G n. F c = G t + F f, G t = mg sin α, F f = µn, N = G n = mg cos α, F c = mg(sin α + µ cos α) F u = G

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "G n. F c = G t + F f, G t = mg sin α, F f = µn, N = G n = mg cos α, F c = mg(sin α + µ cos α) F u = G"

Transcript

1 N F c F f G t G G n F c = G t + F f, G t = mg sin α, F f = µn, N = G n = mg cos α, F c = mg(sin α + µ cos α) F u = G Fu h mgh sinα η= = = F l mg(sinα+µ cosα) l sinα+µ cosα c 6. Energia mecanică: reprezintă capacitatea unui corp de a efectua lucrul mecanic. În funcńie de starea corpului putem avea energie cinetică (de mişcare) şi energie potenńială (energie de pozińie în câmpuri de forńe): E m = E c + E p. Obs. Energia este o mărime de stare caracterizând starea corpului la un moment dat. 7. Energie cinetică: este energia unui sistem având la un moment dat viteza v. DefiniŃie: Energia cinetică a unui corp la un moment dat este o mărime fizică scalară, egală cu semiprodusul dintre masa corpului şi pătratul vitezei corpului la momentul respectiv fańă de un sistem de referinńă. 1

2 mv NotaŃie: E c, W c, E c = Unitate de măsură: [ E ] kgm c S. I. = = 8. Teorema de variańie a energiei cinetice VariaŃia energiei cinetice a unui punct material între două momente de timp este egală cu lucrul mecanic al forńei rezultante ce o produce: E c = L. Exemplu: considerăm un corp care are la momentul t 0, viteza V 0 şi asupra lui acńionează o forńa coliniară cu deplasarea F, astfel încât la momentul t are viteza V. V 0, t 0 F V, t s j L = F x, L = ma x, V = V 0 + a x mv mv 0 x = L, E c E c0 = L 9. Energie potenńială: Energia potenńială a unui corp este energia datorată interacńiunii cu alt corp ales de obicei, în mecanică, sistem de referinńă. Energia potenńială va depinde de pozińia corpului fańă de celălalt corp, ce creează câmpul de forńe (gravitańional, elastic).

3 10. Teorema de variańie a energiei potenńiale EnunŃ: VariaŃia energiei potenńiale a unui corp la două momente de timp este egală cu lucrul mecanic efectuat în câmpul de forńe conservativ creat de alt corp şi de semn opus: E p = L, E pf E pi = L. 11. Cazuri particulare: În mecanică cele mai întâlnite cazuri sunt: energia potenńială de tip gravita- Ńional şi energia potenńială de tip elastic. a) Energia potenńială de tip gravitańional: Considerăm un corp de masă m aflat în câmpul gravitańional al pământului, la un nivel h 0, pe care îl ridicăm uniform la un nivel h. Calculăm lucrul mecanic al for- Ńei de greutate care conduce la acumularea de energie potenńială de către corp. h G h 0 L = mg(h h 0 ) = (mgh mgh 0 ) E p = L, E pf E p0 = mgh mgh 0 E pf = mgh energie potenńială la nivel h, 3

4 E p0 = mgh 0 energie potenńială la nivel h 0 Dacă considerăm energia nivelului de referinńă nulă, energia potenńială de tip gravitańional va fi: E p = mgh b) Energia potenńială de tip elastic: L = kx kx0 kx kx, E p = L, E p = 0. Dacă x 0 = 0, energia potenńială de tip elastic va fi: kx E p =. x x 0 F(x 0 ) F(x) 11. Legea conservării energiei. Dacă sistemul de forńe este conservativ (lucrul mecanic nu depinde de forma drumului), atunci avem: E c = L, E p = L, (E c + E p ) = 0 E c +E p = const. Lege: a. Într-un câmp de forńe conservativ, energia mecanică se conservă, rămâne constantă. Obs. Energia cinetică poate trece în energie potenńială şi invers: E c + E p = E cmax = E pmax = const. b. Dacă câmpul de forńe este neconservativ (ex. acńionează forńe de frecare) vom avea: Em = L n (lucrul mecanic al forńelor neconservative) E mf E mi = L n 4

