία ηµέρα, και οι οποίες πρέπει να εκτελεσθούν εντός τεσσάρων ηµερών. Θεωρώντας τις εργασίες ως ακέραιες µεταβλητές µε πεδίο τιµών το {1, 2, 3, 4}, οι περιορισµοί µεταξύ τους είναι οι εξής: E-A είναι άρτιος, C D, C>E, C A, B>D, D>E, B>C. Βρείτε µία λύση στο πρόβληµα χρησιµοποιώντας αναζήτηση µε υπαναχώρηση και διάδοση περιορισµών µε έλεγχο συνέπειας τόξων.

8 Υπόδειξη 1: Ο περιορισµός «Ε-Α είναι άρτιος» ενεργοποιείται µόνο όταν όλες οι τιµές του πεδίου της µιας από τις δύο µεταβλητές είναι είτε περιττές είτε άρτιες, οπότε διαγράφει από το πεδίο της άλλης µεταβλητής όλες τις άρτιες ή τις περιττές τιµές αντίστοιχα. Υπόδειξη 2: Μετά την διάδοση των περιορισµών, επιλέξτε να αναθέσετε τιµή στην µεταβλητή που συµµετέχει στους περισσότερους περιορισµούς. Απάντηση: Ο αρχικός γράφος περιορισµών του προβλήµατος, µαζί µε τα πεδία των µεταβλητών, είναι ο εξής: Α [1,2,3,4] C A C [1,2,3,4] E-A άρτιος E B>C C>E [1,2,3,4] C D D>E B [1,2,3,4] [1,2,3,4] D B>D Εκτελώντας ελέγχους συνέπειας τόξου, καταλήγουµε στα παρακάτω µειωµένα πεδία τιµών των µεταβλητών: Α [1,2,3,4] C A C [2,3] E-A άρτιος E B>C C>E [1,2] C D D>E B [3,4] [2,3] D B>D Στο σηµείο αυτό δεν µπορούµε να αφαιρέσουµε άλλες τιµές από τα πεδία των µεταβλητών, οπότε αναγκαζόµαστε να κάνουµε ανάθεση τιµής. Επιλέγουµε τη µεταβλητή η οποία συµµετέχει σε περισσότερους περιορισµούς, η οποία είναι η C (συµµετέχει σε 4 περιορισµούς) και της

9 αναθέτουµε την τιµή C=2. Εφαρµόζοντας εκ νέου τους ελέγχους συνέπειας τόξου καταλήγουµε στον παρακάτω γράφο: Α [1,3] C A C [2] E-A άρτιος E B>C C>E [1] C D D>E B [4] [3] D B>D Στο σηµείο αυτό όλες οι µεταβλητές έχουν πάρει συγκεκριµένη τιµή, εκτός από την Α που έχει δύο τιµές στο πεδίο της. Πρέπει λοιπόν και πάλι να κάνουµε ανάθεση τιµής και µάλιστα στην Α (αφού οι υπόλοιπες µεταβλητές έχουν ήδη πάρει τιµή). Όποια τιµή και αν επιλέξουµε για την Α, η συνολική ανάθεση τιµών αποτελεί λύση του προβλήµατος, έχουµε βρει λοιπόν δύο λύσεις, τις: A=1, B=4, C=2, D=3, E=1 A=3, B=4, C=2, D=3, E=1 Εάν κατά την ανάθεση τιµής στην C είχαµε επιλέξει την τιµή C=3, τότε µε παρόµοιους συλλογισµούς θα καταλήγαµε στη λύση: A=1, B=4, C=3, D=2, E=1 Αυτές είναι όλες οι λύσεις του προβλήµατος. ΘΕΜΑ 6 ο Το πρόβληµα της ζέβρας: Υπάρχουν πέντε σπίτια στη σειρά (αριθµούνται από το 1 στα αριστερά έως το 5 στα δεξιά), κάθε ένα µε διαφορετικό χρώµα (C1, C2, C3, C4, C5), που κατοικούνται από ιδιοκτήτες διαφορετικής εθνικότητας (N1, N2, N3, N4, N5). Κάθε ιδιοκτήτης έχει ένα διαφορετικό ζώο (P1, P2, P3, P4, P5), πίνει διαφορετικό ποτό (D1, D2, D3, D4, D5) και καπνίζει διαφορετικά τσιγάρα (S1, S2, S3, S4, S5) από τους υπόλοιπους ιδιοκτήτες Μας δίνονται οι παρακάτω πληροφορίες: 1. Ο Άγγλος µένει στο κόκκινο σπίτι. 2. Ο Ισπανός έχει έναν σκύλο. 3. Ο ιδιοκτήτης του πράσινου σπιτιού πίνει καφέ.