5 1. Impulsul unui sistem de puncte materiale. Considerăm un sistem mecanic format dintr-un număr de puncte materiale n de mase: m 1, m,, m n şi care în interiorul sistemului au vitezele v 1, v,, v n. Impulsul total va fi: P= m1v1 + mv + + mnv n ; P = n 1m k v k k= ; [ P] S.I. = Ns = kgm/s 13. Teorema de variańie a impulsului unui sistem de puncte materiale Considerăm sistemul format din două puncte materiale ce interacńionează unul cu celălalt prin forńele F 1, respectiv F 1 numite forńe interne. Asupra sistemului acńionează o forńă totală exterioară F ext. Conform principiului II vom avea: p1 = ( F1 + F1) t, p = ( F + F1) t. Adunăm cele două relańii: ( p1 + p) = ( F1 + F + F1+ F1) t F 1 + F = F ext, conform principiului III: F 1 = F1 Generalizând, vom avea : P= Fext t, F ext t= H (impulsul forńei), P P = H. f i EnunŃ: VariaŃia impulsul unui sistem de puncte materiale este egal cu impulsul forńei exteriore ce acńionează asupra sistemului. 5

6 Obs. Dacă forńa este o funcńie de timp t p = Fdt, ce reprezintă aria delimitată de graficul funcńiei şi intervalul de timp corespunzător. 14. Legea conservării impulsului: EnunŃ: Într-un sistem izolat de puncte materiale, impulsul sistemului se conservă (rămâne constant): F 0, P= 0, P = P = const. ext = f i 15. Ciocniri. Ciocnirea este fenomenul de interacńiune dintre două sau mai multe corpuri care are loc intr-un timp finit. Ciocnirile pot fi plastice şi elastice. Ciocnirea plastică: În cadrul unui fenomen de ciocnire plastică nu se conservă energia mecanică ci doar impulsul. În cazul ciocnirii plastice, în marea majoritate a cazurilor, corpurile rămân cuplate. Înainte de ciocnire După ciocnire t1 M 1 V 1 M V V M 1 v 1 + M v = (M 1 + M )V ( ) M1 v1 Mv M1+ M V E ci = E cf + Q, + = + Q, Q = căldura ce apare prin lucrul mecanic de deformare plastică. 6 M 1 + M

7 Ciocnire elastică perfect centrată şi unidirecńională: În cadrul unei ciocniri elastice se conservă: energia mecanică şi impulsul mecanic al sistemului în care are loc ciocnirea. Înainte de ciocnire M 1 M V 1 V După ciocnire M 1 U 1 M U M 1 v 1 + M v = M 1 u 1 + M u M1v1 M v M1u1 M u + = + rezolvând sistemul obńinem: ( M1v1 + M v) ( M1v 1+ Mv) u1 = v1, u = v M1+ M M1+ M Caz particular: dacă M 1 << M (ciocnire cu peretele), atunci << 1 0 şi vom avea M 1 M u 1 = v v 1, u = v. 7

8 8 TERMODINAMICĂ I. NoŃiuni introductive I.1(a) Formule de calcul la nivel molecular Considerăm un gaz având masa m şi care ocupă un volum V, conńine N atomi (molecule) având masa unui mol µ. Număr de mol: Densitate: ρ= m ν = = µ m V µ = ; V Masa unei molecule: m Volumul unei molecule: 3 µ N N A µ = N, N A = nr. Avogadro; m = N 0 ; A V µ vo = = sau ge- N ρn 4πr ometric: v0 =, r = raza moleculei; 3 Considerând că fiecare moleculă ocupă un volum sub forma unui cub de latură egală cu diametrul µ moleculei, vom putea scrie : v = d 3 0 = ; ρ A N A Densitate de molecule (concentrańie de molecule) N n=. V

9 I.(a) Formula fundamentală a teoriei cinetico-moleculare Presiunea unui gaz ideal este egală cu două treimi din energia cinetică medie a tuturor moleculelor din unitate de volum. N m 0 P= u, 3 V Nkvk u K = viteza pătratică medie: u = N. n k= 1 I.(b) Energia cinetică medie a unei molecule ε m 0 u c = ; i ε c = kt ; k = 1, j/k (constanta lui Boltzman), (T) S.I. = K (grad Kelvin) i număr grade de libertate (posibilităńi de mişcare liberă a unei molecule) i = 3 pentru moleculă monoatomică, i = 5 pentru moleculă biatomică, i = 6 pt. moleculă triatomică. I.(c) Viteza termică V t = u ; V t = 3kT 3RT = ; R = kn A (constanta m µ 0 universală a gazului ideal); R = 8, j/kmol K k 9

10 I.(d) EcuaŃia termică de stare a gazului ideal PV = NkT, PV = ν RT I.(e) EcuaŃia calorică de stare a gazului ideal U energia internă a gazului ideal, formată doar din energia cinetică a tuturor moleculelor gazului i i U = Nε c ; U = NkT = νrt I.3 Legile gazului ideal (transformările simple ale gazului ideal) DefiniŃie. Trecerea unui sistem termodinamic dintr-o stare în alta se numeşte transformare de stare. Obs. În cadrul unei transformări nu intră şi nu iese gaz din incinta considerată (m = ct., ν = ct.) I.3(a) Transformarea izotermă (Legea Boyle-Mariotte) DefiniŃie. Transformarea în timpul căreia temperatura rămâne constantă. Lege: Într-o transformare izotermă produsul presiune volum rămâne constant în timpul transformării. P V = ct.; P 0 V 0 = P 1 V 1 = νrt 30

11 Optică ondulatorie În cadrul opticii ondulatorii se utilizează modelul undei electromagnetice, iar fenomenul caracteristic este interferenńa. II.1 InterferenŃă DefiniŃie. InterferenŃa este fenomenul de suprapunere într-un punct din spańiu a două sau mai multe unde coerente. Prin unde coerente se înńeleg undele care au aceeaşi frecvenńă, iar diferenńa de fază este constantă în timp. În cazul undelor electromagnetice, componenta electrică a câmpului creează intensitate luminoasă (I). Intensitatea luminoasă este direct proporńională cu pătratul amplitudinii intensităńii câmpului electric: I = E 0. Considerăm două surse de lumină punctiforme care emit unde de aceeaşi frecvenńă, iar într-un punct se suprapun. r 1 r S 1 S πr E 1 = E 01 sin (ωt + 1 ); E = E 0 sin(ωt + λ E 01 = E 0 = E 0 ; E = E 1 + E. πr ), λ 81

12 Amplitudinea rezultantă va fi: π( r 1) A = E 0 cos r, iar λ π( r r) I ~ A = 4E 0 cos 1 λ r = r r 1 diferenńă de drum r = n(r r 1 ) diferenńă de drum optic, când lumina trece printr-un mediu optic cu indicele de refracńie n. CondiŃia de maxim: r = kλ, k = 0, 1,, 3 CondiŃia de minim: r = (k + 1) λ, k = 0, 1,, 3, 4 II. Dispozitiv de interferenńă Young Dispozitivul de interferenńă Young este format dintr-o sursă de lumină, ce se divide în două printrun paravan cu două perforańii, ce devin surse secundare. Rezultatul interferenńei se obńine pe un ecran. Analiza rezultatului se poate obńine în orice zonă din spańiu şi dispozitivul Young formează franje nelocalizate. NotaŃii: distanńa dintre două surse S 1 S = l, distanńa dintre surse secundare şi ecranul de observare L. 8

13 L S S 1 x S locul geometric al punctelor de intensitate maximă poartă numele de franje luminoase: L x Mk = kλ ; l locul geometric al punctelor de intensitate minimă poartă numele de franje întunecate: L x mk = ( k+1) ; l interfraja este distanńa dintre două maxime sau L două minime consecutive i= λ. l II.3. Dispozitiv de interferenńă cu lamă cu feńe plan paralele Lama cu feńe plan paralele este un mediu optic transparent cu indicele de refracńie n delimitat de două plane paralele. InterferenŃa se realizează prin suprapunerea a două raze de lumină, obńinute prin reflexie, pe cele două plane în planul focal al unei 83