10 4. Ο Ουκρανός πίνει τσάι. 5. Το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ σπίτι. 6. Ο ιδιοκτήτης που καπνίζει Oldgold, έχει ένα σαλιγκάρι. 7. Ο ιδιοκτήτης του κίτρινου σπιτιού καπνίζει Kools. 8. Ο ιδιοκτήτης του µεσσαίου σπιτιού πίνει γάλα. 9. Ο Νορβηγός κατοικεί στο πρώτο σπίτι στα αριστερά. 10. Αυτός που καπνίζει Chesterfield µένει δίπλα στον κάτοχο της αλεπούς. 11. Το κίτρινο σπίτι είναι δίπλα στον ιδιοκτήτη του αλόγου. 12. Αυτός που καπνίζει Lucky Strike πίνει χυµό. 13. Ο Γιαπωνέζος καπνίζει Parliament. 14. Ο Νορβηγός µένει δίπλα στο µπλε σπίτι. Απαντήστε στις παρακάτω ερωτήσεις: α) Ποιος πίνει νερό; (1.5) β) Ποιος είναι ο ιδιοκτήτης της ζέβρας; (1) Υπόδειξη: Χρησιµοποιείστε έναν πίνακα σαν τον παρακάτω για να εκτελέσετε διάδοση των περιορισµών. C1 κόκκινο, C2 κόκκινο, C3 κόκκινο, C4 κόκκινο, C5 κόκκινο, πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε πράσινο, κρεµ, κίτρινο, µπλε N1 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P1 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N2 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P2 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N3 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P3 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N4 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P4 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα N5 Άγγλος, Ισπανός, Ουκρανός, Νορβηγός, Γιαπωνέζος P5 σκύλος, σαλιγκάρι, αλεπού, άλογο, ζέβρα D1 καφές, τσάι, D2 καφές, τσάι, D3 καφές, τσάι, D4 καφές, τσάι, D5 καφές, τσάι, γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός γάλα, χυµός, νερό, νερό, νερό, νερό, νερό S1 Oldgold, Kools, S2 Oldgold, S3 Oldgold, Kools, S4 Oldgold, Kools, S5 Oldgold, Chesterfield, LuckyStrike, Parliament Kools, Chesterfield, LuckyStrike, Parliament Chesterfield, LuckyStrike, Parliament Chesterfield, LuckyStrike, Parliament Kools, Chesterfield, LuckyStrike, Parliament Απάντηση: Συµβολίζουµε µε κεφαλαία γράµµατα τις µεταβλητές, όπως στην εκφώνηση. Έχουµε συνολικά 25 µεταβλητές, για το χρώµα, την εθνικότητα, το ζώο, το ποτό και τα τσιγάρα (προσοχή: εν είναι µεταβλητές τα ίδια τα σπίτια αλλά οι ιδιότητες των σπιτιών). Σχετικά µε τα πεδία αυτών των µεταβλητών παρατηρούµε τα εξής: Στην εκφώνηση αναφέρονται πέντε χρώµατα, τα {c1=κόκκινο, c2=πράσινο, c3=κρεµ, c4=κίτρινο, c5=µπλε}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών C1, C2, C3, C4, C5.

11 Στην εκφώνηση αναφέρονται πέντε εθνικότητες, οι {n1=άγγλος, n2=ισπανός, n3=ουκρανός, n4=νορβηγός, n5=γιαπωνέζος}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών Ν1, Ν2, Ν3, Ν4, Ν5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ζώα, τα {p1=σκύλος, p2=σαλιγκάρι, p3=αλεπού, p4=άλογο, p5=ζέβρα}, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών P1, P2, P3, P4, P5. Στην εκφώνηση (λαµβάνοντας υπόψη και τα ερωτήµατα) αναφέρονται πέντε ποτά, τα {d1=καφές, d2=τσάι, d3=γάλα, d4=χυµός, d5=νερό }, τα οποία και αποτελούν τα αρχικά πεδία των µεταβλητών D1, D2, D3, D4, D5. Στην εκφώνηση αναφέρονται πέντε µάρκες τσιγάρων, οι {s1=oldgold, s2=kools, s3=chesterfield, s4=luckystrike, s5=parliament}, οι οποίες και αποτελούν τα αρχικά πεδία των µεταβλητών S1, S2, S3, S4, S5. Ο παρακάτω πίνακας έχει τα αρχικά πεδία ορισµού όλων των µεταβλητών. C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n1,n2,n3,n4,n5 N2 n1,n2,n3,n4,n5 N3 n1,n2,n3,n4,n5 N4 n1,n2,n3,n4,n5 N5 n1,n2,n3,n4,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Θεωρούµε δεδοµένο ότι το πρόβληµα έχει λύση. Θα εφαρµόσουµε τη γνωστή τεχνική διάδοσης περιορισµών, µε σκοπό να διαγράψουµε όσο το δυνατόν περισσότερες τιµές από τα πεδία των µεταβλητών, µέχρις να µην µπορεί να διαγραφεί καµία άλλη τιµή. Στο σηµείο αυτό ελπίζουµε ότι κάποιες µεταβλητές θα έχουν πάρει µοναδική τιµή, ώστε να είναι δυνατή η απάντηση των ερωτήσεων. Από την πρόταση 9 προκύπτει ότι Ν1=n4, άρα η τιµή n4 αφαιρείται από τις µεταβλητές N2, N3, N4, N5: C1 c1,c2,c3,c4,c5 C2 c1,c2,c3,c4,c5 C3 c1,c2,c3,c4,c5 C4 c1,c2,c3,c4,c5 C5 c1,c2,c3,c4,c5 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Από την πρόταση 14 προκύπτει ότι το δεύτερο σπίτι είναι µπλε. Άρα C2=c5 και η τιµή c5 αφαιρείται από τα πεδία των µεταβλητών C1, C3, C4, C5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d3,d4,d5 D2 d1,d2,d3,d4,d5 D3 d1,d2,d3,d4,d5 D4 d1,d2,d3,d4,d5 D5 d1,d2,d3,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Από την πρόταση 8 προκύπτει ότι D3=D3 και η τιµή d3 αφαιρείται από τα πεδία των µεταβλητών D1, D2, D4, D5: C1 c1,c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p1,p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d2,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4,s5 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Γνωρίζοντας ότι στο πρώτο σπίτι κατοικεί ο Νορβηγός, και λαµβάνοντας υπόψη διάφορες προτάσεις σχετικά µε ζώα, χρώµατα, ποτά και τσιγάρα διαφόρων άλλων ιδιοκτητών, αφαιρούµε τις

12 αντίστοιχες τιµές από το πεδίο των µεταβλητών που αναφέρονται στο πρώτο σπίτι. Έτσι, λαµβάνοντας υπόψη τις προτάσεις 1, 2, 4 και 13, έχουµε: C1 c2,c3,c4 C2 c5 C3 c1,c2,c3,c4 C4 c1,c2,c3,c4 C5 c1,c2,c3,c4 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Η πρόταση 5 µας λέει ότι το πράσινο σπίτι είναι αµέσως δεξιά από το κρεµ. Με δεδοµένο ότι το δεύτερο σπίτι είναι µπλε, το κρεµ σπίτι πρέπει να είναι είτε το τρίτο, είτε το τέταρτο, και αντίστοιχα το πράσινο σπίτι πρέπει να είναι είτε το τέταρτο είτε το πέµπτο. Άρα η τιµή c3=κρεµ αφαιρείται από τις µεταβλητές C1, C2 και C5, ενώ η τιµή c2=πράσινο αφαιρείται από τις µεταβλητές C1, C2 και C3. Επιπλέον, η µεταβλητή C4 µπορεί να έχει τιµή είτε c3=κρεµ είτε c2=πράσινο: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p4,p5 P2 p1,p2,p3,p4,p5 P3 p1,p2,p3,p4,p5 P4 p1,p2,p3,p4,p5 P5 p1,p2,p3,p4,p5 D1 d1,d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s1,s2,s3,s4 S2 s1,s2,s3,s4,s5 S3 s1,s2,s3,s4,s5 S4 s1,s2,s3,s4,s5 S5 s1,s2,s3,s4,s5 Βλέπουµε ήδη ότι το πρώτο σπίτι είναι c4=κίτρινο! Έτσι µπορούµε να βγάλουµε τα παρακάτω συµπεράσµατα: από την 1 προκύπτει ότι σε αυτό δεν µένει ο n1=άγγλος, από την 4 προκύπτει ότι ο ιδιοκτήτης του πρώτου σπιτιού δεν πίνει d1=καφέ, από την 7 προκύπτει ότι o ιδιοκτήτης του πρώτου σπιτιού καπνίζει s2=kools, οπότε η τιµή s2 αφαιρείται από τις S2, S3, S4 και S5, από την 11 προκύπτει ότι ο ιδιοκτήτης του δεύτερου σπιτιού έχει p4=άλογο, οπότε η τιµή p4 αφαιρείται από τις P1, P3, P4, P5. Έτσι τα πεδία των µεταβλητών γίνονται: C1 c4 C2 c5 C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4 N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 P1 p2,p3,p5 P2 p4 P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d4,d5 D2 d1,d2,d4,d5 D3 d3 D4 d1,d2,d4,d5 D5 d1,d2,d4,d5 S1 s2 S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι ο Νορβηγός, που µένει στο πρώτο σπίτι, δεν πίνει d4=χυµό, άρα η τιµή d4 αφαιρείται από την D1 και αποµένει η τιµή d5=νερό, η οποία µε τη σειρά της αφαιρείται από τις D2, D3, D4, D5. Επίσης από την 6 προκύπτει ότι ο Νορβηγός δεν έχει p2=σαλιγκάρι: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n1,n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d1,d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Έχουµε λοιπόν απαντήσει στο ερώτηµα α) σχετικά µε το ποιος πίνει νερό: Είναι ο Νορβηγός, ο οποίος µένει στο πρώτο σπίτι. Από την 3 και µε δεδοµένο ότι η τιµή c2=πράσινο εµφανίζεται µόνο στο 4 ο και το 5 ο σπίτι, προκύπτει ότι η τιµή d1=καφές µπορεί να εµφανίζεται µόνο σε αυτά τα σπίτια, οπότε αφαιρείται από την D2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n1,n2,n3,n5 N5 n1,n2,n3,n5