14 lentile convergente. DiferenŃa de drum dintre cele două raze ce interferă λ este: δ= dn cosr+ dacă δ= k λ avem maxim, λ δ= (k + 1) avem minim. i n d r II.4. Dispozitiv de interferenńă cu pană optică Pana optică este un mediu optic transparent delimitat de două suprafeńe între care există un unghi α << 5. Dacă considerăm două raze la incidenńă normală care formează două maxime consecutive avem λ interfranja i =. n α 84

15 α d k d k+1 În cazul incidentei normale i = r = 0 i Max. ordin k: nd k + λ = kλ Max. ordin k + 1: nd k+1 + λ = (k + 1) λ tg α = d d i λ = α=. ni ni k+ 1 k λ Optica fotonică În cadrul opticii fotonice se utilizează conceptul de foton ca model. Fenomenele caracteristice opticii fotonice sunt efectul fotoelectric, efectul Compton. III.1. Efect fotoelectric extern DefiniŃie. Emisia de electroni sub efectul radiańiei electromagnetice poartă numele de efect fotoelectric. DefiniŃie. Electronii emişi în urma efectului fotoelectric poartă numele de fotoelectroni. Efectul fotoelectric extern a fost observat de H. Hertz la sfârşitul secolului 19. Experimental s-au 85

16 observat legile efectului fotoelectric extern. Lege I: Intensitatea curentului fotoelectric de saturańie este proporńională cu fluxul radiańiilor electromagnetice incidente, când frecvenńa este constantă. Lege II: Energia cinetică a fotoelectronilor emişi creşte liniar cu frecvenńa radiańiilor electromagnetice si nu depinde de fluxul acestora. Lege III: Efectul fotoelectric extern se poate produce numai dacă frecvenńa radiańiei incidente este mai mare sau cel puńin egală cu o valoare minimă, specifică fiecărei substanńe, numită frecvenńă de prag sau prag roşu. Lege IV: Efectul fotoelectric extern se produce practic instantaneu. Obs. Legile efectului fotoelectric extern nu pot fi explicate cu ajutorul modelului undei electromagnetice. III. Cuante de energie. Fotoni Max Planck, în încercarea de a explica legile corpului negru, emite ipoteza că energia unui oscilator nu poate avea orice valoare, ci numai anumite valori discrete E 1, E,, E i, Energia unui oscilator poate să crească în cadrul absorbńiei sau să scadă în cazul emisiei între două valori E k şi E i numai cu cantitatea ε = hν = E k E i denumită cuanta de energie, unde ν este frecvenńa 86

17 oscilatorului, iar h = 6, js constanta lui Planck. Particula care posedă energia unei cuante se numeşte foton. Conform teoriei relativităńii, un foton are următoarele caracteristici : energia E = mc = hν hν h impulsul p = mc = = c λ Masa de repaus este nulă ca şi sarcina electrică. III.3. Explicarea legilor efectului fotoelectric extern Albert Einstein, considerând lumina formată dintr-un număr de fotoni, explică efectul fotoelectric ca o interacńiune dintr-un foton şi un electron. În urma interacńiunii, electronul absoarbe energia fotonului şi se poate aplica legea conservării energiei. mv hν= L+ ecuańia lui Einstein hν energia absorbită de electron de la foton mv = eust energia cinetică a fotoelectronului, U st tensiunea de stopare L = hν 0 lucrul mecanic de extracńie necesar extrac- Ńiei electronului şi este caracteristic fiecărei substanńe, ν 0 frecvenńa de prag sau prag roşu. Lege I: Creşterea fluxului de radiańie incidentă are 87

18 loc când creşte numărul de fotoni, deci şi numărul de fotoelectroni ce formează curentul electric de saturańie. Lege II: EcuaŃia lui Einstein este o funcńie de gradul I, deci energia cinetică variază liniar cu frecven- Ńa radiańiei incidente. Lege III: Din ecuańia lui Einstein se observă că există o energie minimă a fotonului incident egală cu lucrul mecanic de extracńie pentru a obńine efect fotoelectric. Lege IV: InteracŃiunea dintre un foton şi un electron producându-se într-un interval de timp neglijabil, efectul fotoelectric se produce aproape instantaneu. 88

19 Cuprins Mecanică... 5 NoŃiuni introductive... 5 I. Vector de pozińie... 5 II. Vector deplasare... 5 III. Viteza medie... 6 IV. Viteza (momentană, instantanee)... 6 V.AccelerŃie medie... 6 VI. AcceleraŃie (momentană, instantanee)... 7 Mişcarea punctului material... 7 I. Mişcare rectilinie uniformă... 8 II. Mişcare rectilinie uniform variată... 9 III. Pricipii şi legi în mecanica clasică... 1 IV. Teoreme de variańie si legi de conservare în mecanică Termodinamică... 8 I. NoŃiuni introductive... 8 I.1(a) Formule de calcul la nivel molecular... 8 I.(a) Formula fundamentală a teoriei cineticomoleculare... 9 I.(b) Energia cinetică medie a unei molecule... 9 I.(c) Viteza termică... 9 I.(d) EcuaŃia termică de stare a gazului ideal 30 I.(e) EcuaŃia calorică de stare a gazului ideal 30 I.3 Legile gazului ideal (transformările simple ale gazului ideal)... 30

20 II. Principiul I al termodinamicii II.1.(a) Energie internă II.1.(b) Lucrul mecanic în cadrul gazului ideal II.1.(c) Căldura II.1.(d) Enunt Principiul I al termodinamicii.. 36 II.. CoeficienŃi calorici II.4. Măsurări calorimetrice III. Principiul II al termodinamicii... 4 Electricitate I. Curentul electric I.1. NoŃiuni introductive I.. Curent electric I.3. Intensitatea curentului electric I.4. Circuit electric II. Legea lui Ohm II.1. RezistenŃa electrică II.. Legea lui Ohm pentru o porńiune de circuit II.3. Legea lui Ohm pentru întreg circuitul III. Legile lui Kirchhoff... 5 III.1. Legea I... 5 III.. Legea a II-a III.3. AplicaŃii ale legilor lui Kirchhoff III.4. Energia curentului electric III.5. Puterea electrică III.6. Electroliza IV.1. Şuntul ampermetrului IV.. AdiŃionala voltmetrului... 58

21 Optica Optica geometrică I.1.(a) NoŃiuni introductive I..(a) Reflexia luminii I.3.(a) RefracŃia luminii... 6 I.3.(b) Reflexie totală I.3(c) Lama cu feńe plan paralele I.3.(d) Prisma optică I.3.(e) AplicaŃii ale fenomenului de reflexie totală I.4. Formarea de imagini în dispozitivele optice GeneralităŃi I.4(b) Dioptrul plan I.4(c) Oglinzi... 7 I.5. Lentile (sisteme de dioptri) I.6. AsociaŃii de lentile subńiri Optică ondulatorie II.1 InterferenŃă II. Dispozitiv de interferenńă Young... 8 II.3. Dispozitiv de interferenńă cu lamă cu feńe plan paralele II.4. Dispozitiv de interferenńă cu pană optică 84 Optica fotonică III.1. Efect fotoelectric extern III. Cuante de energie. Fotoni III.3. Explicarea legilor efectului fotoelectric extern... 87

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3 SINTEZE DE BACALAUREAT - ELECTRICITATE 1. Lungimea (l) metrul (m) ELECTRICITATEA 2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE 1. Tensiunea electrică,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

MĂRIMI ELECTRICE Voltul (V)

MĂRIMI ELECTRICE Voltul (V) SINTEZE DE BACALAUREAT ELECTRICITATE www.manualdefizica.ro NR. DENUMIREA MĂRIMII FIZICE UNITATEA DE MĂSURĂ 1. Lungimea (l) metrul (m). Masa (m) kilogramul (kg) ELECTRICITATEA. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