13 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 1 προκύπτει ότι η τιµή n1=άγγλος δεν µπορεί να είναι ιδιοκτήτης κανενός σπιτιού το οποίο δεν µπορεί να είναι c1=κόκκινο. Έτσι η τιµή n1 αφαιρείται από την Ν2 και από την Ν4. C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n3,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι ο Ουκρανός δεν µένει στο τρίτο σπίτι, µιας και αν έµενε εκεί θα έπινε γάλα. Άρα η τιµή n3=ουκρανός αφαιρείται από τη µεταβλητή N3: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s4,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 3 ο σπίτι δεν καπνίζει s4=luckystrike: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n2,n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 2 προκύπτει ότι στο 2 ο σπίτι δεν κατοικεί n2=ισπανός, άρα αφαιρείται η τιµή n2 από τη µεταβλητή Ν2: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s1,s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 6 προκύπτει ότι στο 2 ο σπίτι δεν καπνίζουν s1=oldgold: C1 c4=κίτρινο C2 c5=µπλε C3 c1,c3 C4 c2,c3 C5 c1,c2 N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Στο σηµείο αυτό δεν µπορούµε να κόψουµε άλλες τιµές, οπότε επιλέγουµε να κάνουµε κάποια ανάθεση. Έστω ότι C4=c2=πράσινο. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C3=c3 και άρα C5=c1: C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε:

14 C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n3,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 4 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 5 ο σπίτι δεν καπνίζουν s5=parliament. C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3,n5 N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1=καφές D5 d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Από την 4 προκύπτει ότι ο n3=ουκρανός µένει στο 2 ο σπίτι και πίνει d2=τσάι. Οι τιµές αυτές αφαιρούνται από τις υπόλοιπες µεταβλητές, µε αποτέλεσµα να προκύψει ότι ο Άγγλος πίνει χυµό : C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s1,s3,s4 Πλέον, από την 12 προκύπτει ότι ο Άγγλος καπνίζει s4=luckystrike. Η τιµή αυτή διαγράφεται από τις υπόλοιπες µεταβλητές: C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3,s5 S3 s1,s3,s5 S4 s1,s3,s5 S5 s4=luckystrike Από την 6 προκύπτει ότι ο Άγγλος δεν έχει p2=σαλιγκάρι και από την 2 προκύπτει ότι ο Άγγλος δεν έχει p1=σκύλο. Επίσης από την 13 προκύπτει ότι ο Ουκρανός δεν καπνίζει s5=parliament: C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2,p3,p5 P4 p1,p2,p3,p5 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Παρατηρώντας τις τιµές των µεταβλητών P1, P3, P4, P5, οι οποίες πρέπει να είναι όλες διαφορετικές µεταξύ τους, βλέπουµε ότι δύο µεταβλητές, οι P1 και P5, µοιράζονται τις ίδιες δύο τιµές, p3 και p5. Άρα, αυτές οι δύο τιµές, p3 και p5, δεν µπορούν να εµφανίζονται στις µεταβλητές Ρ3 και Ρ4:

15 C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3,p5 P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Από την 10 προκύπτει ότι δίπλα στο 2 ο σπίτι θα υπάρχει p3=αλεπού. Λαµβάνοντας υπόψη τα πεδία των µεταβλητών P1 και P3 φαίνεται ότι η αλεπού είναι στο πρώτο σπίτι, οπότε προκύπτει ότι στο 5 ο σπίτι είναι η p5=ζέβρα: C1 c4=κίτρινο C2 c5=µπλε C3 c3=κρεµ C4 c2=πράσινο C5 c1=κόκκινο N1 n4=νορβηγός N2 n3=ουκρανός N3 n2,n5 N4 n2,n5 N5 n1=άγγλος P1 p3=αλεπού P2 p4=άλογο P3 p1,p2 P4 p1,p2 P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d1=καφές D5 d4=χυµός S1 s2=kools S2 s3=chesterfield S3 s1,s5 S4 s1,s5 S5 s4=luckystrike Στο σηµείο αυτό δεν έχουµε τελειώσει, πρέπει να δούµε εάν υπάρχουν τιµές και για τις υπόλοιπες µεταβλητές που δεν έχουν πάρει τιµή. υστυχώς φαίνεται ότι καταλήγουµε σε άτοπο: Πράγµατι, από τις 2 και 6 προκύπτει ότι ο Ισπανός δεν καπνίζει Oldgold, άρα καπνίζει Parliament, που όµως είναι η µάρκα που σύµφωνα µε την 13 καπνίζει ο Γιαπωνέζος. Στο σηµείο αυτό επιστρέφουµε στο σηµείο που κάναµε επιλογή σχετικά µε τα χρώµατα των σπιτιών, και κάνουµε την άλλη επιλογή. Έστω ότι C4=c3=κρεµ. Λαµβάνοντας υπόψη και την πρόταση 5, προκύπτει ότι C5=c2=πράσινο και άρα C3=c1=κόκκινο: N1 n4=νορβηγός N2 n3,n5 N3 n1,n2,n5 N4 n2,n3,n5 N5 n1,n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d1,d2,d4 D5 d1,d2,d4 S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Λαµβάνοντας υπόψη τις 1 και 3 και αφαιρώντας τις τιµές n1=άγγλος και d1=καφές από όπου απαιτείται, έχουµε: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n3,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 4 προκύπτει ότι στο 4 ο σπίτι δεν µένει n3=ουκρανός: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3,s5 S4 s1,s3,s4,s5 S5 s1,s3,s4,s5 Από την 12 προκύπτει ότι αυτός που µένει στο 5 ο σπίτι δεν καπνίζει s4=luckystrike, ενώ από την 13 προκύπτει ότι στο 3 ο σπίτι δεν καπνίζουν s5=parliament. N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5

16 Από την 2 προκύπτει ότι στο 3 ο σπίτι, όπου κατοικεί ο Άγγλος, δεν µπορεί να έχουν p1=σκύλο: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2,d4 D3 d3=γάλα D4 d2,d4 D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Στο σηµείο αυτό δεν µπορεί να γίνει περαιτέρω διαγραφή τιµών, οπότε καταφεύγουµε και πάλι σε επιλογή. Έστω D2=d2=τσάι, οπότε D4=d4=χυµός : N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3,s5 S3 s1,s3 S4 s4=luckystrike S5 s1,s3,s5 Από την 13 προκύπτει ότι ο n5=γιαπωνέζος είναι στο 5 ο σπίτι, µιας και δεν θα µπορούσε να είναι πλέον στο 4 ο και καπνίζει s5=parliament. Άρα στο 2 ο σπίτι είναι ο Ισπανός, ενώ ο Ουκρανός καπνίζει s3=chesterfield και ο Άγγλος s1=oldgold: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament Πλέον, από τις 2, 6 και 10 παίρνουµε: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε σύµφωνα µε αυτή τη λύση τη ζέβρα την έχει ο Γιαπωνέζος. Πρέπει όµως να ελέγξουµε και την εναλλακτική περίπτωση στο τελευταίο σηµείο επιλογής. Έστω λοιπόν ότι D2=d4=χυµός και, οπότε D4= d2=τσάι: N1 n4=νορβηγός N2 n3,n5 N3 n1=άγγλος N4 n2,n3,n5 N5 n2,n5 P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές S1 s2=kools S2 s3,s4,s5 S3 s1,s3 S4 s1,s3,s4,s5 S5 s1,s3,s5