UnităŃile de măsură pentru tensiune, curent şi rezistenńă

UnităŃile de măsură pentru tensiune, curent şi rezistenńă Curentul Un circuit electric este format atunci când este construit un drum prin care electronii se pot deplasa continuu. Această mişcare continuă de electroni prin firele unui circuit poartă numele curent,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Noțiuni termodinamice de bază

Noțiuni termodinamice de bază Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE

FIZICĂ. Oscilatii mecanice. ş.l. dr. Marius COSTACHE FIZICĂ Oscilatii mecanice ş.l. dr. Marius COSTACHE 3.1. OSCILAŢII. Noţiuni generale Oscilaţii mecanice Oscilaţia fenomenul fizic în decursul căruia o anumită mărime fizică prezintă o variaţie periodică

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Studiul proceselor de ciocnire

Studiul proceselor de ciocnire Studiul proceselor de ciocnire Scopul lucrării - studiul ciocnirilor centrale de tip elastic şi plastic; - verificarea teoremei de conservare a impulsului într-o ciocnire plastică; - verificarea teoremei

Διαβάστε περισσότερα

Examenul de bacalaureat la fizica, 18 iunie 2007 Profilul real

Examenul de bacalaureat la fizica, 18 iunie 2007 Profilul real Examenul de bacalaureat la fizica, 18 iunie 007, profilul real 1 Examenul de bacalaureat la fizica, 18 iunie 007 Profilul real I In itemii 1-3 raspundeti scurt la intrebari conform cerintelor inaintate

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1.

1. (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t = 1. . (4p) Un mobil se deplasează pe o traiectorie curbilinie. Dependența de timp a mărimii vitezei mobilului pe traiectorie este v () t.5t (m/s). Să se calculeze: a) dependența de timp a spațiului străbătut

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK

STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK STUDIUL EFECTULUI FOTOELECTRIC ŞI DETERMINAREA CONSTANTEI LUI PLANCK Obiectul lucrării În această lucrare se studiază unul din fenomenele fizice pentru explicarea căruia trebuie să admitem că lumina este

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Lucrul si energia mecanica

Lucrul si energia mecanica Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect.

Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect. A. MECANICĂ Se consideră accelerația gravitațională g = 10 m/s 2. SUBIECTUL I Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Trenul unui metrou dezvoltă

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Optica geometricǎ. Formula de definiţie

Optica geometricǎ. Formula de definiţie Tabel recapitulativ al marimilor fizice învǎţate în clasa a IX-a Optica geometricǎ Nr. crt. Denumire Simbol Unitate de mǎsurǎ Formula de definiţie 1 Indicele de n adimensional n=c/v refracţie 2 Formula

Διαβάστε περισσότερα

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

c c. se anulează (5p) 3. Imaginea unui obiect real dată de o lentilă divergentă este întotdeauna:

c c. se anulează (5p) 3. Imaginea unui obiect real dată de o lentilă divergentă este întotdeauna: Varianta 1 - optica B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, elementară e = 1,6 10 19 C, masa electronului m e = 9,1 10 31 kg. SUBIECTUL I Varianta 001 1. O rază de

Διαβάστε περισσότερα

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru

Διαβάστε περισσότερα

Amplitudinea sau valoarea de vârf a unui semnal

Amplitudinea sau valoarea de vârf a unui semnal Amplitudinea sau valoarea de vârf a unui semnal În curent continuu, unde valoarea tensiunii şi a curentului sunt constante în timp, exprimarea cantităńii acestora în orice moment este destul de uşoară.

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare

Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă

Διαβάστε περισσότερα

Seminar electricitate. Seminar electricitate (AP)

Seminar electricitate. Seminar electricitate (AP) Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =

Διαβάστε περισσότερα

este sarcina electrică ce traversează secţiunea transversală a conductorului - q S. I.

este sarcina electrică ce traversează secţiunea transversală a conductorului - q S. I. PRODUCRA ŞI UTILIZARA CURNTULUI CONTINUU 1. CURNTUL LCTRIC curentul electric Mişcarea ordonată a purtătorilor de sarcină electrică liberi sub acţiunea unui câmp electric se numeşte curent electric. Obs.