17 Από την 4 και την 12 παίρνουµε: N1 n4=νορβηγός N2 n5=γιαπωνέζος N3 n1=άγγλος N4 n3=ουκρανός N5 n2=ισπανός P1 p3,p5 P2 p4=άλογο P3 p2,p3,p5 P4 p1,p2,p3,p5 P5 p1,p2,p3,p5 D1 d5=νερό D2 d4=χυµός D3 d3=γάλα D4 d2=τσάι D5 d1=καφές S1 s2=kools S2 s4=luckystrike S3 s1,s3 S4 s1,s3,s5 S5 s1,s3,s5 Στο σηµείο αυτό όµως έχουµε καταλήξει σε άτοπο, γιατί παραβιάζεται η πρόταση 13. Άρα δεν υπάρχει δεύτερη λύση, οπότε η µοναδική πλήρης λύση του προβλήµατος είναι η: N1 n4=νορβηγός N2 n3=ουκρανός N3 n1=άγγλος N4 n2=ισπανός N5 n5=γιαπωνέζος P1 p3=αλεπού P2 p4=άλογο P3 p2=σαλιγκάρι P4 p1=σκύλος P5 p5=ζέβρα D1 d5=νερό D2 d2=τσάι D3 d3=γάλα D4 d4=χυµός D5 d1=καφές S1 s2=kools S2 s3=chesterfield S3 s1=oldgold S4 s4=luckystrike S5 s5=parliament οπότε τη ζέβρα την έχει ο Γιαπωνέζος! ΘΕΜΑ 7 ο Έστω το πρόβληµα κατασκευής ενός σταυρολέξου, µε βάση το παρακάτω σχήµα Για τη κατασκευή του µπορούν να χρησιµοποιηθούν οι παρακάτω λέξεις: HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US. Θεωρείστε την κατασκευή του παραπάνω σταυρολέξου ως πρόβληµα ικανοποίησης περιορισµών. Ειδικότερα θεωρείστε ως µεταβλητή κάθε θέση από την οποία ξεκινά µια λέξη, είτε οριζόντια είτε κατακόρυφα. α) Ορίστε τις µεταβλητές και τα πεδία τιµών τους. (1) β) Καταγράψτε όλους τους δυαδικούς περιορισµούς του προβλήµατος. Υπόδειξη: Θεωρείστε έναν δυαδικό περιορισµό ως το σύνολο επιτρεπτών ζευγαριών τιµών για δύο µεταβλητές. Μια λέξη δεν µπορεί να χρησιµοποιηθεί δύο φορές στο σταυρόλεξο. (1) γ) Βρείτε µια λύση στο πρόβληµα ή αποδείξτε ότι δεν υπάρχει τέτοια. (0.5) Απάντηση: α) Με βάση την εκφώνηση, οι µεταβλητές του προβλήµατος είναι οι παρακάτω: Ο1, Ο8, Ο12, Κ3, Κ5 και Κ10, όπου π.χ. Ο12 σηµαίνει «Οριζόντια 12» και Κ3 σηµαίνει «Κάθετα 3». Τα πεδία τιµών τους είναι τα εξής:

18 Ο1 { HOSES, LASER, SHEET, SNAIL, STEER } O8 { ALSO, EARN, HIKE, IRON, SAME } Ο12 { BE, IT, NO, US } Κ3 { ALSO, EARN, HIKE, IRON, SAME } Κ5 { EAT, LET, RUN, SUN, TEN, YES } Κ10 { BE, IT, NO, US } β) Οι µεταξύ τους περιορισµοί είναι οι εξής: Ο1-Κ3 = { (HOSES, SAME), (LASER, SAME), (SHEET, EARN), (SNAIL, ALSO), (STEER, EARN) } Ο1-Κ5 = { (HOSES, SUN), (LASER, RUN), (SHEET, TEN), (SNAIL, LET), (STEER, RUN))} Ο8-Κ3 = { (IRON,EARN) } Ο8-Κ10 = {} Ο8-Κ5 = { (EARN, RUN), (EARN, SUN), (EARN, TEN), (IRON, RUN), (IRON, SUN), (IRON, TEN) } Ο12-Κ3 = { (NO, EARN), (NO, SAME) } Ο12-Κ10 = {} γ) Όπως φαίνεται από την απάντηση στο ερώτηµα (β), υπάρχουν δύο δυαδικοί περιορισµοί που δεν επιτρέπουν κανένα ζεύγος τιµών (Ο8-Κ10 και Ο12-Κ10). Άρα το πρόβληµα δεν έχει λύση.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ιάρκεια: 17:00-20:00 Υποθέστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"

ΕπίλυσηΠροβληµάτων Αναθέσεων: Η Ουγγρική Μέθοδος ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος" Τοπλήθος των εφικτών λύσεων σε ένα πρόβληµα ανάθεσης µε m δραστηριότητες και mπόρους είναι ίσο µε m! 6 Αυτό σηµαίνει ότι ο αριθµός των εφικτών λύσεων

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων

Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων Ασκήσεις για το µάθηµα Λογική για Υπολογιστές. 2ο σετ ασκήσεων Ηµεροµηνία παράδοσης : Πέµπτη 11 Φεβρουαρίου 2010 Ασκηση 1 ίνονται τα ακόλουθα κατηγορήµατα και οι σηµασίες τους : nat(x): ισχύει αν και µόνο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΝΕΠΙΣΤΗΜΙΟ ΜΚΕ ΟΝΙΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜ ΕΦΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙ ΠΙΓΝΙΩΝ Εξετάσεις 13 Φεβρουαρίου 2004 ιάρκεια εξέτασης: 2 ώρες (13:00-15:00) ΘΕΜ 1 ο (2.5) α) Για δύο στρατηγικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM)

ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) Η διαµόρφωση και το µοντέλο του προβλήµατος ανάθεσης (π.χ. εργασιών σε µηχανές ή δραστηριοτήτων σε άτοµα) περιγράφεται στις

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα HY118- ιακριτά Μαθηµατικά Τρίτη, 21/04/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/21/2015

Διαβάστε περισσότερα

Προβλήµατα ικανοποίησης περιορισµών

Προβλήµατα ικανοποίησης περιορισµών Προβλήµατα Ικανοποίησης Περιορισµών Προβλήµατα ικανοποίησης περιορισµών Λογικός προγραµµατισµός µε περιορισµούς Προβλήµατα Ικανοποίησης Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Το άθροισµα των εισερχόµενων σηµάτων είναι:

Το άθροισµα των εισερχόµενων σηµάτων είναι: 7. ίκτυα Hopfeld Σε µία πολύ γνωστή εργασία το 982 ο Hopfeld παρουσίασε µια νέα κατηγορία δικτύων, τα οποία έχουν µεγάλες υπολογιστικές ικανότητες και είναι χρήσιµα σε δύο κατηγορίες προβληµάτων. Πρώτα,

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕ ΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΣΜΕΝΗΣ ΠΛΗΡΦΡΙΚΗΣ ΤΕΝΗΤΗ ΝΗΜΣΥΝΗ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες α) Αναφέρετε τη σειρά µε την

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 25 Ιουνίου 2003 ιάρκεια: 2 ώρες α) Σε ποια περίπτωση

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων

ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις

Διαβάστε περισσότερα

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R

2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. (i) f()= -3+ Η f() ορίζεται R Έχει Π.Ο ολόκληρο το R Για το Π.Τ της f() έχουµε : ος τρόπος 3 9 3 = -3+= - - += - - () Το Π.Τ. της f() θα είναι οι τιµές που παίρνει το R. Από

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Γνωριµία µε τη Microsoft Access

Γνωριµία µε τη Microsoft Access Γνωριµία µε τη Microsoft Access ηµιουργία νέας βάσης δεδοµένων Έναρξη - Προγράµµατα - Microsoft Access - ηµιουργία νέας βάσης δεδοµένων µε χρήση Κενής βάσης δεδοµένων - ΟΚ Επιλέγουµε Φάκελο και στο Όνοµα

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου

MIT SEA GRANT ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου ΕΝΟΤΗΤΑ 3 Κατασκευή Τρίτου Μέρους: Συναρµολόγηση Τηλεχειριστηρίου Για την ενότητα αυτή απαιτούνται τα εξής: Εργαλεία Υλικά Κόφτης Στραυροκατσάβιδο Κατσαβίδι Μυτερή πένσα Δράπανο Κολλητήρι Τρυπάνι 6mm Μέγγενη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop.