Διαβάστε περισσότερα

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ CURS 5 ERMODINAMICĂ ŞI FIZICĂ SAISICĂ 5.. Noţiuni fundamentale. Corpurile macroscopice sunt formate din atomi şi molecule, constituenţi microscopici aflaţi într-o mişcare continuă, numită mişcare de agitaţie

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

a. P = b. P = c. P = d. P = (2p)

a. P = b. P = c. P = d. P = (2p) A. MECANICA Se considera acceleratia gravitationala g= 10 m/s 2. (15puncte) Pentru itemii 1-5 scrieţi pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Asupra unui corp de masă

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

8 Intervale de încredere

8 Intervale de încredere 8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată

Διαβάστε περισσότερα

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ

TEST GRILĂ DE VERIFICARE A CUNOŞTINŢELOR LA MATEMATICĂ-FIZICĂ VARIANTA 1 MATEMATICĂ ROMÂNIA MINISTERUL APĂRĂRII NAŢIONALE ŞCOALA MILITARĂ DE MAIŞTRI MILITARI ŞI SUBOFIŢERI A FORŢELOR TERESTRE BASARAB I Concurs de admitere la Programul de studii postliceale cu durata de 2 ani (pentru formarea

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte)

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte) A. MECANICĂ e consideră accelerația gravitațională g = 0 m/s. I. Pentru itemii -5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.. Un automobil se deplasează în lungul axei Ox. Dependența

Διαβάστε περισσότερα

- Optica Ondulatorie

- Optica Ondulatorie - Optica Ondulatorie *Proiect coordonat de Dna. Prof. Domisoru Daniela *Elevii participanti: Simion Vlad, Codreanu Alexandru, Domnisoru Albert-Leonard *Colegiul National Vasile Alecsandri GALATI *Concursul

Διαβάστε περισσότερα

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE

FIZICĂ. Bazele fizice ale mecanicii cuantice. ş.l. dr. Marius COSTACHE FIZICĂ Bazele fizice ale mecanicii cuantice ş.l. d. Maius COSTACHE 1 BAZELE FIZICII CUANTICE Mecanica cuantică (Fizica cuantică) studiază legile de mişcae ale micoaticulelo (e -, +,...) şi ale sistemelo

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

Circuite cu diode în conducţie permanentă

Circuite cu diode în conducţie permanentă Circuite cu diode în conducţie permanentă Curentul prin diodă şi tensiunea pe diodă sunt legate prin ecuaţia de funcţionare a diodei o cădere de tensiune pe diodă determină valoarea curentului prin ea

Διαβάστε περισσότερα

Reflexia şi refracţia luminii.

Reflexia şi refracţia luminii. Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular

Διαβάστε περισσότερα

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice 4.. Gaze perfecte 4... Definirea gazului perfect Conform teoriei cinetico-moleculare gazul perfect este definit prin următoarele

Διαβάστε περισσότερα

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB 1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar Pagina 1 FNOMN TANZITOII ircuite şi L în regim nestaţionar 1. Baze teoretice A) ircuit : Descărcarea condensatorului ând comutatorul este pe poziţia 1 (FIG. 1b), energia potenţială a câmpului electric

Διαβάστε περισσότερα

ELECTROMAGNETISM.

ELECTROMAGNETISM. ELECTROMAGNETISM http://rumble.com/viral/p935765-the-power-of-nature-expressed-by-electricity.html http://openstockblog.com/incredible-faces-of-naturephotography-by-evan-ludes/electric-tsunami-ii/ ELECTROMAGNETISM

Διαβάστε περισσότερα

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1. Curentul alternativ 1. Voltmetrele din montajul din figura 1 indică tensiunile efective U = 193 V, U 1 = 60 V și U 2 = 180 V, frecvența tensiunii aplicate fiind ν = 50 Hz. Cunoscând că R 1 = 20 Ω, să se

Διαβάστε περισσότερα

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine

Διαβάστε περισσότερα