Σχήµα 3.1: Εισαγωγή shift register σε βρόγχο for-loop. Η δοµή «Shift register» 1. Η δοµή «Shift register» εισάγεται στο βρόγχο for-loop αλλά και σε άλλους βρόγχους που θα δούµε στη συνέχεια, όπως ο βρόγχος «While loop». Ο τρόπος εισαγωγής και λειτουργίας της

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν Επαναληπτικές δοµές Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται όπου µία ακολουθία εντολών εφαρµόζεται σε ένα σύνολο περιπτώσεων που έχουν κάτι κοινό. Όταν ψάχνουµε θέση για να παρκάρουµε κοντά

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro

Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro Παιδαγωγική προσέγγιση: Πρόταση για την διδασκαλία της έννοιας αλγόριθµός στο περιβάλλον MicroWorlds Pro Το «Φύλλο Εργασίας» για τους µαθητές Το παρακάτω φύλλο εργασίας µπορεί να χρησιµοποιηθεί ως εισαγωγικό

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Οδοραµα mobile ΑΠΟΘΗΚΗ

Οδοραµα mobile ΑΠΟΘΗΚΗ Οδοραµα mobile ΑΠΟΘΗΚΗ Όπως βλέπετε, η αρχική οθόνη της εφαρµογής διαθέτει 9 κουµπιά τα οποία σας επιτρέπουν να πλοηγηθείτε σε αυτό. Αρχίζοντας από πάνω αριστερά βλέπετε τα εξής: 1. Τιµολόγηση: Προβολή

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ . ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Κλασµατική εξίσωση : Ονοµάζουµε κλασµατική εξίσωση κάθε εξίσωση η οποία έχει τον άγνωστο σ έναν τουλάχιστον παρονοµαστή. ΣΧΟΛΙΟ ιαδικασία επίλυσης : i) Αναλύουµε τους παρονοµαστές

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων oole Επιµέλεια διαφανειών: Χρ. Καβουσιανός Απλοποίηση Συναρτήσεων oole Ø Η πολυπλοκότητα του κυκλώµατος που υλοποιεί µια συνάρτηση oole σχετίζεται άµεσα µε

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Σχόλιο: Ο γνωστός αυτός γρίφος πρωτοεµφανίστηκε σ ένα βιβλίο του Alcuin τον 8 ο αιώνα.

Σχόλιο: Ο γνωστός αυτός γρίφος πρωτοεµφανίστηκε σ ένα βιβλίο του Alcuin τον 8 ο αιώνα. Από ένα δοχείο που περιέχει 12 κιλά λάδι θέλουµε να αφαιρέσουµε το µισό. ιαθέτουµε δύο άδεια δοχεία των 7 κιλών και 5 κιλών. Πως µπορούµε να κάνουµε την αφαίρεση των 6 κιλών από το δοχείο των 12; Σχόλιο:

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006 ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 6 Σεπτεµβρίου 2006 Ώρες: 17:0020:00 ίνεται το παρακάτω

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΓΕΝΙΚΗ ΜΟΡΦΗ Κάθε εξίσωση της µορφής α + β = γ όπου α + β 0 ( α, β όχι συγχρόνως 0) παριστάνει ευθεία. (Η εξίσωση λέγεται : ΓΡΑΜΜΙΚΗ) ΕΙ ΙΚΑ γ Αν α = 0 και β 0έχουµε =. ηλαδή µορφή = c.

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Αναγνώριση υποθεµάτων αρχείων Αντιγραφή κειµένου Αντιγραφη εικόνων Αντιγραφή video

Αναγνώριση υποθεµάτων αρχείων Αντιγραφή κειµένου Αντιγραφη εικόνων Αντιγραφή video Σύντοµες οδηγίες Αναγνώριση υποθεµάτων αρχείων Αντιγραφή κειµένου Αντιγραφη εικόνων Αντιγραφή video 2 ο Ε.Κ.Φ.Ε. Ηρακλείου Κρήτης Περιεχόµενα Πλήκτρα που θα χρησιµοποιήσουµε...3 Αναγνώριση υποθεµάτων αρχείων...4

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 12 Οκτωβρίου 2007 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 1) ΕΡΓΑΣΙΑ 1 η Ηµεροµηνία Αποστολής στον Φοιτητή: 1 Οκτωβρίου 007 Ηµεροµηνία παράδοσης της Εργασίας: 9 Νοεµβρίου 007. Πριν από την λύση κάθε άσκησης

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2012 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-1: Πιθανότητες - Χειµερινό Εξάµηνο 01 ιδάσκων : Π Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : /10/01 Ηµεροµηνία Παράδοσης : /11/01

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ Τελικές Εξετάσεις Παρασκευή 16 Οκτωβρίου 2007 ιάρκεια εξέτασης: 3 ώρες (15:00-18:00) ΘΕΜΑ 1

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα